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Abstract—Compact thermal models and modeling strategies
are today a cornerstone for advanced power management to
counteract the emerging thermal crisis for many-core systems-
on-chip. System identification techniques allow to extract models
directly from the target device thermal response. Unfortunately,
standard Least Squares techniques cannot effectively cope with
both model approximation and measurement noise typical of real
systems. In this work, we present a novel distributed identification
strategy capable of coping with real-life temperature sensor noise
and effectively extracting a set of low-order predictive thermal
models for the tiles of Intel’s Single-chip-Cloud-Computer (SCC)
many-core prototype.

I. INTRODUCTION AND RELATED WORK

Performance of today processors are constrained by the

die temperature. High silicon temperature, hotspots and ther-

mal gradients can lead to early chip damage, critical path

delay degradation and reduced performance. To avoid im-

posing ultra-conservative design margins, dynamic thermal

management (DTM) solutions have been widely adopted [1]

to ensure, at run-time, a safe working temperature by limiting

the processor performance (DVFS, core shutdown) only under

critical workload phases and environmental conditions. Clas-

sical feedback control strategies, such as PID and threshold

controller have been explored, but their reactive nature cannot

ensure at the same time a safe working temperature and a min-

imal performance loss. Recently, model-predictive controllers

(MPC) have been shown to be capable of achieving better

results [2], [3], assuming the predictive model, used internally

to project in the future the effect of a given controller action, is

accurate and simple. Indeed, MPC run-time overhead rapidly

increases with the complexity of the predictive model and its

control performance depends on the model accuracy.

Unfortunately, chip manufacturers do not release dynamic

thermal models of their chips and, most important, the thermal

behavior of a chip strongly depends on its environment,

namely the package, the heat sink, the fan, and the ambient

temperature. Techniques for extracting and/or calibrating the

thermal model of a die in its deployment environment are

therefore required for model-predictive control to be applicable

in a real-life setting. In addition, particular attention has to be

paid to the complexity of the learned model. In fact, low-

complexity models are preferred to reduce the computational

burden of model-predictive control policies.

The Single-Chip Cloud Computer (SCC) experimental pro-

cessor [5] is a 48-core “concept vehicle” created by Intel

Labs as a platform for many-core software research. It in-

tegrates hardware monitors and thermal sensors to track the

chip workload phases and thermal behavior. Unfortunately,

the built-in thermal sensors output is affected by significant

noise. As consequence of that, SCC is a challenging testbench

for thermal model learning strategies. Moreover, its elevate

number of cores set requirements on the complexity and

scalability of the proposed algorithm.

Recently, strategies for extracting compact thermal mod-

els directly from the core thermal response to a given

power/workload stress input have been proposed [2], [3], [6]–

[8]. The simplest ones are centralized and do not account for

the multimodal nature of the thermal transient caused by the

different building materials and their relative time-constants

(i.e. die, heat-spreader and heat-sink) [3]. In [2], [6], a first

order dynamic thermal model is learnt by solving a linear

least-squares optimization problem. Moreover, the inter-core

thermal interaction for the multi-core devices is accounted

by solving a unique global least squares problem for all the

cores at once. Sharifi et al. [9] shows that when this model is

available it can be used effectively to filter out measurement

noise using a Kalman filter. These centralized model learning

methodologies poorly scale with the increase of the number

of cores, leading to complex control solutions [3].

To counteract these limitations, distributed model learning

approach based on autoregressive strategies have been recently

proposed. Coskun et al. [7] use an autoregressive moving

average (ARMA) technique for predicting the future thermal

evolution for each core. This model is capable of predicting

future temperature only based on previous values. Since they

do not account directly for workload-to-power dependency a

SPRT (Sequential Probability Ratio Test) technique is then

used to early detect changes in the statistical residual distribu-

tion (average, variance) and than to re-train the model when

it is no longer accurate. Juan et al. [8] uses a combination of

a K-means clustering and an AR model to learn a compact

model for fast thermal simulation. This approach is effective

only when starting from an highly accurate thermal model of

the HW. Bartolini et al. [3] present a distributed model learning

approach based on a set of ARX models. Each core executes its

own model learning routine generating a local thermal model.

The model is used internally, in each core, by the local model-

predictive controller. Even if this methodology is promising,

thanks to its run-time low overhead and scalability, it has been

applied only on a simulator and is based on the assumption that

per-core power traces and thermal sensor outputs are accurate978-3-9815370-0-0/DATE13/ c© 2013 EDAA



and without noise. Indeed, standard ARX models are suitable

to represent process noise, but are based on the assumption

that input and output data are accurate and not affected by

measurement noise [10].

Contribution

All the above methods have never been applied to real

chips, with strongly non-ideal thermal sensors, working in

a real chassis with complex cooling. To achieve that we

propose a distributed algorithm for ARX-like models that is

capable of filter-out the output noise through an advanced

bias-compensated least-squares algorithm and we show its

effectiveness in identifying the thermal model of the real SCC

chip, when compared to state-of-the-art standard autoregres-

sive procedures. The main contributions are the followings.

– We present a methodology to split a complex Multiple-

Input Multiple-Output (MIMO) system identification problem

in a set of distributed Multiple-Input Single-Output (MISO)

identification problem, one for each SCC tile.

– We show the inefficacy of standard ARX solutions in

extracting valid thermal models of a real many-core device

affected by noise in the thermal sensors.

– We propose an algorithm to deal with ARX models with ad-

ditive output measurement noise. This is done by automatically

estimating the output noise variance and by compensating

it in the parameter learning Least Squares (LS) problem.

We show how this algorithm can be successfully adopted in

the domain multicore (with noisy temperature measurements)

thermal model learning.

– The set of models learnt can be used in prediction to filter

out the noise through a Kalman filter, leading to an optimal

estimation of the real silicon temperature.

II. SCC ARCHITECTURE

The SCC has 24 dual-core tiles arranged in a 6x4 mesh.

Each core is a P54C core. Each tile integrates two thermal

sensors based on a couple of ring oscillators, one positioned

in proximity of the router and the other positioned close to

the top core L1 cache. These thermal sensors are originally

uncalibrated. We used the calibration procedure presented

in [11] to obtain a meaningful temperature for each sensor.

Calibrated thermal sensors outputs show the presence of sig-

nificant white noise [11]. Each P54C core has two performance

counters. These counters can be programmed to track various

architectural events (such as number of instructions or cache

misses) at periodic intervals. Performance counters can be

accessed from the specific core they are located at by reading

the dedicated registers. The Board Memory Controller (BMC)

includes a power sensor capable of measuring the full SCC

chip power consumption and an ambient temperature sensor.

A per-core power estimation for SCC can be obtained by using

a power model. This has been obtained by correlating the full-

chip power measurement with each core activity and operating

point (i.e. frequency) measured through the HW performance

counters, as presented in [12].

Given these HW features, we used SCC to generate a set

of traces suitable for the thermal model identification. We

designed a set of bash scripts that use POSIX signals to start

CoreODD

CoreEVEN

Tile2 Tile3 Tile4 Tile5 Tile6

Tile7 Tile8 Tile9 Tile10 Tile11 Tile12

Tile13 Tile17 Tile18Tile14

Tile19 Tile21 Tile22 Tile23 Tile24Tile20

Center MISO !le
Tile 15 neighbours

Tile 16 neighbours

Fig. 1. SCC topology

Fig. 2. Examples of power and temperature traces of tile 15 and tile 16

and stop synchronously a given workload/power virus1 on

the different SCC cores while at the same time collecting

the HW monitors outputs (i.e. performance counters and

thermal sensors). As consequence of that, the framework can

apply a given Pseudo-Random Binary Sequence (PRBS) stress

workload to the SCC cores. The typical PRBS is shown in Fig.

2 and it represents a worst case workload pattern as it triggers

all the dynamics of the system. The performance counters

outputs are then transformed through the power model in a set

of per-tile power traces and used as input vector for the model

identification problem. The output vector is instead composed

by the calibrated thermal sensor output for each tile2. Fig. 1

shows the SCC tile topology and some other details exploited

later on. Fig.2 shows a sample of power and temperature traces

for two specific tiles, namely 15 and 16. According to [11], a

relevant white noise can be noted on the temperature readings

given by the adopted sensors.

As explained before, the identification solution presented in

next Sections is distributed and thus learns the full SCC ther-

mal model as composition of per-tile MISO thermal models.

III. IDENTIFICATION OF ARX MODELS

According to the adopted distributed approach, in this

Section we propose to represent the SCC device by means of

a collection of ARX models [10] with the following features.

– For each tile a MISO ARX model is considered to represent

the behavior of the sensed tile temperature T̄ (t), which is

assumed to represent perfectly the actual tile temperature.

This is a standard crucial hypothesis underlying the ARX

1cpuburn power virus by Robert Redelmeier: it takes advantage of the
internal architecture to maximize the CPU power consumption

2In this paper we consider only the thermal sensor positioned close to the
router since it is more central within the tile area.



models in general. A second order model3 is considered

according to [3], [4].

– The inputs of each ARX are the dissipated power

P (t) related to tile activity and the temperatures

T̄n1(t), T̄n2(t), . . . T̄nq(t) probed on the tiles belonging

to its neighborhood.

– The neighborhood of each tile is defined as the set of

tiles sharing an edge with the considered one as in Fig.1.

Therefore, the number of neighbors q can range from 2 to 4.

– Tests will be carried out under constant ambient temperature

(Tamb) conditions. In this line, all the temperatures considered

in the MISO ARX models are actually temperature gap w.r.t

the ambient. Therefore, the identified models will be effective

in predicting the difference between the tile temperatures and

the ambient one, under constant (or slowly-varying) ambient

temperature scenario (the most common one). Anyway, if

fast4 variations in Tamb can be experienced, the presented

identification procedures (also the new one of Section IV)

can be adopted as well, by adding Tamb in the input set of

the MISO ARX models and using the absolute temperatures

instead of the temperature gaps. In this case, a variable Tamb

should be used in identification tests to obtain good results,

according to persistency of excitation requirements [10].

The ARX model of each core is then

A(z−1) T̄ (t) = B(z−1)u(t) + w(t) (1)

where the input u(t) is the r–dimensional signal

u(t) = [P (t) Tn1(t) . . . Tnq(t) ]
T
, (2)

T̄ (t) is the tile temperature, w(t) is a white noise process and

A(z−1) = 1 + a1 z
−1 + · · ·+ an z

−n

B(z−1) =
[
B1(z

−1) B2(z
−1) · · · Br(z

−1)
]

Bi(z
−1) = bi1 z

−1 + · · ·+ bin z
−n
, i = 1, . . . , 1 + q

(3)

where A(z−1) and Bi(z
−1) are polynomials in the backward

shift operator z−1, i.e z−1 x(t) = x(t − 1). According to

previous assumptions, the order is set to n = 2 and the number

of neighbor temperatures q ranges from 2 to 4.

In order to estimate the parameters of tile models (1), a

standard LS approach can be adopted, combined with a χ2(8)
whiteness test on residuals for validation [10].

This procedure has been applied to a couple of central tiles,

namely 15 and 16, whose neighbors are highlighted in Fig.1.

The following results have been derived.

– The χ2(8) test is largely not satisfied, since the values 822
and 639 are obtained for tiles 15 and 16, respectively, while

the maximum admissible one to state the whiteness with a

99% confidence level is 20.1.

– The identified parameters show a relevant negative pole, see

the left part of Fig. 3. This is in contrast with the physics

of thermal systems where, according to the Second Law of

Thermodynamics, only real positive poles can be present.

Taking the cue from the above points, the hypothesis on

the model order equal to 2 has been relaxed, to capture

more complex thermal models. Then, the above identification

3The model order specifies the number of poles/dynamics of the model.
4fast w.r.t. the chip thermal dynamics, i.e. the thermal bandwidth
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Fig. 3. Tiles 15,16 pole maps and χ2(8)

procedure has been applied iteratively, augmenting the model

order up to a level satisfying the whiteness test. Nevertheless,

the following negative issue emerges. An high order (10th) is

required to satisfy practically the χ2(8) test and most of the

resulting model poles are complex, see right part of Fig. 3.

This, again, is in contrast with the physics of thermal systems.

On the basis of the above results, we can conclude that

the proposed ARX models are not suitable for representing

the link between the considered inputs and the measured

temperature.

IV. IDENTIFICATION OF ARX-WITH-NOISY-OUTPUT

MODELS

Bearing in mind the results of previous Section and looking

at the temperature measurement traces, reported in Fig.2, it

looks reasonable to guess the presence of a significant additive

white noise on temperature readings. Then, the ARX tile

model (1) considered in Section III is augmented with an

output noise, leading to the structure reported in Fig. 4, where

the measured temperature, T (t), is defined as

T (t) = T̄ (t) + v(t). (4)

Note that in such formulation the interesting temperature is

T̄ (t) while the available measure is T (t) and they are not

assumed to be the same, in contrast with standard ARX.
5 Thus, w(t) is the driver of the significant process noise

η(t), while v(t) is just a measure noise corrupting the actual

readings.

In line with the previous considerations, noisy inputs should

be considered as well, since the neighbor temperature mea-

surements are adopted as inputs in the ARX model of each

core (1), leading to a full Errors-In-Variables (EIV) framework

5It must be noted that T̄ (t) cannot be simply reconstructed from T (t)
by low-pass filtering, since the white noise spectral components cannot be
decoupled from the SCC thermal response dynamics.
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[13]. Nevertheless, since the inputs effects are filtered by the

system thermal dynamics, it looks reasonable to assume a very

low effect of the noise corrupting the temperature inputs. The

validity of such hypothesis will be checked later on the actual

data by suitably assessing the estimation results.

In order to set properly the proposed identification procedure,

the following standard assumptions are considered.

A1. The dynamic system (1) is asymptotically stable, i.e. all

zeros of A(z−1) are inside the unit circle (clearly true for

thermal systems).

A2. The input power P (t) is persistently exciting [10].

A3. The process noise w(t) and the sensor noise v(t) are

zero–mean ergodic white processes with unknown variances

σ2
w, σ2

v .

A4. w(t) and v(t) are mutually uncorrelated and uncorrelated

with u(t).
In the following, assuming an a priori fixed model order

n = 2, we present a technique for estimating the coeffi-

cients of A(z−1), Bi(z
−1), (i = 1 . . . , r) and the noise

variances σ2
w, σ2

v , starting from N input–output samples

u(1), . . . , u(N), T (1), . . . , T (N).

A. Bias–compensated least–squares identification

Let us introduce the vectors

ϕ̄(t) = [−T̄ (t− 1) . . . − T̄ (t− n)u1(t− 1) . . . u1(t− n)

u2(t− 1) . . . u2(t− n) . . . ur(t− 1) . . . ur(t− n) ]T

ϕ(t) = [−T (t− 1) . . . − T (t− n)u1(t− 1) . . . ur(t− n) ]T

ϕ̃(t) = [−v(t− 1) . . . − v(t− n) 0 . . . 0
︸ ︷︷ ︸

rn

]T ,

and the parameter vector

θ =
[
a1 · · · an b11 · · · b1n · · · br1 · · · brn

]T
. (5)

From (1) and (4) it follows that

T̄ (t) = ϕ̄T (t) θ + w(t) (6)

ϕ(t) = ϕ̄(t) + ϕ̃(t). (7)

By inserting (6) and (7) in (4) it is easy to obtain the regression

form
T (t) = ϕ

T (t) θ + e(t), (8)

where
e(t) = v(t)− ϕ̃

T (t) θ + w(t). (9)

Define now the covariance matrix and cross–covariance vector

Rϕϕ = E [ϕ(t)ϕT (t)], rϕy = E [ϕ(t)T (t)], (10)

where E[ · ] denotes the mathematical expectation. Multiplying

both sides of (8) by ϕ(t) and computing their expected values

we obtain
rϕy = Rϕϕ θ + E [ϕ(t) e(t)]. (11)

By using (7) and (9) and taking into account Assumptions

A3–A4 it is easy to derive

rϕy = Rϕϕ θ + E [ϕ̃(t) e(t)] = Rϕϕ θ − σ
2
v J θ, (12)

where J =
[
In 0

0 0

]
and In denotes the n× n identity matrix.

Equation (12) can be rewritten as

θ = R
−1
ϕϕrϕy + σ

2
v R

−1
ϕϕ J θ = θLS + σ

2
v R

−1
ϕϕ J θ, (13)

where θLS = R−1
ϕϕrϕy is the asymptotic LS estimation of θ. It

is clear that the LS estimate is biased due to the presence of

σ2
v . However, if an estimate of σ2

v is available, the effect of the

bias induced by the output noise v(t) can be removed and an

asymptotically unbiased estimate can be obtained. This leads

to the iterative bias–compensated least squares estimator

θ̂
k+1 = θ̂LS + σ̂

2k
v R̂

−1
ϕϕ J θ̂

k
, (14)

where θ̂LS and R̂ϕϕ are estimates obtained from the available

data. Of course, it is necessary to compute, at each step, an

estimate σ̂2k
v of the output noise variance so that at least one

more equation must be considered in addition to the (r+1)n
equations (13).

To this end, taking the cue from [14], consider the stochastic

process e(t), that can be considered as the equation error of

the ARX + noise model, see (8), (9). By taking into account

assumptions A3–A4 it is easy to show that the autocovariances

re(τ) = E [e(t) e(t− τ)] of e(t) are given by

re(0) = σ2
v

n∑

i=0

a2i + σ2
w (15)

re(τ) = σ2
v

n−τ∑

i=0

ai ai+τ for τ = 1, . . . , n (16)

re(τ) = 0 for τ > n, (17)

where a0 = 1. By defining the vectors

re =
[
re(1) re(2) · · · re(n)

]T
(18)

ψ =
[∑n−1

i=0
ai ai+1

∑n−2

i=0
ai ai+2 . . . a0 an

]T
, (19)

the set of relations (16) can be rewritten as

re = σ
2
v ψ, (20)

which leads to

σ
2
v =

ψT re

ψT ψ
· (21)

Note that, if an estimate of the parameter vector θ̂ is available,

it is possible to compute an estimate of the equation error

sequence from (8):

ê(t) = T (t)− ϕ
T (t) θ̂, t = n+ 1, . . . , N, (22)

and then, to compute an estimate of re. It is thus possible to

develop an iterative least–squares based algorithm where the

current estimate of the output noise variance is used to improve

the estimate of the system parameters and vice versa. The

whole identification procedure can be summarized as follows.

Algorithm

1. Compute, on the basis of the available observa-

tions u(1), . . . , u(N), T (1), . . . , T (N), the sample esti-

mates, R̂ϕϕ = 1

N−n

∑N
t=n+1

ϕ(t)ϕT (t) and r̂ϕy =
1

N−n

∑N
t=n+1

ϕ(t)T (t).

2. Compute the least squares estimate θ̂LS = R̂−1
ϕϕr̂ϕy .

3. Set k = 0, θ̂0 = θ̂LS .

4. Compute the sequence of equation errors ê(t)k = T (t) −
ϕT (t) θ̂k, t = n + 1, . . . , N and, subsequently, the esti-

mates r̂ke (1), . . . , r̂
k
e (n) of the autocovariances (16).



LS BIAS-

COMPENSATED

KALMAN 

PREDICTOR

u(1)….u(N) T (1)….T (N)

WEST

EST

SOUTH

NORTH

ith-TILE

)….u

TW(●)

TS(●)

TN(●)

TE(●)

P (●)   T (●)

off-line on-line
A(z),  BZ(z),  σW,  σV

T (t)u (k)

T (t+1|t)

SCC chip

Fig. 5. How the proposed distributed identification approach can feed Kalman
predictor on each tile

5. Form the vectors r̂ke and ψ̂k as in (18), (19) and com-

pute an estimate of the output noise variance by means of

σ̂2k
v =

(

ψ̂T r̂e

)

/
(

ψ̂T ψ̂
)

.

6. Update the parameter estimate as follows θ̂k+1 = θ̂LS +
σ̂2k
v R̂−1

ϕϕ J θ̂
k.

7. Set θ̂k = θ̂k+1 and go to step (4).

8. Repeat steps 4–7 until
‖θ̂k+1−θ̂k‖

‖θ̂k+1‖
< ε, where ε is an

assigned convergence threshold.

9. Compute an estimate of the driving noise variance by using

(15), i.e. σ̂2
w = r̂e(0)− σ̂2

v

∑n
i=0

â2i .

Once the parameters have been obtained, it is crucial to as-

sess the actual identification performance. In standard methods

as LS, this is rather straightforward, since the innovation can

be directly computed along the identification procedure and

then its whiteness can be easily tested. In contrast, for the

framework and the method proposed in this Section, such a

property does no longer hold. Then, the assessment is carried

out evaluating the whiteness of the innovation generated by a

Kalman optimal predictor based on a state space representation

of the noisy ARX model [10], [15]. Referring as ˆ̄T (t + 1|t)
the Kalman prediction of the actual temperature at t+1 on the

basis of data available up to time t, the innovation signal is

the following difference T (t+1)− ˆ̄T (t+1|t), (recall that T (·)
is the available measurement not the actual tile temperature,

referred as T̄ (·))
It is worth noting that the Kalman solution is indispensable to

estimate the current temperature T̄ (t) (and then to predict it

one-step-ahead), since the current temperature reading, T (t),
is affected by heavy measurement noise, hence it cannot

be fully trusted. Kalman filter and predictor, when correctly

parametrized, give the stochastic optimal solutions since they

suitably balance their “trust in the model” and “trust in the

temperature reading” according to the model dynamics and

the variance of the process and measurement noises. With the

presented identification method we can provide all of these

parameters, as summarized in Fig. 5.

V. RESULTS

According to the procedure shown in Section IV and the

SCC testing framework reported in Section II, the thermal

model identification for tiles 15 and 16 of the considered SCC
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Fig. 6. Tile 15 identification traces. Upper picture: input power (dashed),
measured temperature (black) and one-step-ahead predicted temperature
(gray). Lower picture: innovation (difference between measured temperature,

T (t), and predicted one, ˆ̄T (t))

platform has been carried out on a 700s-long training set, with

a sampling time Ts = 100ms. The algorithm converges after

60 iterations.

The identified poles are p1,15 = 0.9599, p2,15 = 0.1090 for

tile 15 and p1,16 = 0.8993, p2,16 = 0.0824 for tile 16.

χ2(8) tests on the innovations, obtained by suitable Kalman

predictors (see previous Section), are 5.6 and 14.2 for the tiles

15 and 16, respectively. This shows the whiteness of the iden-

tification residuals (or innovations), confirming the validity of

the adopted second order structures, when measurement noise

in the outputs is directly taken into account; while it can be

neglected at the input side, as supposed in Section IV. The

measurement and process noise variances estimated with the

proposed method are σ2
v,15 = 0.2438, σ2

w,15 = 0.0342, for tile

15, and σ2
v,16 = 0.2101, σ2

w,16 = 0.0636, for tile 16. These

measurement noise variances lead to a poor SNRs (8.5dB for

tile 15 and 9.2dB for tile 16).

Fig. 6 reports the predicted temperatures and the related inno-

vations (i.e. difference between measurements and predictions)

for tile 15 in the identification test; a similar figure for tile 16
is omitted for brevity. The mean values of the innovations are

negligible, as expected (0.0062◦C for tile 15 and −0.0080◦C
for tile 16); while the RMS are 0.5787◦C and 0.5712◦C,

respectively, which correspond to variances of 0.3349 and

0.3262. In the first picture of Fig. 6, it can be noted as the

Kalman predictor, based on the identified model, can filter out

a relevant part of the measurement noise. This is the reason

why the innovation is quite large (see the second picture and

recall the above mentioned RMSs and variances).

In order to validate the identification robustness, the above

mentioned Kalman predictors have been applied to data sets

different from the training ones. Fig. 7 reports the predicted

temperatures and the related innovations for tile 15 in a

validation test; again figure for tile 16 is omitted for brevity.

The mean values of the innovation are small (0.0437◦C for tile

15 and 0.0644◦C for tile 16); while the RMS are 0.5867◦C
and 0.6003◦C, respectively, which correspond to variances

of 0.3442 and 0.3604. These values are very close to the

ones obtained in the identification test, this means that the

prediction performances are robust w.r.t. the data sets.
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Fig. 7. Tile 15 validation traces. Upper picture: input power (dashed), mea-
sured temperature (black) and one-step-ahead predicted temperature (gray).
Lower picture: innovation (difference between measured temperature, T (t),

and predicted one, ˆ̄T (t))
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Fig. 8. Tile 15 (up) and Tile 16 (down): residual (or innovation) correlations
at time lags 0 . . . 8; training set (black), validation sets (gray)

An additional test has been carried out on the validation

data sets, the whiteness of the innovations have been checked

obtaining good results. As a sample, in Figs. 8 the first nine

autocorrelations (or autocovariances) of the residuals obtained

in the original training set and other three validation sets for

the tiles 15 and 16 are reported. Autocorrelations at lags larger

than zero are lower than 7% of the residual variance. Hence

the residuals are always almost uncorrelated, i.e. “practically

white”. This, again, highlights the effectiveness of the pro-

posed solution.

In Fig. 9, for tile 15, a simulation comparison of the 1W

power step responses of the 2nd order model, obtained with

the proposed solution, and the 10th order model identified by

standard LS (see Section III) is reported to highlight the better

physical consistency of the former. It is worth noting that the

simulation test has been carried out assuming neighbor and

ambient temperatures equal to zero, therefore the temperature

values are small and the time constants highlighted in the 2nd

order model response are rather fast when compared to the

expected full SCC dynamics (with a settling time of a few

hundreds of seconds).

VI. CONCLUSION

In this paper we have proposed a novel identification

strategy for ARX-like models, based on an advanced bias-
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Fig. 9. Tile 15: response to a power step for the 10th-order ARX model
(dashed) and the 2nd-order ARX with noisy output model (solid)

compensated least-squares algorithm, to overcome limitations

due to noisy measurements in learning thermal model of real

multicore devices. In the noisy scenario characterizing SCC,

we have shown that the standard ARX-LS algorithm does

not produce valid low-order models. The proposed solution

is instead capable of filter-out the noise, learning for each tile

a valid second-order thermal model. Validation tests confirm

the quality of the obtained models, which can be easily

integrated in a Kalman predictor to get optimal estimates of

the real silicon temperatures, filtering out the thermal sensor

measurement noise.
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