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Abstract–On-chip DRAM caches may alleviate the memory 
bandwidth problem in future multi-core architectures through 
reducing off-chip accesses via increased cache capacity. For 
memory intensive applications, recent research has demonstrated 
the benefits of introducing high capacity on-chip L4-DRAM as 
Last-Level-Cache between L3-SRAM and off-chip memory. 
These multi-core cache hierarchies attempt to exploit the latency 
benefits of L3-SRAM and capacity benefits of L4-DRAM caches.
However, not taking into consideration the cache access patterns
of complex applications can cause inter-core DRAM interference 
and inter-core cache contention.

In this paper, we contest to re-architect existing cache hierar-
chies by proposing a hybrid cache architecture, where the Last-
Level-Cache is a combination of SRAM and DRAM caches. We 
propose an adaptive DRAM placement policy in response to the 
diverse requirements of complex applications with different 
cache access behaviors. It reduces inter-core DRAM interference 
and inter-core cache contention in SRAM/DRAM-based hybrid 
cache architectures: increasing the harmonic mean instruction-
per-cycle throughput by 23.3% (max. 56%) and 13.3% (max.
35.1%) compared to state-of-the-art.

I. INTRODUCTION AND RELATED WORK
The “Memory Bandwidth” problem refers to the significantly in-

creasing gap between the performance of a processor to process data 
and the performance to fetch the data it needs [1]. Memory band-
width has become a major performance bottleneck for memory 
intensive applications with large working set sizes. A recent trend 
towards mitigating the Memory Bandwidth problem is to use a large 
on-chip DRAM Last-Level-Cache (LLC). For example, IBM POW-
ER7 utilizes a 32 MB shared LLC cache using embedded DRAM 
technology to reduce the off-chip accesses [2]. DRAM cache pro-
vides greater capacity benefits (~8× [3, 4]) compared to SRAM 
caches, which reduces off-chip accesses [3-6]. DRAM cache is a 
promising alternative to SRAM, but its high latency prohibits its 
adoption as SRAM replacement. Neither SRAM nor DRAM caches
alone can provide both highest capacity and fastest access for multi-
core architectures.

A common design practice [2-6] is to use on-chip shared DRAM 
cache which has the advantage of reducing the collective number of 
misses by reducing off-chip accesses. When an application accesses a 
shared DRAM cache, it contends with other applications via in-
creased interleaving of cache requests from multiple applications 
causing inter-core DRAM interference [7, 8] and, as a result, the 
application can be slowed down compared to the scenario when it 
executes in isolation. Furthermore, a shared cache suffers from inter-
core cache contention [9-11], where one core could evict the cache 
lines used by another core.

Hybrid caches [12, 13] made of combinations of SRAM, magnetic 
RAM (MRAM), phase-change RAM (PRAM), and spin-torque 
transfer RAM (STT-RAM) have been investigated recently for per-
formance improvement and power reduction. These studies [12, 13]

on hybrid caches focus on caches where cores can access caches with 
a uniform latency (i.e. SRAM, MRAM, PRAM, and STT-RAM). In
DRAM caches, different outstanding requests have non-uniform 
latencies depending upon the number of en-queued requests in the 
DRAM scheduler, which leads to the challenges for hybrid 
SRAM/DRAM caches addressed in this paper. The work in [12]
combines SRAM and MRAM/PRAM caches to form a hybrid LLC 
with fast SRAM and slow MRAM/PRAM regions. The line migra-
tion policy (between faster and slower regions) proposed in [12]
cannot be applied to hybrid SRAM/DRAM caches because it will 
exacerbate inter-core DRAM interference. The authors of [13] com-
prise a hybrid cache made of SRAM and STT-RAM. That architec-
ture stores the STT-RAM tags in the SRAM array and applies power 
gating to the SRAM/STT-RAM arrays to reduce energy consump-
tion. The proposed power gating scheme cannot be applied to hybrid 
SRAM/DRAM caches, because the Tags-In-SRAM mechanism (i.e.
storing DRAM tags in an SRAM array) incurs a huge area overhead
due to the large DRAM capacity and the resulting large number of 
tags. Therefore, our proposed Hybrid Cache Architecture (HCA)
stores the DRAM-tags in the DRAM array.

Recent research has explored the capacity benefits of on-chip 
shared DRAM LLC [3-6]. The most notable work to combat inter-
core cache contention in the shared DRAM LLC is Adaptive Multi-
Queue policy (AMQ-policy) [4]. The AMQ-policy organizes each 
DRAM cache set as multiple FIFO structures (one per core) and
queues (shared and clock based) that provides inter-core performance 
isolation. However, the AMQ-policy has the following major draw-
backs compared to our proposed Hybrid Cache Architecture (HCA).
First, the AMQ-policy requires non-trivial changes to the existing 
DRAM cache replacement policy. In contrast, HCA does not require 
any modification to existing DRAM cache replacement policy. Sec-
ond, the AMQ-policy stores the tags in the SRAM array that incurs 
significant area overhead for larger DRAM cache. In contrast, our 
HCA stores the tags in the DRAM array. Finally, the data movement 
between different queue structures in the AMQ-policy introduces 
additional latency and hardware complexity compared to our HCA.

While there is a considerable amount of related work on DRAM 
[3-6] and SRAM [9-11] caches, we compare our results with the most 
recently proposed TID-MissMap (TID stands for Tags-In-DRAM) [5]
as it provides a low-overhead tag-store mechanism (explained in 
Section II.B) for the DRAM cache. We also compare our result with 
the state-of-the-art Utility Cache Partitioning (UCP) [11] scheme
applied to LLC DRAM cache. UCP adapts the cache replacement 
policy in attempt to reduce inter-core cache contention by tracking 
runtime miss rate information of the individual applications.

We make the following new contributions:
1. We propose a Hybrid Cache Architecture (HCA) by merging the 

DRAM into the L3 cache (i.e. LLC is comprised of SRAM and 
DRAM caches) after analyzing that existing DRAM cache hierar-
chies [5, 6] with L3-SRAM and L4-DRAM cache may not work 
efficiently due to inter-core DRAM interference.

2. We propose an adaptive DRAM placement policy for our HCA that 
decides at runtime whether an incoming line, when brought from 978-3-9815370-0-0/DATE13/©2013 EDAA



off-chip memory, shall be placed into the DRAM and SRAM part 
of the LLC or only in the SRAM part. Our adaptive DRAM 
placement policy reduces unnecessary insertions into the DRAM 
cache, thus reducing inter-core DRAM interference. Existing 
DRAM cache hierarchies [3-6] always place an incoming cache 
line into L3-SRAM and L4-DRAM cache.

3. We propose SRAM and DRAM replacement policies in our pro-
posed HCA that maintain inclusion [14, 15] with inner cache levels 
to simplify implementing a coherence protocol.

II. BACKGROUND

A. DRAM ORGANIZATION
Fig. 1 shows a typical DRAM bank which is organized into rows 

and columns of memory cells, called the DRAM array. Each DRAM
bank provides a row buffer that consists of SRAM cells that operate
faster than a DRAM array. When data is loaded in the row buffer 
(row access), a read (RD) or write (WR) command is required to 
access appropriate column/bytes from the row buffer (column ac-
cess). Any subsequent accesses to the same row (row buffer hit) will 
bypass the DRAM array access and the data will be read from the 
row buffer directly. This concept is referred to as row buffer locality 
[7]. The access latency of a row buffer miss includes the time to write 
the contents of the previously opened row, time to activate the row, 
and the column access time. In case of a row buffer hit, only a read or 
write command is issued, which only requires column access time.
DRAM access latency highly depends on whether an access leads to 
a row buffer hit or a row-buffer miss. It also depends upon the num-
ber of requests en-queued in the DRAM cache scheduler.
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Fig. 1: (a) Tags-In-DRAM (TID)-MissMap DRAM organization [5]

B. STATE-OF-THE ART DRAM-CACHE TAG STORE MECHANISM
A primary design consideration for the DRAM cache is the tag 

size [5, 6]. A 64 MB DRAM cache can store 220 64-byte data blocks, 
which results in a tag overhead of 6 MB assuming 6 bytes per tag 
entry [5]. The tags can be stored in a separate SRAM tag array which 
eliminates DRAM access if the tag array indicates a cache miss. This
6 MB of SRAM tag-store is almost equal to the size of a typical L3 
cache used today. Placing all the tags in the SRAM would imply that 
it has to displace the L3-SRAM cache to stay within the same area. 
Recent research on DRAM caches provides an efficient and low-
overhead SRAM-based structure named as MissMap [5] that accu-
rately determines whether an access to a DRAM cache will be a hit or 
a miss. If the MissMap identifies a hit, the request is sent to the 
DRAM cache scheduler. A MissMap miss (i.e. data is not available in 

the DRAM cache) makes DRAM cache misses faster by eliminating
the DRAM access before sending the request to main memory.

In state-of-the-art DRAM caches [5], the tags are stored in the 
same row along with the data and indicate the actual location of a 
data block stored in the row. Fig. 1 illustrates an example for the 
Tags-In-DRAM (TID)-MissMap approach of [5]. A typical DRAM 
row size of 2 KB can store up to 32 64-byte blocks. To support TID,
the row is partitioned into 29 data blocks (i.e. an associativity of 29 
ways per set) and 3 tag blocks (29×6 = 174 bytes). The TID requires 
three accesses (tag-access, data access, and update replacement 
information) for a cache hit. These accesses are typically scheduled 
as compound accesses such that they are fast row buffer hits.

C. INTER-CORE DRAM INTERFERENCE
Increased interleaving in the shared DRAM cache from multiple 

applications executing on a multi-core system can affect system 
performance in unpredictable ways and it leads to inter-core DRAM 
interference among the cores which can result in poor system per-
formance via increased latencies.

Fig. 2 presents an example showing the latencies for cache re-
quests from applications A and B running on two different cores with
shared DRAM cache. Application A has a high LLC access rate with 
thrashing behavior, while application B has a low LLC access rate
with non-thrashing behavior. An applications is said to have thrash-
ing behavior if it exhibits poor locality that generates a large number 
of fill requests (i.e. data is filled into cache for the first time) without 
being reused in the future [9, 10]. The large number of cache requests 
from application A in Fig. 2 (A1, A2 etc.) arrives at the bank earlier 
than the small number of cache requests from application B (B1 and 
B2). As a result, cache requests from application B are significantly 
delayed by this so-called inter-core DRAM interference which can 
degrade the performance of application B. Inter-core DRAM interfer-
ence is primarily due to fill requests from thrashing applications.
These unnecessary fill requests from thrashing applications may 
delay the critical (read or write) requests from non-thrashing applica-
tions with low DRAM access rate. Contention between critical and 
unnecessary fill requests increases the amount of time needed to 
service critical requests. When the intensity of unnecessary fill re-
quests for thrashing applications is high, the benefits obtained by the 
miss rate reduction of a DRAM cache are reduced. Our adaptive 
DRAM placement policy (details in Section III.B) attempts to miti-
gate inter-core DRAM interference by reducing fill requests from 
thrashing applications.
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Fig. 2: Example illustrating inter-core interference at the DRAM bank

III. ADAPTIVE CACHE MANAGEMENT IN HYBRID CACHE
ARCHITECTURE

State-of-the-art DRAM cache hierarchies are composed of up to
four levels of on-chip cache with small private L1/L2 caches, inter-
mediate size shared L3-SRAM and high capacity shared L4-DRAM 
caches [5, 6].

We propose to flatten the cache hierarchy by merging the DRAM 
into the L3 cache with a large hybrid cache composed of L3-
SRAM and L3-DRAM. In this section, we introduce our new hybrid
cache architecture (HCA). First, we present the HCA organization,
then we introduce the hardware-based adaptive DRAM placement 



policy, and finally we show the integration with the inner cache 
levels.
A. OUR HYBRID CACHE ARCHITECTURE (HCA)

Fig. 3 shows the organization of our HCA where the Last-Level-
Cache (LLC) is comprised of L3-SRAM and L3-DRAM cache. The 
MissMap table (functionality explained in Section II.B) is accessed 
after a miss in the L3-SRAM. A MissMap hit indicates that the line is 
present in L3-DRAM. In that case, the line is replicated to L3-SRAM
to exploit the temporal locality that the referenced line might be 
accessed again in the near future. Hits to these replicated lines in L3-
SRAM reduce the effective access latency by avoiding costly L3-
DRAM accesses, hereby reducing inter-core DRAM interference. On
a MissMap miss, the line is brought from memory and installed into 
L3-SRAM. The line may or may not be filled additionally in L3-
DRAM, which is determined by our adaptive DRAM placement 
policy (ADP-policy) (see Section III.B). Existing DRAM cache 
hierarchies [5, 6] always place the line both into DRAM and SRAM
caches.
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that indicates whether an incoming line from off-chip memory should be 

placed into the L3-DRAM or not; details discussed in Section III.B and III.C

B. ADAPTIVE DRAM PLACEMENT POLICY (ADP-POLICY)
Existing DRAM placement policies [3-6] do not work well with 

applications that have a reuse distance (i.e. the number of insertions 
before the line is reused) larger than the cache associativity. Such
applications are classified as “thrashing” applications [9, 10]. These
applications have poor temporal locality for the available cache size 
that generates a large number of requests without being reused in the 
future [9, 10]. Fig. 4 illustrates a 4-way L3-DRAM cache with ac-
cesses (shown in capital letters E, F etc.) from a thrashing applica-
tion. On a cache miss, an incoming cache line is placed into the most 
recently used (MRU) position while the line in the least recently used 
(LRU) position is the candidate for eviction to make room for the 
incoming line. The DRAM placement policy used in the state-of-the-
art [3-6] statically inserts the line with a probability of 1 which in-
creases the number of unnecessary fill requests for thrashing applica-
tions as illustrated in Fig. 4-(a). For instance, lines A, B, E and F 
have a reuse distance (RU) greater than the associativity of 4 and are 
thus never reused if inserted with a probability of 1 as illustrated in 
Fig. 4-(a). This causes inter-core DRAM interference (via increased 
unnecessary fill requests) and reduced number of hits.

For thrashing applications, the performance can be improved by 
placing the cache line into L3-DRAM with a low probability, thus 
reducing the number of fill requests. It enables thrashing applications 
to retain some fraction of the working set which increases the number 

of hits as illustrated in Fig. 4-(b) and (c). In this example, a place-
ment probability of 1 4 leads to the best hit rate and to reduced num-
ber of fill requests compared to higher placement probabilities. To 
reduce interference between hit requests and unnecessary fill requests 
in L3-DRAM, our adaptive DRAM placement policy (ADP-policy)
uses a low probability to place an incoming line for applications with 
long reuse distances and uses the highest probability of 1 for applica-
tions with short reuse distances. Our ADP-policy adapts the L3-
DRAM placement probabilities at run-time on a per-core basis.
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Fig. 5 shows the details of our ADP-policy that is based on set du-
eling. Set dueling is a well established mechanism [4, 10] to adap-
tively choose between two competing policies P0 and P1. In set 
dueling, a few sampled sets of the cache are dedicated to always use 
policy P0 and other few sampled sets to always use policy P1. A
saturating k-bit policy selection (PSEL) counter (counting from 0 to 
2k-1 and initialized with 2k-1) estimates which of the two policies 
leads to a smaller number of misses. Misses in the sampled sets using 
P0 cause the PSEL counter to be incremented and misses in the 
sampled sets using P1 cause it to be decremented. If the MSB of 
PSEL is ‘0’, then policy P0 is used for all non-sampled sets, if it is 
‘1’, then policy P1 is used.
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We employ the set dueling mechanism to adaptively choose 
among four L3-DRAM placement probabilities (pa, pb, pc, and pd). In
our ADP-policy each set places an incoming line with a probability 
vector <p0, …, pn-1>, where pi denotes the placement probability for 
requests from corei. Some cache sets are “leader sets” (that contain 
some sampled sets per core) and other cache sets are “non-sampled 
sets” that follow the decisions of the leader sets. Fig. 5 shows an 
example for a quad-core system where the sets are clustered into 
groups of 128 sets. Each cluster contains 24 leader sets (6 per core) 
and 104 non-sampled sets. The goal of the ADP-policy is to decide
the placement probability pfi for corei at run-time for the large num-
ber of non-sampled sets.

Out of the 6 leader sets per core, 4 sets (grey boxes in Fig. 5) are 
dedicated as sampled sets with fixed placement probabilities pa, pb,
pc, and pd (we use pa = 1 64, pb = 1 16, pc = 1 4, and pd =1). For 
example, core0 always places an incoming line with a fixed probabil-
ity of pa for the first set of each cluster (p0=pa for this set) and with
probability pb for the second set of the cluster (p0=pb). The 10-bit 
saturating policy selection counter for corei estimates which 
of the two placement probabilities (pa or pb) leads to the smaller 
number of misses. A miss incurred in the set dedicated for pa incre-
ments while a miss incurred in the set dedicated for pb dec-
rements . This direct comparison between pa and pb is used to 
decide the placement probability pab,i of a so-called “partial set” for 
corei (shown as shaded boxes in Fig. 5). If the MSB of is 0,
then pab,i is set to pa, otherwise to pb (see multiplexors at the lower 
part of Fig. 5). Similarly, estimates which of the two place-
ment probabilities pc or pd leads to the smaller number of misses.
Finally, a meta-policy selection counter is associated with 
each corei that estimates which of the two partial placement probabil-
ities (pab,i or pcd,i) leads to the smaller number of misses. If the MSB 
of is 0, then the placement probability pfi for all non-
sampled sets of corei is pab,i, otherwise pcd,i.

To realize different placement probabilities, a linear feedback shift 
register (LFSR) [16] is used that generates a 6-bit pseudo-random 
number (6-bit LFSR generates a number between 1-63 excluding 
zero) which is compared to threshold values (‘2’ for pa = 1 64, ‘5’ for 
pb = 1 16, ‘17’ for pc = 1 4, and ‘64’ for pd = 1). For example the 
placement probability pb = 1 16 requires generating a pseudo-
random number and testing whether it is smaller than 5. If this is the 
case, then the line is placed’ in L3-DRAM, otherwise the line by-
passes L3-DRAM. Altogether, our ADP-policy performs an adaptive
L3-DRAM placement/bypass decision based on the comparison of the 
pseudo random number with the adaptive threshold value for pi.
C. IMPLEMENTATION OF HCA

To describe how HCA works along with the ADP-policy, we de-
fine the following key events and describe their management:

L3-SRAM hit: On an L3-SRAM hit, the hit line is forwarded to 
the requesting core and filled in core private L1/L2 caches.
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Fig. 6: Steps involved in L3-SRAM lookup operation

L3-SRAM miss: On an L3-SRAM miss, a miss status handling 
register (MSHR) [17] is allocated that keeps track of the outstanding 

L3-SRAM misses (see Fig. 6). The various fields of the MSHR entry 
include the Valid-bit, Issued-bit (request is issued or still pending), 
Access-type (load or store), Value-field (data returned or store value), 
and Cache-block-address. We add an additional single-bit field to 
MSHR and to the main memory read/write buffer (MM-RWB) named 
as Fill-DRAM that indicates whether an incoming line when brought 
from off-chip memory should be placed into the L3-DRAM or not.

For a MissMap hit after the L3-SRAM miss, the dispatcher (see
Fig. 3 and Fig. 6) forwards the request to the L3-DRAM access
scheduler by allocating an entry in the L3-DRAM read/write buffer 
(L3-DRAM-RWB). When the data is returned from L3-DRAM, it is 
forwarded to the requesting core and filled in L1/L2 and L3-SRAM.

For a MissMap miss after the L3-SRAM miss, the Fill-DRAM field
of the MSHR entry is determined by our ADP-policy as illustrated in 
Fig. 3 and Fig. 6. The dispatcher forwards the request to the main 
memory access scheduler by allocating an entry in the MM-RWB. If
the Fill-DRAM field of the MSHR entry is 1, the dispatcher addition-
ally allocates an entry in the L3-DRAM-RWB. When the data is 
returned from main memory to MM-RWB, the Fill-DRAM field of the 
MM-RWB entry is checked. If the Fill-DRAM field is 1, then the line 
is forwarded to the respective L3-DRAM-RWB entry so that the line is 
filled in L3-DRAM. If the Fill-DRAM field is 0, then the line bypass-
es the L3-DRAM. Independent of the Fill-DRAM field, the data is 
forwarded to the requesting core and filled in L1/L2 and L3-SRAM.

Maintaining Inclusion: In our HCA, inclusion [14, 15] is main-
tained between the private L1/L2 caches and the aggregation of L3-
SRAM and L3-DRAM to simplify the implementation of a coherence 
protocol (non-inclusive caches increase the hardware overhead and 
verification complexity compared to inclusive caches [15]). Main-
taining inclusion implies that a line is invalidated in the private L1/L2 
caches when it is evicted from L3. On a private L1/L2 cache miss no
snoop needs to be sent to the private caches of the other cores if the 
L3-SRAM and the MissMap lookup also result in a miss, because 
then the line is guaranteed to be absent in all private caches. We 
modify the L3-SRAM and L3-DRAM replacement policies (details 
below) to maintain inclusion with inner levels of cache.
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Fig. 7: L3-SRAM replacement policy

L3-SRAM replacement policy: If a victim line is evicted from 
L3-SRAM then the MissMap is accessed to test the availability of the 
line in L3-DRAM. If the line is absent in L3-DRAM (MissMap miss) 
then the line is invalidated in the private caches (see Fig. 7) to main-
tain inclusion. If the line is present in L3-DRAM (MissMap hit), then 
the line is removed from L3-SRAM without invalidating private 
caches. Our baseline architecture uses the writeback policy for all 
cache levels. Each cache maintains one dirty bit per line to record if 
the line was modified. If it was not modified then it is simply re-
moved from L3-SRAM. Otherwise, the MissMap is checked to 
determine whether the line exists in L3-DRAM or not. If the dirty 
victim line resides in L3-DRAM, it is written into L3-DRAM, other-
wise it is written to main memory via the L3-SRAM writeback buffer
(see Fig. 3).

L3-DRAM replacement policy: If a victim line is evicted from 
L3-DRAM then L3-SRAM is checked. If it is a miss, then the private 
L1/L2 caches have to be invalidated to maintain inclusion. If L3-
SRAM is a hit, then the line is simply removed from L3-DRAM 



without invalidating private L1/L2 caches and without off-chip traffic 
(because an updated line is present in L3-SRAM).
D. HARDWARE OVERHEAD

Our ADP-policy needs seven LFSRs (six for sampled sets of leader 
set and one for non-sampled sets; one LFSR requires six XOR gates 
and six flip flops), three multiplexers and three 10-bit policy selection 
counters per core to implement the ADP-policy. Altogether, a quad-
core system requires 28 LFSR, 12 multiplexers, and 12 10-bit policy 
selection counters. It requires a single bit per MSHR and MM-RWB
entry for the Fill-DRAM field which requires a storage overhead of 
64 bits (8 bytes) for a 32-entry MSHR and a 32-entry MM-RWB.
Altogether, our proposed scheme comes with negligible hardware 
overhead.

IV.EXPERIMENTAL SETUP
Horizontal stacking on an imposer [18] provides an easy way to 

integrate on-chip DRAM cache with the cores. For this reason, we
assume a composition of two stacked dies with one die composed of 
cores and L3-SRAM while the other die comprises DRAM cache. 
We use the x86 version of SimpleScalar (zesto) [19] to simulate a 
quad core system. The core, cache, and main memory parameters are 
listed in Table I. Off-chip memory timing parameters (in nanosec-
onds) are based on Samsung K4B510446E-ZCH0 (tCAS=45,
tRCD=11.25, tRP=11.25, tRAS=11.25, tRC=11.25). Similar to state-of-
the-art [5], we assume that DRAM-cache timing latencies are approx-
imately half of that compared to off-chip memory, which allows 
direct comparison with [5]. Our performance evaluations make use of 
various multi-programmed workloads from SPEC2000 and 
SPEC2006 [20], as shown in Table II.

V. EXPERIMENTAL RESULTS

For the evaluation we have compared our approach with the state-
of-the-art DRAM cache architecture namely TID-MissMap [5] (dis-
cussed in Section II.B) that provides a low-overhead tag-store mech-
anism. We also compare our approach with the state-of-the-art Utility 
Cache Partitioning (UCP) [11] scheme applied to L4-DRAM while 
using TID-MissMap. We call this approach as TID-MissMap-UCP,

which combines the benefits of TID-MissMap [5] (by providing low 
overhead tag-store mechanism) and UCP [11] (that reduces inter-core 
cache contention). TID-MissMap and TID-MissMap-UCP use a
traditional cache hierarchy employing SRAM as L3-cache and 
DRAM as L4-cache. The main drawback of these approaches is that 
they statically determine the DRAM placement policy for an incom-
ing line and suffer from inter-core DRAM interference, whereas we 
propose a hybrid cache architecture (HCA) that adapts the DRAM 
placement probability at run-time on a per-core basis. We call the 
configuration using our proposed architecture as TID-MissMap-HCA.
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Fig. 8: Normalized HMIPC improvement relative to TID-MissMap [5]

Fig. 8 shows the normalized harmonic mean instruction per cycle 
(HMIPC) throughput results for all evaluated configurations with the 
speedup normalized to TID-MissMap. On average, our proposed 
TID-MissMap-HCA increases the HMIPC throughput by 23.3% (max 
56%) and 13.3% (max 35.1%) compared to TID-MissMap and TID-
MissMap-UCP, respectively.
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Fig. 9: Distribution of DRAM cache accesses

Fig. 9 shows the distribution of DRAM cache accesses. The three 
bars per application mix show the different types of DRAM accesses 
as fraction of all accesses for TID-MissMap, TID-MissMap-UCP, and 
TID-MissMap-HCA (from left to right). We categorize cache access-
es as 1) demand hits for read and write requests, 2) fill requests when 
the data is filled into DRAM cache for the first time, and 3) 
writeback requests. On average, our TID-MissMap-HCA increases 
the percentage of demand hits by 110% (i.e. more than 2 ) and 67%
compared to TID-MissMap and TID-MissMap-UCP, respectively. On 
average, our TID-MissMap-HCA reduces the percentage of fill re-
quest by 62% and 56% compared to TID-MissMap and TID-
MissMap-UCP, respectively. By reducing the intensity of fill re-
quests and increasing the percentage of demand hits using an adap-
tive DRAM placement probability, we attempt to mitigate a major 
disadvantage of shared DRAM caches, namely inter-core DRAM 
interference.

Result Analysis: TID-MissMap uses a traditional least recently 
used (LRU) policy for cache replacement. The LRU policy does not 
work well with applications that have thrashing behavior and suffers 
from inter-core cache contention. The thrashing applications insert a 
large number of lines in the DRAM cache and as a result, they evict 
useful cache lines belonging to other applications. The eviction of 
useful cache lines increases the contention between thrashing and 
non-thrashing applications. TID-MissMap-UCP [11] uses a sophisti-
cated cache partitioning algorithm that efficiently partitions the 

TABLE I CORE, CACHE, AND MAIN MEMORY PARAMETERS

ROB size 128 MissMap size 2 MB
RS size 32 MissMap latency 7 cycles

LDQ size 32 SRAM size 8 MB
STQ size 24 L3-SRAM size 6 MB

Decode width 4 L3-SRAM latency (cycles) 10 cycles
Commit width 4 DRAM cache size 64 MB

Core Frequency 3.2 GHz DRAM bus width 128 bits
L1 Cache 32 KB DRAM-cache banks 8
L2 Cache 256 KB Main memory bus width 64 bits

TABLE II APPLICATION MIXES

Name Benchmarks
Mix_01 433.milc, 437.leslie3d.ref, 471.omnetpp, 473.astar.ref
Mix_02 401.bzip2, 437.leslie3d.train, 450.soplex, 473.astar.train
Mix_03 473.astar.train, 429.mcf, 437.leslie3d.ref, 462.libquantum
Mix_04 437.leslie3d.ref, 437.leslie3d.train, 473.astar.ref, 433.milc
Mix_05 462.libquantum, 433.milc, 471.omnetpp, 437.leslie3d.train
Mix_06 401.bzip2, 462.libquantum, 433.milc, 433.milc
Mix_07 470.lbm, 433.milc, 462.libquantum, 401.bzip2
Mix_08 429.mcf, 450.soplex, 437.leslie3d.train, 462.libquantum
Mix_09 462.libquantum, 471.omnetpp,473.astar.train, 437.leslie3d.ref
Mix_10 471.omnetpp, 473.astar.train , 450.soplex, 462.libquantum
Mix_11 473.astar.train, 470.lbm, 471.omnetpp, 437.leslie3d.ref
Mix_12 455.gobmk, 471.omnetpp, 429.mcf, 470.lbm



DRAM cache by ways and considers overall misses as an optimiza-
tion goal. It uses an Utility Monitoring Circuit (UMON) to collect 
runtime miss rate information of individual applications by allocating 
less DRAM cache resources (i.e. ways) to thrashing applications, 
hence reducing inter-core cache contention between thrashing and 
non-thrashing applications. However, TID-MissMap-UCP still inserts 
cache lines into DRAM cache with a probability of 1 which causes
inter-core DRAM interference by increasing unnecessary fill requests
from thrashing applications. The performance improvement of our 
TID-MissMap-HCA architecture over TID-MissMap-UCP is mainly 
due to reduced inter-core DRAM interference via our ADP-policy
which chooses low placement probabilities for thrashing applications 
with long reuse distance.
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Fig. 10: (a) Runtime DRAM placement probability for the non-sampled sets
of (a) 462.libquantum in Mix_05, (b) 462.libquantum in Mix_06, (c)

430.leslie3d.ref in Mix_09, and (d) 470.lbm in Mix_12

Comparing across the applications, we found that the reuse dis-
tance of some applications depends upon the mix of the applications 
(for one mix of applications an application exhibits longer reuse 
distance while for another mix it exhibits shorter reuse distance). 
Fig. 10-(a) and Fig. 10-(b) illustrate this observation showing the
DRAM placement probability for 462.libquantum in Mix_05 and 
Mix_06 respectively. We sample the DRAM placement probability 
once every 10 million cycles. 462.libquantum requires a huge work-
ing set size of 29 MB. When running concurrently with 433.milc,
471.omnetpp, and 473.leslie3d.train (Mix_05), 462.libquantum has a
low probability to insert the cache line into L3-DRAM because it 
exhibits longer reuse distance at highest probability of 1. When 
running concurrently with 401.bzip and two instances of 433.milc
(Mix_06), 462.libquantum has the highest probability to insert the 
cache line into L3-DRAM because it exhibits shorter reuse distance
than L3-DRAM associativity. We also found that the reuse distance
for some applications change during different phases of the same 
applications. Fig. 10(a-d) illustrates this observation showing the 
DRAM placement probability of 462.libquatum in Mix_05 and 
Mix_06, 437.leslie3d.ref in Mix_09 and 470.lbm in Mix_12 respec-
tively. The DRAM placement probability of these applications
changes during different phases of their execution, which shows the 
fundamental advantage of our adaptive DRAM placement policy in 
our Hybrid Cache Architecture (HCA).

VI.CONCLUSIONS
We identified that inter-core DRAM interference can cause per-

formance degradation in existing SRAM/DRAM cache hierarchies
[5, 6] when the cache access rate from multiple applications varies 
significantly. We found that in order to mitigate inter-core DRAM 
interference it is necessary to minimize the number of DRAM fill 
requests from thrashing applications with large working set sizes. We 

proposed a hybrid SRAM/DRAM cache hierarchy for multi-core 
systems that reduces DRAM fill requests from thrashing applications 
via an adaptive DRAM placement policy, thereby reducing inter-core 
DRAM interference. We evaluated our hybrid cache architecture for 
various multi-programmed workload mixes and compared it to state-
of-the art. Our experiments show that our proposed scheme increases 
the performance (harmonic mean instructions throughput) by 23.3%
(maximum 56%) and 13.3% (maximum 35.1%) compared to TID-
MissMap [5] and TID-MissMap-UCP [11] at negligible hardware 
overhead.
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