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Abstract— The main challenge in post-silicon debug is the lack of

observability to the internal signals of a chip. Trace buffer technology
provides one venue to address this challenge by online tracing of a few

selected state elements. Due to the limited bandwidth of the trace buffer,

only a few state elements can be selected for tracing. Recent research
has focused on automated trace signal selection problem in order to

maximize restoration of the untraced state elements using the few traced

signals. Existing techniques can be categorized into high quality but slow

“simulation-based”, and lower quality but much faster “metric-based”
techniques. This work presents a new trace signal selection technique

which has comparable or better quality than simulation-based while it

has a fast runtime, comparable to the metric-based techniques.

I. INTRODUCTION

Post-silicon validation of VLSI chips has become significantly

time-consuming in nanometer technologies. It thus impacts the time-

to-market of electronic products. Due to the high complexity in

modern designs, logic bugs may escape the pre-silicon validation

stage. Later on, at the post-silicon stage, the lack of visibility to the

signals inside the chip makes the validation a cumbersome task.

Trace buffer technology has been proposed in order to track a few

internal state elements within the observation window when the chip

is operating [1]. These signals are selected for tracing at the design

stage and the traces are analyzed at the post-silicon stage to debug

logic errors. Specifically, the collected traces are first used to restore

as many other state elements within the observation window. State

Restoration Ratio (SRR) has been used to measure the quality of a

set of selected trace signals. SRR is computed using simulation of

the circuit. A larger SRR means that a higher number of untraced

state elements can be restored using the traced signals within the

observation window. It thus allows a more effective analysis to

localize the bug in time and space.

Due to the complexity of modern IC designs, the selection of trace

signals can no longer be done manually. Recently, many automated

trace selection algorithms are proposed in order to increase the SRR

of the generated solution. These algorithms can be categorized into

two types, namely metric-based and simulation-based algorithms.

Metric-based algorithms utilize metrics which allow approximating

the ability of a candidate trace signal to restore the untraced state

elements while taking into account the restoration that can be made

from a subset of already-selected trace signals. For example the work

in [4] defines “forward restorability” and “backward restorability” to

help select the trace signals. However, these metrics were shown to

result in a high approximation error of the SRR in a number of

circumstances [3]. Later on, improved metrics namely “restorability”

and “visibility” were proposed in [5] and were shown to result in a

higher solution quality in terms of SRR, compared to [4]. The work

[2] further improves the solution quality by introducing a new set

of metrics which are based on signal dependency, and by iteratively
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updating and expanding a “traced region” until the required number of

state elements are selected. Besides the above-mentioned algorithms,

the work [6] introduces a variation of the problem which aims to

increase the likelihood of restoration on a set of critical state elements

as a secondary objective besides maximizing the SRR.

The main advantage of metric-based algorithms is their fast execu-

tion runtime due to quick evaluation of the related metrics. However,

their solution quality, measured in terms of SRR, are drastically

lower than the simulation-based algorithms. Specifically, the work [3]

elaborates that simulation is a better way to emulate the restoration

process and naturally captures different sources of inaccuracy such as

signal correlation. By using simulation and utilizing a pruning-based

strategy, the work [3] achieves the best solution quality among the

existing works. However, the runtime of [3] is significantly higher

than metric-based algorithms despite a GPU-based implementation.

The work [7] also proposes a trace selection algorithm by solving

an ILP-based formulation based on error propagation. The use of

circuit satisfiability as a more accurate alterative to simulation for

trace signal selection is also discussed in [8].

A. Contributions

In this work, we present a new trace selection algorithm which

is hybrid and utilizes the right blend of simulation with quickly-

measured metrics. The contributions of this work are as follows.

• A new set of metrics are proposed to quickly identify the top

candidates for tracing at each step of our algorithm.

• These metrics include an Impact Weight of each state element

for relative comparison which further depends on a proposed

demand metric. The demand metric reflects the remaining

restoration needed by a state element to be restored from a

candidate state element for tracing. It takes into account a partial

restoration from the already-selected trace signals.

• Updating the Impact Weight and demand metrics at each step is

based on computing a restorability rate for each untraced state

element. The restorability rates of all the untraced state elements

are computed with an overall small number of simulations.

• At each step of our algorithm, after a few top candidates for

tracing are identified using the Impact Weights, simulation is

used to accurately evaluate the SRR for each candidate.

In our experimental results, we use a setup similar to the previous

works and experiment with trace buffers of different bandwidths. We

also take into account the impact of control signals in our algorithm

when conducting our experiments. We demonstrate in our simulations

that the solution quality of our algorithm in terms of the measured

SRR is comparable or better than a simulation-based approach which

is the best reported solution quality among the existing algorithms. At

the same time, our algorithm is significantly faster than simulation-

based and has a runtime comparable to metric-based techniques

which have the fastest runtime among the existing algorithms.978-3-9815370-0-0/DATE13/ c©2013 EDAA



Fig. 1. Example for illustration of the notations and metrics

II. PRELIMINARIES

A. Terminology and Problem Definition

Given a sequential circuit, we denote a signal s := (p, v, n) when

pin p takes value v at clock cycle n. Here the value v could be 0,

1, or x if the value is unknown. Let pin p designate the index of an

output pin of either a combinational gate or a state element. It may

also designate a primary input which may further be a control signal,

typically to select an operation mode of the circuit. We denote the

subset of pins for state elements, gates, and control by PF , PG, and

PC , respectively. For signal s = (p, v, n) in an observation window

of N clock cycle, we assume n = 1, 2, . . . , N . For a control signal

(p, v, n), we have p ∈ PC and its value is known (v 6= x).

For pin p ∈ PG, we denote FOp as the set of its “fanout pins”

which are outputs of a combinational gate for which p is an input.

Similarly, we denote FIp to be the set of “fanin pins”, if they are

inputs of a combinational gate for which p is an output.

We define a trace signal (p, v, n) if p ∈ PF , corresponding to

a state element. The trace signal is captured at run-time for an

observation window of 1 ≤ n ≤ N . Also since the signal is

captured in an on-chip trace buffer, its values are known within

the observation window and we have v 6= x. Let us denote the

set of the trace signals with ST . The size of ST is B × N for

a trace buffer of bandwidth B allowing simultaneous tracing of

B signals in N cycles. As an example, in Figure 1, we have

PF = {p1, p2, p3, p4, p5}, PG = {p8, p9, p10}. For p8 we have

FIp8 = {p1, p7} and FOp8 = {p3}. The highlighted flipflop f3 is

traced, so we have ST = {(p3, v, n)}.

A signal (p, v, n) is defined to be restored in cycle n if pin p
does not correspond to a pin of a trace signal or of a control input

signal, and the value v can be restored to 0 or 1 by using the

values of the trace and control signals. The algorithmic procedure

for determining if a signal can be restored will be explained shortly.

The trace selection problem aims to find B trace signals such that the

total number of restored signals over the N cycles are maximized.

B. Restoration Using An XSimulator

The set of signals which can be restored using the trace and control

signals is determined using an XSimulator. Algorithm 1 describes

our variation of an XSimulator given in [4] which we refer to as

the XSim-core procedure. The inputs to the algorithm are a set of

signals at a single cycle n denoted by Sn
I which are assumed to have

a known value of 0 or 1. For example Sn
I could be a combination of

the trace and control signals at cycle n.

In our variation of XSimulator, we also introduce a binary

“restore-once” flag as input. It controls if restoration of an

(unknown) signal should stop as soon as the signal takes a known

value ( 6= x). Otherwise, it is possible for a signal to be restored

multiple times. More details about the use of this flag in our algorithm

will be discussed in Section III. The output is the set of signals which

Algorithm 1 XSim-core(Sn
I , &SR, restore-once)

1: Sn
R

= ∅; Q = ∅; visited[p]=false; ∀p
2: for each s := (p, v, n) ∈ Sn

I
do

3: Enqueue(Q, s); visited[p] = restore-once;

4: end for

5: while Q 6= ∅ do

6: si := (pi, vi, 0)
7: si ← Dequeue(Q)

8: for each p ∈ {FIpi ∪ FOpi} and !visited[p] do

9: s := (p, v = x, 0)
10: evaluate if s can be restored using {Sn

I
∪ SR}

11: if v 6= x then

12: SR ← SR ∪ {s}
13: Enqueue(Q, s); visited[p] = restore-once;

14: end if

15: end for

16: if the values of all the signals remain unchanged set Q = ∅
17: end while

can be restored using the input signals and is denoted by SR. Note,

these signals may be restored at any clock cycle which could be same

as, before or after n. However the XSimulator does not record this

cycle and instead uses a ‘0’ for the cycle field of a restored signal.

The procedure starts by marking each pin as not visited, except for

the ones corresponding to Sn
I which are set to the restore-once

flag. The signals in Sn
I are also added to a queue Q. (See lines 1-3.)

At each step the signal si is dequeued from the head of the queue.

Then a signal s defined as s := (p, v = x, 0) which corresponds to

a fanin or fanout pin of si is considered for restoration. If p has not

been visited before, its value is evaluated given the values of the other

fanins and fanouts which are known ( 6= x). (See lines 6-10.) Such

fanins and fanouts belong to either Sn
I or have been restored in the

previous steps of the algorithm so they belong to the current set of

restored signals SR. If s is restored, then v 6= x after the evaluation

and it is added to SR. Next, pin p takes the value of restore-once

flag and s is enqueued. The process terminates when the queue is

empty which may happen if all the signals are dequeued or if there

is no change in the values of the signals compared to the previous

iteration of the while loop. (See line 16.) The algorithm outputs the

latest SR as the set of restored signals using Sn
I .

If the restore-once flag is true, as soon as a signal is restored,

the algorithm stops considering it for further restoration. As a result,

fewer signals may be restored but the algorithm terminates much

faster. For example in Figure 1, assume p4 is restored to 1, p2 is not

restored, and the restore-once flag is true. As a result, p10 will

not be restored. However if restore-once is false, it is possible

for p4 to be later restored to 0 (thus enqueued more than once)

which allows further restoration of p10. Our trace selection procedure

utilizes both modes, for quickly finding a subset of restorable signals

as well as finding all the restorable signals.

A common measure for the quality of trace selection is the

State Restoration Ratio (SRR), computed within an observation

window of M clock cycles. SRR is computed using Algorithm 1

as follows. We are given the input set Sn
I as the trace signals

observed in a window of M clock cycles and the control signals.

The restore-once flag is also set to false. Next, the XSim-core

procedure is evoked M times, for n = 1, . . . ,M . After finding SR

for each cycle we have SRR = (B × M +
∑M

n=1
kn)/B × M

where B is the trace buffer bandwidth, and kn indicates the number

of restored signals which correspond to state elements using Sn
I . For

an example to compute SRR, please refer to related work [3].
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Fig. 2. Overview of our trace selection algorithm

Algorithm 2 Reachability-list(f,v,SC ,&Lv
f )

1: s := (pf , v 6= x, 0)
2: XSim-core({s} ∪ SC ,&SR, restore-once=true)

3: XSim-core(SC ,&SRC
, restore-once=true)

4: SR = SR \ SRC

5: Return Lv
f

as the set of state elements in SR

III. ALGORITHM

Figure 2 shows an overview of our trace selection algorithm. Our

algorithm is driven by computing and continuous updating of an

Impact Weight which is defined based on a new metric introduced in

this work, namely the “restoration demand”. It reflects the remaining

demand of a state element i to be restored by another state element

f when f takes a known value of 0 or 1, and given that i may be

partially restored by an existing set of already-selected trace signals.

Computation of this metric is quite fast using the XSim-core pro-

cedure. After a pre-processing step to compute the initial restoration

demands and weights, at each step, one or more new trace signals are

selected which is followed by updating the restoration demands and

weights for the next step, until all the B trace signals are selected.

The procedure for selecting the next trace signal involves two

methods. Method (i) uses the restoration demands and is applied at

each step. It does not favor a small class of state elements, referred

to as “islands” in this work, which have a poor rate of restoring the

other state elements, in the presence of very few or no other trace

signals. So after a few steps (e.g., every 8 selected signals), method

(ii) is used to consider adding an island signal. (See Figure 2.)

We first define the restoration demand of each state element and

the island state elements before discussing the steps of the algorithm.

A. Restoration Demand

We first define other metrics to enable discussing the restoration

demand. An example is also given to illustrate the metrics.

1) Lv
f : Reachability list of state element f taking value v:

Given state element f , we consider the case if it takes a known value

of 0 or 1. We denote the reachability list by Lv
f and define it as a set

of state elements which can be restored only if state element f takes a

known value of v 6= x. Note this definition is not associated with any

particular clock cycle. In other words, the reachability list Lv
f allows

identifying those state elements whose values can immediately be

restored if state element f takes a known value without relying on

any other (restored) state elements.

Algorithm 3 Restorability-FFs(F,SC ,S
1

T , . . . ,S
M
T ,&rf ∀f∈F )

1: rf = 0 ∀f ∈ F

2: XSim-core(SC ,&SRC
, restore-once=false)

3: for n=1 to M do

4: XSim-core(SRC
∪ Sn

T
,&SR, restore-once=false)

5: for each f ∈ F do

6: rf = rf + 1 if f is a state element in SR
7: end for

8: end for

9: return rf =
rf
M
∀f ∈ F

For each state element f , two reachability lists with values v = 0
and v = 1 are computed. Algorithm 2 shows the procedure. The

inputs are the state element f , its considered value v 6= x, the set of

input control signals denoted by SC . (The notation does not associate

the control signals with a clock cycle because we assume they remain

constant within the observation window.) The output is Lv
f .

First, signal s is formed corresponding to state element f . (Since

no particular cycle is considered, a special value of ‘0’ is used for the

clock cycle field in s.) In line 2, the XSim-core procedure is called

with the union of control signals and s as its input to identify the

signals SR which can be restored. Since some of the signals in SR

may be restorable solely using SC , they must be removed to allow

identifying the signals which can be restored when s is also used. To

remove these signals, in line 3, the XSim-core procedure is called

again, this time using only SC as input. The restored signals denoted

by SRC
are then removed from SR (line 4). The output Lv

f is the

set of state elements corresponding to the signals in SR.

Note, when calling the XSim-core procedure, the

restore-once flag is set to true. This ensures quick computation

of the reachability list within our trace selection algorithm.

For example, in Figure 1 we have L0

1 = {f2, f5}, L1

1 = {f2, f3},

L0

2 = {f1, f5}, L1

2 = {f1, f3}, L0

3 = {f1, f2, f4, f5}, L1

3 = ∅,

L0

4 = {f5, f3}, L1

4 = ∅, L0

5 = ∅, L1

5 = {f1, f2, f3, f4}.

It is possible that some state elements have an empty reachability

list for both values of v which we refer to as “island” state elements.

More precisely, f is an island state element if L0

f = L1

f = ∅.

2) rf : Restorability rate of state element f : This metric reflects

the probability that a single state element f can be restored using the

trace signals identified so far. The probability is computed within an

observation window of M clock cycles by continuously calling the

XSim-core procedure. While, in practice the observation window

corresponding to the trace buffer depth is 1K to 8K cycles, it has

been shown in [3] that a much smaller observation window (e.g.,

M=64 cycles) provides sufficient accuracy for evaluations within the

simulation-based procedure. Similarly, we use M = 64.

Algorithm 3 shows the details of computing the restorability

rate for all the state elements. The inputs are the set of state

elements which are not selected so far (denoted by F ), input control

signals (denoted by SC), and the trace signals so far within an

observation window of M cycles (denoted by S1

T , . . . ,S
M
T ). Recall

s = (p, v, n) ∈ Sn
T , if v 6= x and p ∈ PF indicating that s

corresponds to a state element which is traced in cycle n. The output

is the restorability rate of state element f , denoted by rf . One call

to the algorithm is sufficient to compute rf for all f ∈ F .

According to Algorithm 3, initially rf is set to 0 ∀f ∈ F . Next,

the set of control signals SC is used to identify a set of restored

signals denoted by SRC
using the XSim-core procedure. (See line

2.) At each step, the XSim-core procedure is used to identify the

signals which can be restored at cycle n for n = 1, 2, . . . ,M .



Note in line 4, the input to XSim-core is Sn
T ∪ SRC

which

allows accounting for the impact of the control signals in addition to

the trace signals in that cycle. The restored set is denoted by SR. If a

state element f ∈ F can be restored, then its corresponding signal is

in SR and rf is added by 1. In the end, rf is returned as a probability

by dividing it by M for each f ∈ F .

The input trace signals Sn
T for n = 1, 2, . . . ,M , for any call to

this function, are computed using a one-time simulation done in the

initial pre-processing step of the flow shown in Figure 2. Specifically,

the circuit is simulated for 1K cycles and the values of all state

elements for each cycle are stored in the initialization step. Next,

at each call of Algorithm 3, the values of the corresponding trace

signals are looked up from the stored patterns for the M cycles.

Specifically, given the small size of the observation window, i.e.,

M = 64, we randomly select 3 non-overlapping observation windows

with different starting cycles from the 10K simulated cycles. For each

window, Algorithm 3 is called once and the final stored value of rf
is computed as the average of these three values. (These 3 runs of

Algorithm 3 are implemented as 3 threads running on a multi-core

machine.) This idea of averaging over multiple computations was

also used in [3] but for computing the SRR when M is small. In

addition, the calls to the XSim-core procedure are made by setting

the restore-once flag to false. Recall by setting this flag to false,

all the possible restorable signals will be identified. So it allows exact

evaluation if f can be restored by the current trace signals.

3) dvi,f : Demand of state element i from state element f taking

value v: If state element i is not fully restored (i.e., ri < 1) we would

like to quantify its demand if it is restored by another state element

f . We define dvi,f as the demand of i to get fully restored by f when

f has a known value.

In practice, state element f which allows restoring state element i,
only falls within a small subset of the entire set of state elements and

considering f to be among the set of all the state elements results in

many unnecessary and time-consuming computations. Therefore, we

limit f to be a state element which includes i in its reachability list,

for either value 0 or 1 (i.e., i ∈ Lv
f , v ∈ {0, 1}). We approximate

the demand dvi,f as follows.

dvi,f ≈ min(1− ri, a
v
j ), ∀i ∈ L0

f or i ∈ L1

f (1)

where av
f is the probability that state element f takes value v. The

probability av
f is accurately computed in the initialization step using

circuit simulation for a suitable number of clock cycles (e.g., 10K

in this work with random values for non-control input vectors). In

Equation 1, the quantity 1 − ri reflects the remaining restoration

demand of i. If it is larger than av
f , then the demand is given by

av
f which is the likelihood that f takes value v. Equation 1 is an

upper bound approximation which can be computed fast. Otherwise,

accurate computation of the demands requires many time-consuming

simulations and would be impractical for realization of a fast and

scalable algorithm.

4) wf : Impact Weight of state element f : The Impact Weight of

a state element f captures the amount of restoration if f is selected as

the next trace signal. A key point in computing this Impact Weight is

considering the remaining restoration of the unrestored state elements

which is given by the restoration demand metric. Specifically, the

Impact Weight of state element f is defined as follows.

wf =
∑

v=0,1

∑

∀i∈Lv
f

dvi,f (2)

In the above equation, the corresponding demands of the state

elements in the reachability lists of f for values 0 and 1 are added.

The higher Impact Weight for a state element f can be an indication

that more state elements can be restored if f is selected as the

next trace while accounting for the amount of restoration using the

already-selected trace signals.

As an example, in Figure 1, the Impact Weight of flipflop f2 is

given by w2 = d01,2 + d11,2 + d13,2 + d05,2. At the beginning when no

trace signal is selected, the restoration rates of all the flipflops are 0.

Therefore the demand dvj,2 = av
j according to Equation 1. Assuming

the two primary inputs of this circuit are independent and each has

a probability of 0.5 to be 0 or 1, we obtain the probability rates

a0

1 = a1

1 = 0.5, a1

3 = 0.75, a0

5 = 0.75, and w2 = 2.5.

B. Steps of the Algorithm

We now discuss the details of different steps of our algorithm.

These are shown in bold in Figure 2.

1) Initialization: In this step, first, the circuit is simulated for 10K

cycles using random values for non-control primary input vectors.

The simulation results are used to compute the probability av
f for each

state element. As mentioned before, they are also used to provide the

trace signals which are fed as inputs to Algorithm 3 to compute rf
for each state element f . Next, the demands and the Impact Weights

are computed, similar to the given example.

2) Method (i) trace selection using the restoration demands:

At each step of the algorithm, method (i) is initially used to identify

the next trace signal. In general, a state element with a higher Impact

Weight is a better candidate for the next trace signal. However, simply

selecting the state element with the maximum weight may not be a

good choice because based on our observations, there may be other

state elements with similar yet slightly smaller weight values which

may result in a higher state restoration ratio (SRR). Therefore we

evaluate the top k% of the state elements with the highest restoration

demands. To select the next trace signal from the above identified

subset, we consider adding each to the current set of selected trace

signals and directly measure the SRR for an observation window of

M = 64 cycles. (See Section II-B for computation of SRR.) The

next trace signal is the one which yields to the maximum SRR.

Since computing SRR involves X-Simulation, the parameter k
should be set to a small value to ensure the runtime of the algorithm

is feasible. In our implementation of method (i), we identify the top

5% of the state elements with the highest weight. We observed that

this value is reasonable to identify the state elements with high weight

values, and yet is small to ensure a negligible runtime overhead.

3) Method (ii) trace selection with island consideration:

Recall from Section III-A1 that an island state element has empty

reachability lists, for both values of 0 and 1. It means that stand alone,

an island state element is not able to restore any other state elements.

Therefore as shown in Figure 2, after selecting every 8 trace signals,

we consider adding an island signal. For example, for a typical trace

buffer bandwidth of 64 bits, adding an island is considered seven

times throughout the course of the algorithm.

Specifically, to select an island signal, we simply add each island

signal individually to the current list of selected trace signals and

measure the SRR for an observation window of 64 cycles. This

is because we observed the number of islands are typically very

low and consequently the runtime overhead to compute the SRRs

is not significant. Once the SRRs are computed, the island with the

maximum SRR is identified and if the SRR is higher than a threshold,

then the island is also added to the set of trace signals. In that case,

within one step of the algorithm two trace signals will be added to

the set. However, if an island is not selected, adding an island will

be postponed when eight additional trace signals are identified.



TABLE I
RUNTIME COMPARISON OF DIFFERENT ALGORITHMS

METR: Metric-based [6] SIM: Simulation-based [3] HYBR: Hybrid
(implemented on a quad-core machine)

#FFs Trace Size Trace Size Trace Size
Benchmark 8 16 32 8 16 32 8 16 32

S5378 163 8 27 66 00:06:50 00:06:40 00:05:30 5 27 28
S9234 145 6 17 38 00:07:28 00:06:05 00:04:10 26 84 86

S13207 327 48 117 254 00:48:12 00:46:42 00:41:3 68 163 166
S15850 137 7 18 37 00:02:34 00:02:03 00:00:40 83 193 197
S35932 1728 73 167 408 07:13:00 07:12:00 07:11:00 139 208 217
S38417 1564 3690 7620 13428 50:05:00 50:04:00 50:02:00 434 2508 2521
S38584 1166 53 140 354 16:33:00 16:32:00 16:31:00 167 741 752

4) Updating the Impact Weights: Method (i) relies on using the

Impact Weights corresponding to the most recent set of trace signals.

Therefore, at each iteration of the loop in Figure 2, these weights are

updated. Specifically, the core metric to be updated is the restorability

rate of each state element which is used to compute the demand in

Equation 1 and the weight in Equation 2. In order to update the rf
values, Algorithm 3 is called which now takes the new sets of trace

signals as inputs as explained in Section III-A2. Note, the reachability

lists do not change after the initialization step.

We further discuss the complexity of some of the steps for

computing/updating the weights. First, updating the demands and

the weight for one state element can be done in constant time once

the restorability rate of state elements (rf ) are updated. This can

be observed from Equation 1. For the weight given by Equation 2,

in practice we observe a constant computational complexity because

each state element is only contained in the reachability list of a few

number of state elements, much smaller than the total number of state

elements in the circuit. The computational complexity is dominated

due to updating the rf values however this only requires calling

XSim-core procedure M = 64 times in Algorithm 3 for all the

untraced state element.

IV. SIMULATION RESULTS

Our trace selection algorithm, which we refer to in short, as HYBR

in our experiments, was implemented in C++. It was tested on

the ISCAS89 benchmarks which were synthesized using Synopsys

Design Compiler with a 90nm TSMC library for trace buffers of

various bandwidths. The number of flipflops for each benchmark is

reported in column 2 of Table I.

To measure the solution quality, the State Restoration Ratio

(SRR) with an observation window of 4096 cycles is used with

random values for non-control primary inputs. Note, this observation

window is the size that can typically be captured by a trace buffer, and

is also assumed in all the previous works. The procedure to calculate

SRR was explained in Section II-B.

Furthermore, two of the benchmarks (S35932 and S38584) have

control signals as primary inputs to the circuit. The names and values

of these control signals are as follows. For S38584 we identify ‘g35’

as an active low global reset so it was set to 1 which is also pointed

out in [4]. For S35932, the active low global reset signal ‘RESET’

was set to 1. Moreover, two control input signals ‘TM0’ and ‘TM1’

define four working modes in this benchmark. Therefore, we ran this

benchmark four times for each of the working modes and measure

four separate SRR values. We then report the average of these four

SRR values for S35932 in our experiments.

We also make comparison with other trace selection algorithms.

We note that due to the technology library used for synthesis of

the benchmarks in our simulations, direct comparison with other

existing algorithms by looking at the reported SRR values from the

related publications was inaccurate. Therefore, we also implement the

following two trace selection algorithms for comparison: 1) METR:

metric-based [6]1, and 2) SIM: simulation-based [3]. METR uses a

metric to approximate the SRR while SIM directly uses simulation

to accurately compute SRR for trace signal selection throughout the

course of the algorithm. As a result, METR is typically much faster

than SIM. However SIM is shown to result in a much higher solution

quality. We use METR mainly as a reference for runtime, and SIM

mainly as a reference for the solution quality of our algorithm. We

also note that among the metric-based algorithms, we select [6] due

to its fast execution runtime which is similar to [5] but faster than

[4] and [2]. Both [6] and [3] use the XSimulator in their internal

procedures and for fair comparison, we use the same procedure (i.e.,

XSim-core given by Algorithm 1) which provides the most efficient

implementation. Our implementation of SIM included the pruning

phase given in [3] with random input trials equal to 3. We also note

that our implementation of XSim-core exploits bitwise parallelism

for state restoration given in [4]. When implementing [3], custom

parameter selection was done the same way as reported in [3]. All

simulations ran on an Intel quad-core 3.4GHZ with 12GB memory.

Comparison of Runtime: Table I shows the comparison of runtime

of our HYBR with SIM and METR algorithms for three buffer

bandwidths of 8, 16, and 32 bits and a buffer depth of 4K. The

reported runtimes are in seconds except for our implementation of

[3] where the reported format is (hour:minute:sec). We note, the work

[3] describes a GPU-based implementation of SIM which exploits a

high degree of parallelism. However, our implementation of [3] which

ran on a quad-core CPU is based on multi-threading and only up to 8

parallel threads could run simultaneously in our setup. Therefore, our

reported numbers for SIM is higher than [3]. But anyhow, it gives a

measure to highlight the significant speedups using HYBR.

As can be seen, HYBR has a comparable runtime to METR and is

tremendously faster than SIM. Moreover, we note that metric-based

algorithms are already verified to be much faster than simulation-

based procedures, even when a GPU-based implementation is used,

as reported in [3]. So we expect that HYBR is also much faster if a

GPU-based implementation of SIM is used.

To analyze the fast runtime of HYBR and compare it with SIM,

we compare the number of calls to the XSim-core procedure in

both algorithms. This step is called repetitively and is the most time-

consuming step in both cases. The analysis is as follows. In HYBR,

at each step, computation of restoration ratio for all the state elements

(rf ∀f ∈ F ) using Algorithm 3 requires a total of M = 64 calls

to the XSim-core procedure. Furthermore, at each step of HYBR,

we use SRR computation for the top 5% of state elements which

have the highest Impact Weights. Each SRR computation requires 64

1For fair comparison, no critical state elements was specified in [6].



TABLE II
COMPARISON OF STATE RESTORATION RATIO (SRR) OF DIFFERENT ALGORITHMS

METR: Metric-based [6] SIM: Simulation-based [3] HYBR-NOSIM: Hybrid w/o HYBR: Hybrid with

simulation for top candidates simulation for top candidates

Trace Size Trace Size Trace Size Trace Size

Benchmark 8 16 32 8 16 32 8 16 32 8 16 32

S5378 13.7 8.1 4.1 12.8 7.1 4.4 13.4 7.9 4 13.6 (-0.7%) 8.0 (-1.2%) 4.2 (-4.5%)

S9234 8.4 5.8 3.4 9.1 6.6 3.6 9.4 6.1 3.3 9.8 (+4.3%) 6.8 (+3.0%) 3.6 (+0.00%)

S13207 13.8 6.8 3.5 19.3 12.2 7.8 22.2 14.6 8.0 24.5 (+10.4%) 16.3 (+11.6%) 8.9 (+11.3%)

S15850 14.4 7.6 4.1 14.5 7.8 4.1 15.0 7.8 4.0 15.6 (+4.0%) 8.1 (+3.8%) 4.1 (+0.00%)

S35932 31.1 19.4 11.6 58.1 36.2 23.1 31.6 18.9 11.3 61.4 (+5.7%) 38.3 (+5.8%) 23.4 (+1.3%)

S38417 17.6 13.1 9.7 29.4 17.8 20.0 18.1 10.3 5.9 51.3 (+74.5%) 30.1 (+12.9%) 17.5 (-12.5%)

S38584 13.5 10.8 7.1 14.9 18.1 16.4 18.3 14.8 10.7 24.0 (+31.1%) 18.5 (+2.2%) 17.5 (+6.7%)

calls to the XSim-core procedure. Therefore the number of calls

to XSim-core at each step of HYBR is dominated by the number

of SRR computations which is at most 5% of the number of state

elements and is a small number. In contrast, in SIM, at each step and

for each untraced state element, an SRR is computed. Therefore the

number of SRR computations are significantly larger.

While each step of HYBR is significantly faster than SIM, we

also note that another reason for the difference in the runtimes is

because the number of steps in SIM is much larger than HYBR. This

is because SIM is based on elimination of the least promising state

elements and the number of state elements are often much higher than

the number of trace signals. For example, S38584 has 1166 state

elements which is much higher than the number of trace signals.

Comparison of Solution Quality: For this experiment, we report the

results for a new variation of HYBR. Specifically, in this variation,

when selecting the next trace signal using Method (i), we skipped the

SRR-based evaluation of the top 5% state elements with the highest

Impact Weights. Instead, we directly selected the state element with

the maximum Impact Weight in order to measure the effectiveness

of the Impact Weight metric. Recall the eliminated step for SRR

evaluation involved simulation so we refer to this variation as HYBR-

NOSIM.

Table II shows the comparison of the solution quality (i.e., SRR).

(The SRR values are computed for an observation window which

was set to M = 4K cycles corresponding to the buffer depth.) For

HYBR, a percentage improvement in SRR is also reported which

is with respect to the SRR of the remaining techniques listed per

benchmark. As can be seen, HYBR results in a significantly higher

solution quality compared to METR. This is for the majority of the

benchmarks except the smallest one (S5378) in which the quality

of solution is quite similar in all the algorithms.

Furthermore, HYBR has a consistently higher solution quality

compared to SIM for small buffer bandwidths (i.e., 8 and 16 bits). For

example in benchmark S38417 and for the buffer bandwidth of 8

bits, the SRR of HYBR is 51.3 while the SRR of SIM is 29.4. For the

bandwidth of 32 bits, the two algorithms have a quite similar SRR.

The main reason that HYBR performs better for smaller bandwidths

is because it is based on selecting the most promising state element

at each step while [3] is based on eliminating the least promising

one at each step. Therefore in [3] the error associated with the greedy

backward elimination of state elements grows as the buffer bandwidth

decreases. In contrast, in HYBR, the error associated with greedy

forward addition of promising state elements grows with the increase

in the buffer bandwidth.

When comparing HYBR and HYBR-NOSIM, we observe that by

eliminating the simulation for the top trace candidates, the solution

quality significantly degrades. For the first four benchmarks HYBR-

NOSIM often maintains a better solution quality over SIM, however

SIM outperforms HYBR-NOSIM for the remaining benchmarks.

After further examining the first four benchmarks, we found out

that the initially-generated reachability lists allow a more effective

computation of the Impact Weights for these benchmarks. (Equation

2 shows direct dependency on the reachability lists.) This can be due

to their smaller sizes or circuit topologies.

We conclude that simulation-based measurement of SRR provides

a better method for evaluation of the top candidates of our algorithm

compared to the Impact Weights. However, we note this SRR-based

evaluation is only done for a small percentage of the state elements

which are quickly identified using the Impact Weight metric. (In

contrast [3] utilizes SRR-based evaluation for all the candidate state

elements.) From the above arguments, we can conclude our Impact

Weight metric is able to effectively and quickly identify the top

candidates. This directly translates into significant reduction in the

number of SRR-based evaluations and the portion of runtime spent

on simulation while maintaining the high solution quality.

V. CONCLUSIONS

We presented a hybrid trace signal selection algorithm. In terms

of solution quality measured by the state restoration ratio, it is

comparable or better than a simulation-based algorithm which had

the best solution quality among the existing approaches. In terms of

runtime our hybrid algorithm is significantly faster than simulation-

based algorithm and has a runtime comparable to metric-based

algorithms which were shown to be the fastest among the existing

approaches. The impressive runtime and solution quality of our hybrid

algorithm is due to developing the right blend of simulation with

a new set of proposed metrics which can be quickly evaluated.

Together, they allow fast and effective measurement of the impact

of each candidate state element which allows for their comparisons

in order to select the next trace signal throughout our algorithm.
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