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Abstract—Unknown (X) values may emerge during the design
process as well as during system operation and test applica-
tion. Sources of X-values are for example black boxes, clock-
domain boundaries, analog-to-digital converters, or uncontrolled
or uninitialized sequential elements.

To compute a detecting pattern for a given stuck-at fault,
well defined logic values are required both for fault activation
as well as for fault effect propagation to observing outputs. In
presence of X-values, classical test generation algorithms, based
on topological algorithms or formal Boolean satisfiability (SAT)
or BDD-based reasoning, may fail to generate testing patterns
or to prove faults untestable.

This work proposes the first efficient stuck-at fault ATPG
algorithm able to prove testability or untestability of faults in
presence of X-values. It overcomes the principal inaccuracy and
pessimism of classical algorithms when X-values are considered.
This accuracy is achieved by mapping the test generation problem
to an instance of quantified Boolean formula (QBF) satisfiability.
The resulting fault coverage improvement is shown by experimen-
tal results on ISCAS benchmark and larger industrial circuits.

Index Terms—Unknown values, test generation, ATPG, QBF

I. INTRODUCTION

Unknown (X) values emerge during design and test gen-
eration, as well as during operation and test application. X-
values are caused by unspecified or black boxes in the design,
or—during test—by uncontrolled sequential elements, at clock
domain crossings or A/D boundaries for example. X-values in
the circuit compromise the testability of faults since both, fault
activation and propagation, require well defined values at the
fault site and along the propagation path, respectively.

Deterministic test generation algorithms (ATPG) for stuck-
at faults are typically based on topological search such as
the D-algorithm [1], PODEM [2] or FAN algorithm [3], or
Boolean satisfiability (SAT) reasoning [4, 5].

To model signal states in the circuit in presence of X-values,
n-valued logics with different accuracy have been introduced.
The 5-valued logic for test generation of [1] has been extended
to a 9-valued logic [6] to distinguish between X-valued signals
in the fault-free and faulty circuit. In the same way, SAT-based
test generation algorithms have been extended to process sig-
nal states with X-values [7, 8]. Restricted symbolic simulation
[9] extends the number of symbols to distinguish different X-
states and their inversion. This allows to reduce the pessimism
of forward implication in test generation [10], unless multiple
X-states from different X-sources converge at a gate.

Encoding the states of X-valued signals in the circuit with
a limited number of symbols, as done in these n-valued
or restricted symbolic logics, introduces pessimism in the
implication process. The limited number of symbols does not
allow to reflect all correlations between X-valued signals. At

reconvergences, where X-canceling may occur, the accurate
output value cannot be computed any more. In consequence,
forward and backward implication—and thus test generation—
based on n-valued logics is pessimistic. In general, test gen-
eration algorithms based on n-valued logic cannot prove the
untestability of faults in the support of X-valued signals and
may not be able to find a detecting pattern for all testable
faults.

Fig. 1 shows an example of a circuit with one X-source at
line b which reconverges at line q. Classical ATPG algorithms
fail to compute a test pattern for any stuck-at fault in this
circuit. However, the stuck-at-0 and stuck-at-1 faults at c and q
are detectable with the two patterns (a, c) = (1, 0) and (a, c) =
(1, 1). For the presented example, restricted symbolic logic
based ATPG [10] also fails to generate a test.
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Fig. 1: Circuit with X-source at line b

The accurate computation of signal states in a circuit in
presence of X-values can be achieved by formal reason-
ing for register-transfer and gate level simulation [11–13].
These methods employ Boolean satisfiability (SAT), quantified
Boolean formula (QBF) reasoning, or symbolic computation
by binary decision diagrams (BDDs).

Accurate fault simulation can be performed even for large
circuits by a combination of heuristics and SAT reasoning [14].
Both logic and fault simulation in presence of X-values are
NP-complete problems. Yet deterministic test generation for
stuck-at faults in presence of X-values is an NP-hard problem
(Verification of a guessed solution, i.e. fault simulation, is an
NP-complete problem).

In general, solving this problem using Boolean satisfiability
requires 2n different SAT instances of the circuit to reflect
all possible assignments at n X-sources. Quantified Boolean
formulae [15], where variables are existentially or universally
quantified, allow a succinct representation of these problem
instances. The recent advances in the performance of QBF
solvers, for example conflict driven learning [16], resolution
and expansion based decision algorithms [17] or preprocessing
[18], enable exact reasoning about fault testability in presence
of Xs even for larger circuits. QBF-based reasoning has
already been applied to circuit debugging in [19].

In this work, we propose a mapping of the test generation
problem in presence of multiple X-sources to the QBF domain978-3-9815370-0-0/DATE13/©2013 EDAA



to exactly determine the testability of a fault. Runtime is kept
reasonable by use of efficient two- and three-valued SAT-based
ATPG, and accurate fault simulation of generated patterns.
QBF-based reasoning is only invoked when absolutely neces-
sary.

Section II gives a formal problem statement and required
definitions, followed by the presentation of the proposed algo-
rithm in section III. Section IV presents experimental results
on ISCAS benchmark circuits and NXP circuits. Section V
summarizes the paper.

II. TERMINOLOGY

In 3-valued logic, the three symbols {0, 1, X} are used to
represent logic value 0 (logic-0), logic value 1 (logic-1) and
an unknown state, i. e., either logic-0 or logic-1. Signals at
which unknown values originate are called X-sources.

In this work two types of stuck-at fault detection in com-
binational or full scan circuits are distinguished: Definite
detection (DD) and potential detection (PD). A stuck-at fault f
is DD if and only if an output o exists where the fault effect
is observable independent of the logic value assignment to the
X-sources. Let the functions vG(p, s) and vf (p, s) return the
logic value of signal s under pattern p in the fault free circuit
and the circuit under fault f , respectively, in presence of X-
values. Then, the definite detection of fault f under pattern p
is given as

DDf (p) := ∃o ∈ O :
vG(p, o), vf (p, o) ∈ {1, 0} ∧ vG(p, o) 6= vf (p, o), (1)

where O is the set of output signals of the circuit.
Stuck-at fault f is potentially detected if an observable

output o exists where the fault effect can be deterministically
measured for at least one logic value assignment to the X-
sources:

PDf (p) := ¬DDf (p) ∧ ∃o ∈ O :
vG(p, o) ∈ {1, 0} ∧ vf (p, o) = X. (2)

III. ACCURATE X-AWARE TEST PATTERN GENERATION

A. Overview

The proposed ATPG algorithm is able to prove the testa-
bility of stuck-at faults in presence of X-values. It combines
accurate fault simulation [14], incremental SAT-based test
generation with two- and three-valued encoding, and QBF
reasoning to efficiently analyze the faults.

Using a topological analysis, the faults under analysis are
partitioned into four groups w.r.t. their relation to the X-
sources in the circuit (c.f. Fig. 2):

1) No structural dependence on the X-sources: Neither the
justification cone of the fault, nor its propagation cone
have any dependence on X-sources.

2) A subset of the outputs in the propagation cone depends
on X-sources. The justification cone and at least one
output in the propagation cone do not depend on X-
sources.

3) A subset of the inputs in the justification cone of the
fault depends on X-sources. At least one input in its
justification cone is a controllable input.
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Fig. 2: Fault f and its justification and propagation cone.

4) The justification cone is driven exclusively by X-sources.
The faults are processed as shown in Fig. 3: First, faults

in Group 1 and Group 2 are handled by SAT-based ATPG
based on a two-value signal encoding where X-values are
not considered ( 1©). Untested faults that were not proven
untestable in this step, and the faults of Group 3 are then
processed by SAT-based ATPG based on pessimistic three-
value signal encoding ( 2©). For the faults for which no
test pattern is found by three-value signal encoding, a QBF
is constructed and analyzed using a QBF solver ( 4©). For
the faults in Group 4, a topological untestability check is
conducted ( 3©). If this test cannot prove a fault untestable, the
fault is also analyzed by the QBF solver ( 4©). For the generated
test patterns, accurate fault simulation ( 5©) is performed. The
following sections explain the steps in detail.
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Fig. 3: Overview of the proposed QBF-based ATPG in pres-
ence of X-values.

B. Two-valued SAT-based ATPG
Faults in Group 1 have no X-dependencies. Thus, two-

valued or binary signal encoding is sufficient to generate
a testing pattern or prove fault untestability. For faults in
Group 2, both fault activation and propagation to outputs
without X-dependence can be analyzed accurately using a
binary encoding.

In SAT-based ATPG, the Boolean function of the fault-free
and faulty circuit are represented as formula in conjunctive
normal form (CNF), or union of clauses. For a netlist, this
representation is efficiently obtained using the Tseitin trans-
formation [20]. To reduce the number of clauses, only the
propagation cone or cone-of-influence of the faults is modeled
and—at the circuit outputs—compared with the outputs of the
fault-free circuit model. The search for a test pattern is sped up
by introducing D-chains which explicitly model propagation
paths of the fault effect [4].



In the two-valued encoding, the state of each signal in the
fault-free and faulty circuit is modeled by a single binary
variable respectively.

The SAT instances are constructed incrementally during
fault analysis. The state-of-the-art incremental SAT solver
of [21] is used to solve the instances. This reduces the
construction overhead of the SAT instance and allows to
exploit knowledge learnt during the analysis in previous steps.

For each fault, first the justification cone is modeled and it is
checked whether the fault can be activated. This computation
is accurate since for Groups 1 and 2, the fault site does not
depend on X-sources. If the fault cannot be activated, it is
untestable. If it can be activated, we proceed analyzing the
fault propagation to the circuit outputs.

The SAT instance is now incrementally extended with cir-
cuit outputs reachable from the fault site. Here, only reachable
outputs without X-dependence are considered. The outputs are
processed with increasing structural depth. For a reachable
output, its justification cone, i.e. all gates in its transitive
fanin, is added to the SAT instance of the fault-free and faulty
circuit. The justification cones of the reachable outputs are
computed efficiently in parallel for up to 64 outputs by a single
forward and backward traversal of the circuit. For signals in
the propagation cone of the circuit, the clauses for modeling
of D-chains are added as well.

Once the output, its justification cone and D-chain have
been modeled, it is sufficient to check whether the output can
detect a difference between the fault-free and faulty circuit
under the considered fault. This is equivalent to checking
whether the d variable of the D-chain at the output can be
asserted (d = 1). This condition is added as assumption,
i.e. a temporary condition evaluated only during the current
satisfiability analysis in the SAT solver.

If the SAT solver finds a satisfying assignment to the
circuit inputs, the fault is detected. If there is no satisfying
assignment, the complement d = 0 of the assumption, is
statically added to the SAT instance to prune the solver’s
search space in the analysis of the remaining outputs.

A fault of Group 1 without any X-dependencies is marked
untestable if the SAT instance is unsatisfiable for all reachable
outputs. For faults in Group 2, only outputs without X-
dependencies are considered. If the fault is not observable at
any of these outputs, the fault is processed using a three-valued
analysis as explained in the next section.

C. Three-valued SAT-based ATPG
Faults of Group 2 which are not proven testable or

untestable in the previous step and all faults of Group 3 are
now analyzed using three-valued SAT-based ATPG. Three-
valued SAT-based ATPG allows to search for test patterns
in presence of X-sources by modeling the three signal states
{0, 1, X} both in the fault-free and faulty circuit. This mod-
eling generates a test pattern if the accurate evaluation of
reconvergences of X-valued signals is not required, i.e. fault
activation and propagation along a D-chain are achieved by
avoiding or blocking X-values in the support of the fault.

In the three-valued encoding, the state of a signal s is
expressed by two variables (s1, s2) such that logic-0 corre-
sponds to (0, 1), logic-1 to (1, 0) and the X-state to (0, 0).

An additional clause (¬s1,¬s2) is added for each signal s to
restrict the states to {0, 1, X}.

The SAT instance is constructed from the circuit using the
Tseitin transformation. Compared to the two-valued encoding,
the number of clauses per gate is more than doubled. The in-
stance construction and evaluation is performed incrementally
by first considering the activation at the fault site, followed
by the analysis of observing outputs. If the fault site cannot
be justified, the fault is later processed using the QBF solver.
For the propagation path, the D-chain clauses enforce that a
propagating signal has well-defined and complementary binary
logic values in the fault-free and faulty circuit.

For faults of Group 2 for which no test pattern was found
in the previous step, only the outputs with X-dependencies
are processed. If no detecting pattern is found, the fault is
analyzed in by the QBF-based ATPG.

D. Topological Untestability Check

If the fault site of a fault cannot be justified to a known
logic value, the fault cannot be definitely detected. For faults
of Group 4, the justification cone only depends on X-sources.
X-canceling in the justification cone of the fault site can
only occur at signal reconvergences. A simple tracing of
branching signals is performed to check for reconvergences.
If none are found in the justification cone, the fault site of
faults in Group 4 cannot be justified. Consequently, they are
untestable w.r.t. the definite detection criterion of section II. If
reconvergences are found, the fault may be testable and needs
to be analyzed using the QBF solver.

E. QBF-based ATPG

All faults for which testability or untestability has not been
proven yet are subject to ATPG based on quantified Boolean
satisfiability. A problem instance is modeled as quantified
Boolean formula (QBF) and a QBF solver is employed to
search for a satisfying model (i.e. a test pattern) or to prove
untestability of the fault.

1) Quantified Boolean Formulae and QBF Satisfiability:
A quantified Boolean formula is a Boolean formula in which
the variables are quantified or bound by the existential (∃)
or universal (∀) quantifier [15]. In the following we assume
that all variables are bound. A QBF can be transformed into
the prenex normal form where all quantifiers are grouped
together and precede an unquantified Boolean formula, called
the matrix or kernel.

A QBF solver is able to process problem instances, typically
given as a QBF in prenex normal form where the matrix is in
conjunctive normal form (CNF). The QBF solver searches for
a model or assignment to the existentially quantified variables
that satisfies the QBF, or proves that no such model exists. The
complexity of QBF satisfiability is determined by the number
of quantifier alternations between existential and universal
quantifiers and vice versa in the prenex form. The general
problem of QBF satisfiability is a PSPACE complete problem.
We will see in the following sections that the particular
problem of ATPG in presence of X-values is easier since the
number of quantifier alternations is limited. Still, ATPG in
presence of X-values is at least NP-hard.



2) Construction of the CNF Matrix for ATPG: The matrix
of the QBF in CNF is constructed similar to a classical two-
valued SAT-based ATPG instance. The state of a signal is
modeled by a single binary variable.

The gates of the fault-free circuit CG and the propagation
cone Cf

P of the fault f in the faulty circuit are Tseitin-
transformed into CNF. The propagation cone of the fault site
is transformed in one step. Fault propagation conditions from
the fault site to the outputs are added in form of D-chains. The
d-variables of the D-chains at the outputs in the propagation
cone are added to a single clause (disjunction) and added to the
CNF instance. This ensures that the fault effect is observable
at at least one output:

CUTCNF = Tseitin(CG) ∧ Tseitin(Cf
P ) ∧ (D-chain clauses)

The behavior of X-sources is captured by the universal
quantification as discussed in the next section.

3) Variable Quantification: All controllable inputs I to
the circuit are existentially quantified. All X-sources X are
universally quantified. Here it is important to respect the scope
of quantification, i.e. the sequence of quantifier alternations.
In particular, we search for one test pattern that satisfies the
matrix for all possible assignments to the X-sources. Thus, the
quantification of circuit inputs precedes the quantification of
X-sources.

To bind all variables of the matrix, all internal signals S
as well as the variables D of the D-chains are existentially
quantified. This results in the following QBF:

∃ I︸︷︷︸
Controllable

inputs

X-sources︷︸︸︷
∀X ∃S ∃D︸ ︷︷ ︸

Int. signals,
D-chain var.

(CUTCNF )

This QBF is satisfiable if and only if there exists an
input assignment which excites an observable difference at at
least one (not necessarily the same) output for each possible
assignment to the X-sources.

Enforcing Definite Detection at Circuit Outputs: To estab-
lish definite detection of the fault according to equation (1) of
section II, we need to constrain the solution space by limiting
the detecting outputs to a single fixed one. That is, for all
possible assignments to the X-sources, the fault effect must
be observable at one particular output.

This constraint is included by additional variables oi for the
outputs in the propagation cone. Variable oi shall be true if
the fault effect is observable at output i for all assignments
to the X-sources. The clause (o1 ∨ o2 ∨ . . . ∨ on) enforces
that at least one of the variables oi is true and thus, the
fault is always observable at at least one output. The relation
between oi and the modeled D-chains are established by the
additional implication per output (oi → di). All the variables
O =

⋃
i oi are existentially quantified preceding the universal

quantification of the X-sources.

∃ O ∃ I ∀X ∃S ∃D :
(

CUTCNF ∧
∨
i

oi ∧
∧
i

(oi → di)
)

This enforces a fixed detecting output over all assign-
ments to X-sources. However, the observable difference, i.e.
the signal state in the fault-free and faulty circuit at that

output is still allowed to be one of the four possibilities
(0/1), (1/0), (xi,¬xi), (¬xi, xi). The latter two cases corre-
spond to situations where an output always shows complemen-
tary states in fault-free and faulty circuit for all assignments to
the X-sources, but the value in the fault-free and faulty circuit
are not stable for all assignments to X-sources.

The definite detection criterion requires known binary val-
ues at the observing output. This is achieved by forcing
the QBF solver to search for one stable logic value of the
observing output in the fault-free circuit. The two additional
variables v0

i , v1
i per output represent which stable value a

detecting output has. If v0
i (v1

i ) is true, output i has the
stable value logic-0 (logic-1) in the fault-free circuit. The two
implications (v0

i → ¬si) and (v1
i → si) for output i establish

that relation, assuming that si ∈ S is the signal variable
representing the state of output i in the fault-free circuit.

With the implication (oi → (v0
i ∨ v1

i )) for output i, and
existential quantification of the variables v0

i , v1
i ∈ V , we obtain

the following QBF:

∃O ∃ V ∃ I ∀X ∃S ∃D :
(

CUTCNF ∧
∨
i

oi ∧
∧
i

(oi → di)∧

∧
i

(
(oi → (v0

i ∨v1
i ))∧(v0

i → ¬si)∧(v1
i → si)

))
This QBF is satisfiable if and only if a fault is testable

according to the definite detection condition of section II. If
the formula is not satisfiable, no test pattern exists.

In this formula, there are two quantifier alternations. In the
polynomial time hierarchy, this corresponds to the complexity
class

∑P
3 which is a subset of the PSPACE-complete com-

plexity class [22].

F. Accurate Fault Simulation
Fault simulation is used to find all faults detected by the

generated patterns. We employ the fault simulation algorithm
of [14] which is able to accurately compute the detectable
stuck-at faults of a pattern in presence of X-values. This fault
simulation algorithm is summarized here for completeness.

The fault simulation algorithm firstly computes the exact
logic values in the fault-free circuit for a given pattern, and
then analyzes all yet undetected faults explicitly. The logic
simulation of the fault-free circuit employs pattern-parallel
logic simulation of randomized X-source assignments and
restricted symbolic simulation to prove signal dependence or
independence of X-sources for as many signals as possible.
For the subset of signals for which the state is only known
pessimistically, a SAT instance is incrementally constructed
to compute the exact logic value or prove dependence on at
least one X-source.

Once the signal states in the fault-free circuit are known,
the activated faults are processed serially. For each activated
fault f , the fanout cone of f is simulated using randomized
X-source assignments and restricted symbolic simulation in
event-driven manner. If the simulation results already allow to
classify the fault as definite detection, further analysis is not
required. Otherwise, a SAT-based analysis of the outputs of the
faulty circuit is conducted to classify the fault as undetected,
definitely detected or potentially detected.



IV. EVALUATION

The proposed algorithm is implemented in C and uses the
incremental SAT solver Antom [21] as well as the QBF solver
QuBE [23]. We evaluated the algorithm on benchmark and
industrial circuits. The experiments are conducted on an Intel
Xeon CPU with 2.8 GHz.
A. Experimental Setup

We consider full-scan circuits of the largest ISCAS’85 and
ISCAS’89 circuits as well as three larger industrial designs
from NXP (named p*k). We assume that a fixed and randomly
selected subset of circuit inputs generates X-values. Three
different subsets of X-source inputs are generated per circuit.
The reported results are the rounded average over these three
experiments per circuit.

For each circuit the collapsed set of stuck-at faults is
computed. Then, fault simulation of 1024 random patterns is
performed for each set of X-sources to find easily detectable
faults. For the remaining random pattern resistant faults, the
proposed ATPG algorithm is conducted.

B. Results
Table I shows the results of the accurate ATPG algorithm.

For each circuit the table lists the number of primary and
pseudo primary inputs, the size in number of complex gates
and the number of collapsed stuck-at faults. Per circuit, we
conduct the experiments for the case of 1, 2 and 5% of the
circuit inputs as X-sources (’X-ratio’). For circuit c6288 with
only 32 inputs, the case of 2% is omitted since an X-ratio of
1 and 2% results in a single X-source.

For each of these cases, columns 5 to 7 contain the number
of definitely (’DD’) and potentially (’PD’) detected faults,
as well as the number of aborted faults as reported by a
commercial X-aware ATPG tool. Please note that due to
the inaccuracy of n-valued ATPG algorithms, the number of
potentially detected faults reported by the commercial tool
may over- or underestimate the actual number.

Columns 8 to 14 show the results of the proposed algorithm.
Columns ’∆DD’ and ’∆FC’ show the increase of detected
faults and the increase in percent points of fault coverage
compared to the commercial tool. Column ’PD’ lists the
number of potentially detected faults.

The results show that the accurate ATPG algorithm is able
to generate detecting patterns for a higher number of faults
than classical algorithms. With higher number of X-sources,
up to 24% higher fault coverage can be achieved due to the
accurate analysis. For the larger industrial circuits, up to 7%
higher fault coverage is achieved.

Column 12 (’Class. 1s’) and 13 (’Class. 10s’) list the
number of faults which are classified by the QBF solver using
a timeout of 1 second respectively 10 seconds. Most faults can
be quickly classified as testable or untestable. Only for a small
fraction, in average 7.4%, the QBF solver must be restarted
with higher timeout. When processing the aborted faults with
a timeout of 10 seconds, only few additional faults can be
classified, and hardly ever is a fault then proven testable.
Depending on circuit structure and number of X-sources, some
faults cannot be classified even with a timeout of 10 seconds
(shown in column ’Abort’).

The last column of the table (’Time’) lists the runtime in
seconds of the test pattern algorithm including accurate fault
simulation, 2-valued and 3-valued SAT-based ATPG and QBF-
based ATPG. The runtime is dominated by the QBF processing
effort for hard faults with the timeout of 10 seconds.

We investigate the pessimism of classical ATPG for higher
X-ratios on two circuits, c7552 and s13207. Fig. 4 shows the
increase in the number of definitely detectable faults (∆DD)
for the two circuits for X-ratios from 1 to 99%. The figure
also shows the absolute number of potentially detected faults
(PD) and the number of aborted faults with a timeout of 10
seconds.
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Fig. 4: Increase in definitely detectable faults (∆ DD) com-
pared to classical ATPG depending on the X-ratio.

For all investigated X-ratios, the proposed algorithm gener-
ates testing patterns for a large number of faults which were
classified as untestable or aborted by the pessimistic classical
ATPG algorithm.

The results also show a relatively high number of aborted
faults for circuit c7552 which results from the depth-first
search strategy of the QBF solver. This strategy seems to cause
high runtimes for circuits with XOR logic, such as c7552 with
parity check structures.

The pessimism in the classical ATPG algorithm is highest
for circuits with many reconverging paths such as the mul-
tiplier c6288, and circuits with XOR logic like c7552. Here
fault coverage increases by up to 24 (c6288) respectively 9
percent points (c7552) for an X-ratio of 5%. For the industrial
circuits, the accurate QBF-based ATPG algorithm increases
fault coverage by approximately 2 percent points averaged
over X-ratios of 1, 2 and 5%. For circuit p78k and an X-
ratio of 1%, the number of undetected faults is reduced by
more than 50% and fault coverage increases from 97.9% to
98.9%.

V. CONCLUSIONS

This paper proposed the first ATPG algorithm able to prove
testability or untestability of stuck-at faults in presence of
unknown values. The algorithm combines incremental 2- and
3-valued SAT-based test pattern generation, accurate fault
simulation in presence of unknown values, and QBF-based
test generation.

The algorithm is accurate and overcomes the pessimism
of classical ATPG algorithms when unknown or unspecified
values need to be considered. The experiments assessed the
existing pessimism in a state-of-the-art commercial ATPG.



The results show that depending on circuit structure and X-
sources, the fault coverage can be significantly increased by
the proposed accurate analysis.
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TABLE I: RESULTS OF THE QBF-BASED ATPG COMPARED TO A STATE-OF-THE-ART COMMERCIAL ATPG

Circuit Inputs Gates Faults X ratio Commercial ATPG Proposed QBF-based ATPG
[%] DD PD Abort ∆DD ∆FC [%] PD Abort Class. 1s Class. 10s Time [s]

c6288 32 2 416 8 704 1.0 7 523 287 336 963 11.06 23 25 143 20 406
5.0 6 134 350 935 2 123 24.39 57 74 566 49 1 207

c7552 207 3 513 9 756
1.0 9 048 386 42 8 0.08 337 45 595 42 726
2.0 8 684 351 154 193 1.98 298 60 737 53 1 026
5.0 5 941 1 116 557 902 9.24 422 163 2 629 203 3 011

s09234 247 5 597 13 892
1.0 12 178 23 0 73 0.53 139 0 1 349 0 25
2.0 11 049 51 0 88 0.63 225 0 2 546 0 43
5.0 9 435 159 0 196 1.41 321 0 3 726 0 78

s13207 650 7 951 20 094
1.0 18 308 8 0 23 0.11 344 0 1 480 0 44
2.0 16 902 17 0 417 2.07 464 0 2 542 1 64
5.0 15 714 30 0 409 2.03 620 0 3 322 0 71

s15850 600 9 772 24 543
1.0 23 077 5 0 118 0.48 67 7 1 082 15 269
2.0 22 336 20 0 55 0.22 465 53 1 670 15 872
5.0 20 466 98 0 91 0.37 532 52 3 223 22 887

s35932 1 763 16 065 51 649
1.0 45 552 0 0 0 0.00 35 0 1 904 0 31
2.0 44 456 0 0 0 0.00 66 0 3 366 0 41
5.0 41 369 0 0 0 0.00 160 0 7 247 0 68

s38417 1 524 22 179 56 325
1.0 54 296 57 0 24 0.04 268 40 1 660 43 923
2.0 52 307 173 0 136 0.24 936 99 3 122 83 1 957
5.0 48 758 462 0 297 0.53 1 732 109 5 458 182 2 698

s38584 1 462 19 253 53 845
1.0 48 995 33 0 253 0.47 686 0 2 655 0 162
2.0 47 911 68 0 238 0.44 461 0 3 468 2 175
5.0 44 387 205 0 296 0.55 312 0 6 481 7 256

p45k 3 739 39 786 107 814
1.0 103 523 301 78 557 0.52 63 75 3 103 56 3 801
2.0 101 729 636 106 736 0.68 167 168 4 199 97 5 399
5.0 92 530 1 946 111 1 083 1.00 220 233 11 723 202 7 750

p78k 3 148 74 243 225 476
1.0 220 773 412 2 2 204 0.98 415 237 1 226 308 4 494
2.0 214 351 1 053 13 5 495 2.44 848 608 2 940 564 10 480
5.0 192 281 2 524 58 16 644 7.38 2 091 2 075 9 163 1 480 36 928

p100k 5 902 90 712 247 376
1.0 241 460 952 355 958 0.39 203 369 3 097 187 31 041
2.0 232 415 2 172 572 3 069 1.24 341 620 9 102 286 48 143
5.0 201 284 5 641 1 500 7 462 3.02 988 1 376 32 790 675 77 170


