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Abstract—We present a self-adaptive, hybrid Dynamic Power 
Management (DPM) scheme for many-core systems that targets 
concurrently executing applications with what we call “expanding” 
and “shrinking” resource allocations as, for example, in [13]-[15] 
[27]. To avoid frequent allocation and de-allocation, it enables 
applications to temporarily reserve their resources and to perform 
local power management decisions. The expand-to-shrink time 
periods and resource demands are predicted on-the-fly based on the 
application-specific knowledge and the monitored system infor-
mation. Experimental results demonstrate up to 15%-40% Energy-
Delay2 Product reduction of our scheme compared to state-of-the-
art power management schemes like [4][8]. Self-adaptive local 
power-management decisions make our scheme scalable for large-
scaled many-core systems as illustrated by numerous experiments. 

I. INTRODUCTION AND MOTIVATION 
Processor architecture is rapidly moving towards many-core systems 
that will feature 100s–1000s of cores connected via an on-chip 
network [1][2][10]. Following the commercial trends (Tilera chip with 
100 cores [5], Nvidia GPUs with 1024 cores [6]), it is predicted by the 
ITRS that the next generation many-core systems will feature 1460 
cores in 2020 to 5900 cores in 2026 [1]. An increasing numbers of 
cores lead to serious power related issues. System designers and 
architects address the power problem using several low-power 
techniques like (1) power-gating1 considering multiple sleep states, 
providing leakage savings vs. wakeup overhead tradeoff; (2) clock 
gating; (3) dynamic voltage and frequency scaling (DVFS) with 
multiple V/F levels; and (4) body biasing [20]. However, effective 
power management in many-core systems has become an intricate 
problem, especially in large-scale computing systems. In the follow-
ing, we discuss two key power management challenges in emerging 
many-core systems: (1) scalability and complexity issues to determine 
appropriate power state of the cores; (2) power/energy efficiency 
issues related to applications with suddenly changing workloads. 
A. Emerging Power Management Issues and Challenges 
 (1) Scalability Issue in Power Management of Many-Core Sys-
tems: A large number of cores (100s–1000s) leads to an explosion of 
power management decision space2 that limits the applicability of 
state-of-the-art centralized power management policies [8][9]. Moreo-
ver, DVFS scaling potential is diminishing due to the shrinking gap 
between nominal and threshold voltages and high overhead of voltage 
regulators in densely integrated chips with 100s of cores [8]. For 
example, a 100 core system with each core exhibiting 3 power states 
(on, off, state-retentive) results in theoretically 3100 possible power 
management options. While fast search and optimization heuristics 
may be applied to prune the decision space, recent trends in power-
management for many-core systems have shown a paradigm shift 
towards scalable and distributed power management techniques 
[10][11]. Moreover, in order to cope with the rapidly growing com-
plexity of future computing problems, IBM’s autonomic computing 
initiative builds the consent towards self-optimizing/self-adaptive 
systems, such that different system components (e.g., cores) adapt and 
optimize themselves autonomously to operate efficiently as a whole 
[7][25][27]. Therefore, power management in emerging many-core 
                                                                 
1 Shutting down the idle core or parts by switching off their power-supply 

using sleep transistors; power-gating incurs a wakeup latency and energy 
overhead that can be significant depending upon the gated region. 

2 Depends upon the number of power states, number of cores, and recorded 
statistics like power, performance, workload history, etc. 

systems needs to be distributed & self-adaptive such that power states 
of the cores can be autonomously / efficiently controlled by their 
owner applications. To efficiently use the plethora of computing 
resources in many-core systems, these owner applications typically 
exhibit self-optimizing resource allocation that happens to be called 
“expanding and shrinking applications” in our case. Such a trend of 
hosting multiple simultaneously executing expanding/shrinking 
applications on advanced many-core systems has already been 
discussed by the research community [13]-[15][27]. 
In the following, we briefly introduce expanding and shrinking 
applications and power management issues related to them. 
(2) Power Management Issues related to the Expanding and Shrink-
ing Applications: applications expand (i.e. demand more resources 
from the local resource manager) and shrink (i.e. return dispensable 
resources to the local resource manager) at run time w.r.t. their resource 
requirements due to a varying degree of required parallelism as a result 
of abruptly changing workloads and performance/power constraints3. 
Fig. 1 shows an abstract scenario where two applications executing on a 
many-core system are expanding and shrinking at run time. Overlapping 
or consecutive expand periods correspond to resource competition 
among simultaneously executing applications (i.e. A and B in Fig. 1). 
Therefore, application B may shrink in low workload conditions to 
facilitate application A; see Scenario (3). 
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Fig. 1 Expanding and shrinking applications on a many-core 

system: different scenarios show varying expand-to-shrink and 
shrink-to-expand time periods 

The expand and shrink are triggered by the application using special 
commands that are part of the application’s code using special pro-
gramming language extensions, like in resource-aware programming 
paradigms (e.g. [24]) where applications specify their resource 
requirements in the program. The concept is based on leveraging the 
application-specific knowledge to derive hints towards resource 
requirements. An application triggers expand when its throughput 
constraints are not fulfilled and therefore requires extra cores. A 
shrink is triggered by the application when its computational require-
ments are fulfilled and it no longer requires all cores. This way, each 
application attempts to adapt its own resource requirement. After 
receiving the expand and shrink commands containing the information 
about the demanded or dispensable cores, an application’s local 
resource manager (in a distributed resource management paradigm) 
performs resource allocation/de-allocation decisions through inter-
application negotiation. These inter-application negotiations involve 
                                                                 
3 Examples: scalable and slice-parallelizable video encoders, scalable tracking 

algorithms, database applications with search and sorting functions for a 
large-size data set, etc. 



interaction between the local resource managers of different simulta-
neously executing applications based on their requirements [13][23]. 
To efficiently utilize the allocated cores, these expanding/shrinking 
applications are designed (e.g., using Intel’s threading building blocks 
[12]) to dynamically adapt their degree of parallelism to the number of 
allocated cores at run time [13][15]. 
Energy-Related Issues: Simultaneous execution of such expanding 
and shrinking applications leads to highly unpredictable resource 
demands/utilizations and frequent shrink-to-expand and expand-to-
shrink time periods (i.e. time between an expand operation and an 
immediately following shrink operation). This ultimately prohibits 
state-of-the-art distributed power management schemes [10][11] to 
achieve effective power management due to (i) significant wakeup 
overhead; (ii) lack of prediction accuracy/effectiveness; (iii) decreased 
potential of chip-level power gating [3]. We illustrate the power-
related issues associated with the expanding/shrinking applications 
with the help of our experimental case study in Fig. 2. 

Our experiments in Fig. 2 illustrate multiple scenarios of expand 
and shrink by means of two parallelized H.264 video encoder applica-
tions (as A and B) from the parsec benchmark. The varying core 
requirements denote the varying throughput constraints of two 
applications and corresponding expand and shrink operations. Let us 
assume the case where application A is shrinking (Fig. 2 (c)), it may 
power-gate its dispensable cores or may return them to its local 
resource manager. Since this application did not have the ex-
pand/shrink knowledge of the simultaneously executing applications 
that are competing for the resources (cores)4, this may lead to pow-
er/energy inefficiency as discussed in the following cases: 
Case-1: Application A power-gated its dispensable cores: now if 
application B expands and immediately requires the resources, it leads 
to frequent ON-OFF switching of the dispensable cores of application A 
that results in power/energy inefficiency; see Fig. 2 (c). A similar case 
may happen if application A expands again; see Fig. 2 (d). 
Case-2: Application A returns back its dispensable cores to its local 
resource manager that performs de-allocation: now if application B 
acquires these dispensed cores as a result of an expand and right 
afterwards, application A expands again, application A does not 
receive back its cores and it suffers from low energy efficiency and 
severe performance degradation; see Fig. 2 (c) and (d). 
In the above-discussed scenarios, it might be energy-wise beneficial for 
application A (which is shrinking in scenario Fig. 2 (c)) to temporarily 
reserve its cores instead of releasing them. However, this requires: 
1) A scalable per-application resource reservation policy that 

accounts for the knowledge of other simultaneously executing ap-
plications’ expand/shrink time periods; and 

2) Accurately predicting the expand-to-shrink and shrink-to-expand 
time periods to avoid unnecessary resource blockage such that 
other applications do not suffer. 

                                                                 
4 Fig. 2 (b) illustrates a resource competition scenario. 

Another power-related issue of frequent expand/shrink operations is that 
they lead to an increased frequency of local resource management 
decisions, which results in excessive latency and energy overhead due to: 
a). Frequent resource negotiations among local resource managers of 

simultaneously executing expanding and shrinking applications, 
decision logic, search for free cores, continuous adaptation during 
the application execution, etc.; 

b). Resource allocation and de-allocation: starting a new thread of the 
expanding application on the newly-allocated core and stopping a 
thread of the shrinking application on this core, task migration, etc. 

The latency overhead of applications’ local resource management 
ranges from 0.1ms to 10ms at 2GHz with an energy cost of 20 μJ per 
activation of the local resource management (assuming the technique 
of [14]). Consequently, a long latency also results in degraded energy 
efficiency of the application. Therefore, if expand-to-shrink and 
shrink-to-expand time periods of different applications are correctly 
predicted and jointly considered, significant energy savings can be 
obtained by avoiding frequent local resource management decisions 
and sudden variations in the power states of dispensed cores. 
B. Summary of Research Challenges 
Summarizing the above analysis and discussion, the key research 
challenges for efficient power management of many-core systems hosting 
simultaneously executing expanding and shrinking applications are: 
a) Enabling a scalable per-application resource reservation policy 

while accounting for the expand/shrink time periods of other sim-
ultaneously executing applications; 

b) Accurately predicting the expand-to-shrink and shrink-to-expand 
time periods, while leveraging the application-specific knowledge;

c) Selection of appropriate sleep states for different cores in cases of 
highly un-aligned and frequent expand-to-shrink time periods. 

The goal is to maximize the energy efficiency of resource-competing 
applications in a self-adaptive way through temporary resource 
reservations. Here, the energy efficiency is defined as the Energy-
Delay2 Product (ED2P). 
C. Overview of Our Novel Concept and Contributions 
This paper combats with the above-discussed power issues and 
challenges in many-core systems with our novel SEAD (Self-
Adaptive Hybrid Dynamic Power Management) Scheme that 
employs a per-application dynamic power-management policy in 
conjunction with continuous system feedback from other simultane-
ously executing applications, thus hybrid in nature. SEAD allows 
different owner applications to autonomously control the power states 
of their cores, while jointly accounting for the expand/shrink proper-
ties of the owner and other simultaneously executing applications. 
SEAD incorporates: 
1. Virtual Power Gating (ViPG) Manager that temporarily 

reserves the cores of its shrinking owner application instead of 
releasing/unblocking them. We call this process of reserving 
virtual power-gating of cores, i.e. these cores are unavailable 
from the local resource manager’s perspective and are not returned 
during the shrink operation, while at the same time available from 
the owner application’s perspective for its execution. For (power-
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Fig. 2 Expanding and shrinking behavior of two simultaneously executing H.264/AVC video encoding applications  

(see experimental setup in Section IV) 



wise) efficient ViPG decision, an application’s ViPG manager re-
quires prediction of the next expand operation (number of cores, 
expand time period) of the shrinking owner application. To facili-
tate this, our SEAD scheme employs: 

2. A Hybrid Prediction Technique that jointly accounts for the 
application-level knowledge of expand/shrink behavior (number 
of cores and time periods, workload characterization, etc.) and 
run-time monitored hardware-level knowledge (expand, shrink, 
execution time statistics) in order to provide an improved predic-
tion of expand and shrink behavior under uncertainties (like sud-
den application workload fluctuations). A combination of both ap-
plication-level and hardware-level information defines the hybrid 
nature of the prediction. 

3. ViPG-Guided Power-Gating that may decide to power-gate 
cores from a virtually power-gated state depending upon the time 
period between shrink and expand of an application. For this, the 
information available at the ViPG-manager (like prediction of ex-
pand/shrink time periods and resources) can be exploited to obtain 
a robust prediction for the power-gating of cores. 

The SEAD scheme minimizes the overall energy considering the 
dynamic power of expanding and shrinking applications, power 
consumption during resource allocation/de-allocation, leakage power, 
wakeup overhead, etc. under run-time scenarios of frequently expand-
ing/shrinking applications. It is evaluated for energy-efficiency and 
performance compared to state-of-the-art using ED2P, scalability w.r.t. 
number of cores and number of expanding-shrinking applications, and 
accuracy of hybrid prediction (see Section V). 
Before proceeding to the details of our novel SEAD scheme, we will 
present our system models for clarity of the discussion. 

II. SYSTEM MODELS 
Architecture and Power-Gating Model: A homogeneous many-core 
system consisting of NC total number of cores. The cores are connect-
ed via an on-chip network. Each core can be power gated using a 
multiple-sleep state power-gating circuitry. The power-gate model is 
based on a model with five power states: 
P = {SOFF, SIR, SR, SI, SON}, i.e. OFF, Irretentive, Retentive, Idle, and 
ON states (see Fig. 3).  

 
Fig. 3 Used power state machine with latencies of state transition  

Multiple sleep states (achieved by back body biasing) provide a 
tradeoff between leakage savings and wakeup overhead. SI performs 
only clock gating. In SR, the PLL is active and the L1 cache is flushed. 
In SIR, PLL is switched off and L2 cache is also flushed. In SOFF, the 
state of the core is saved on a small on-chip SRAM powered by the 
I/O supply to allow faster wakeup times during the power up phase. A 
similar model can also be found in modern Intel processors [17]. 

Application Model: The many-core system hosts a set of simultane-
ously executing applications A={a1, a2, …, an} with expanding and 
shrinking capabilities. NC,i denotes the number of cores owned by the 
application ai. The time period and core requirements between expand 
and shrink are denoted as TES and NE. The time periods and core 
requirements between shrink and expand are denoted as TSE and NS, 
respectively. Each application may temporarily reserve NRes number of 
cores through ViPG. Each application ai has a set of workload classes 
Ci, obtained using offline statistical analysis of execution properties 
w.r.t. the input data characterization. 

III. OUR SEAD SCHEME 
Fig. 4 shows an overview of the operational flow of our SEAD 
scheme (novel contribution in colored boxes) which raises the abstrac-
tion level of power management to the application level in a hybrid 
fashion, i.e. scalable using per-application power managers with 
system feedback about other simultaneously executing applications. 
The owner applications can independently control the power states of 
their cores. SEAD allows applications to locally manage the power 
states of their cores in a two-step fashion: (1) performing virtual 
power-gating (i.e. resource reservation) using the ViPG manager; and 
(2) power-gating in an appropriate sleep state. For this, SEAD requires 
the prediction of expand-to-shrink and shrink-to-expand operations. 
Our scheme works via four major phases (see details in later sections): 
1) Predicting the time period and number of required cores for 

expand-to-shrink and shrink-to-expand operations in a hybrid 
way, i.e. by jointly accounting the application-level and hardware-
level knowledge; 

2) Performing the ViPG operation on potentially dispensable cores 
by computing their reservation benefit, such that these cores are 
not available to the local resource manager for shrinking; 

3) Accounting for the system feedback as a penalty in the ViPG 
benefit function to account for the performance/energy degrada-
tion of other simultaneously executing applications; 

4) Moving the power states of cores from virtually-power-gated to 
power-gated in an appropriate sleep state, depending upon the 
predicted shrink-to-expand time period. 

D. Hybrid Prediction of Expand-to-Shrink and 
Shrink-to-Expand Operations 

Once an application decides to shrink, SEAD predicts the upcoming 
shrink-to-expand (SE) and expand-to-shrink (ES) time periods and 
numbers of cores required in each time period. History-based prediction 
techniques may lead to significant miss-predictions in case of suddenly 
changing workloads [22]. Application-based prediction techniques (like 
[22][26]) may handle such workload fluctuations, but do not account for 
the architectural information (like monitored statistics, idle period 
fluctuations, etc.), thus may lead to miss-predictions and consequently 
less-effective power management in many-core systems. To overcome 
the limitations of both application- and history-based predictions, SEAD 
employs a hybrid prediction technique. Fig. 5 shows the pseudo-code of 
our hybrid prediction technique. The inputs are the application-
dependent workload classes C, probability-density functions (PDF) of 
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Fig. 4 Operational flow of our SEAD scheme (novel contribution is highlighted in colored boxes) 



different parameters like (TSE, TES, NRes, NE and NS) associated with 
expand-to-shrink and shrink-to-expand operations, and the monitored 
history data H of these parameters. The output is the set of predicted 
values of these parameters using the hybrid prediction technique. First 
the workload class is matched based on the current data set at the 
shrink/expand point and an appropriate PDF is selected based on the 
workload class (i.e. low, mid, or high, as discussed above); line 3. These 
workload classes depend upon the application type and are obtained 
using an offline statistical analysis of the application workload. Note: a 
change from low to high workload class denotes an abrupt change in the 
workload and the core requirements of an application vary significantly 
when moving from one workload class to another. 

1. HybridPrediction (Input: application-based probability distribution 
functions (PDF) and monitored history (H) of ES and SE opera-
tions for a given application, i.e. NS, NE, TSE, TES, NRes; workload 
classes C; Output: predicted values for ES and SE operations) 

2. SE ES Res S E      v V= T T N N {N  { , , , , }  
3.  c matchWorkloadClass(C, v.PDF);  
4.  Av.P F(c, +2 );  
5.  Hv P avg(v.H);.  
6.  A Hv.P v p 1 v p ;( ( . )) (( ) ( . ))  
7.  t-1v.P applyCorrection(v.p,v.p );      }  
8. SE ES Res S EV= T T N N Nreturn   ;{ , , , , }  

Fig. 5 Pseudo-code of the hybrid prediction technique 

 
Fig. 6 Probability density functions (PDFs) of expand-to-shrink 

time periods for different workload classes of two test applications 
Afterwards, the application-based prediction of different parameters 
(like TSE, TES, NRes, NE and NS) is computed as a highly-probable value 
obtained using the probability distribution function (PDF, see Fig. 6) 
with a probability of 0.94 (assuming a Gaussian distribution) using 
“μ+2×σ”; line 4. μ denotes the mean of distribution and σ denotes the 
standard deviation. The history-based prediction is obtained as the 
average of the history window; line 5. Given a user-defined weighting 
parameter 'α', the hybrid prediction is obtained as a weighted sum of 
application-based and history-based predictions; line 6. Since the 
prediction may deviate from the actual requirements, our scheme 
employs a prediction correction using a simple PID-based prediction 
error controller (see Fig. 4). The controller parameters (KP, KI, KD) 
can be computed using the Ziegler-Nichols Method [21] with the 
settings of Eq. 1. 

0.6 ;  0.5 ;  0.125 ;
0.8;  2;

P PC I P C D P C

PC C

K K K K T K K T
K T

 (1) 

The prediction error is then added in the new prediction as a correc-
tion factor (line 7). Note that this controller loop only works on the 
prediction error, which adapts the quality of prediction. Therefore, this 
is not dependent upon the periodic or non-periodic natures of the 
applications’ expand and shrink operations. The set of parameters is 
forwarded to the ViPG manager and ViPG-driven DPM (see Fig. 7). 
E. Virtual Power-Gating (ViPG) of Dispensable Resources 
Depending upon the shrink amount (i.e. number of dispensable cores), 
the predicted SE time period (TSE), and the upcoming expand require-
ments in terms of cores (NE), the ViPG manager computes the reserva-
tion benefit of the dispensable cores. SEAD employs ED2P (Energy-

Delay2 Product) as the energy function in the profit computation since 
reservation affects both the energy and performance of applications. In 
this way, if an application is going to require its dispensable cores 
soon, these cores will be immediately available to it without incurring 
additional overhead of resource allocation/de-allocation, delayed or no 
additional speedup depending upon resource manager decisions and 
demands of other simultaneously executing applications. ViPG can 
potentially affect the performance of another expanding application 
that may result in high energy consumption or alternatively the 
resource manager spends more power in searching for cores for the 
expanding application. Therefore, ViPG computes the reservation 
benefit which consists of four parameters: 
1) Energy savings due to reservation of NRes cores of application a 

(EfRes): since the application will reserve the cores for its predicted 
upcoming expand operation; this application will start with im-
proved energy efficiency due to readily available cores. 

2) Energy savings due to reduced effort of the local resource manag-
er (EfRM): ViPG cores lead to reduced decision space of the local 
resource manager, thus providing energy savings. 

3) Energy savings due to reduced effort of shrink and expand 
operations (EfSE): due to the reservation, the energy overhead of 
de-allocation in the shrink operation and re-allocation in the ex-
pand operation are saved. 

4) Energy penalty due to reduced energy efficiency of other simulta-
neously executing applications due to reduced number of availa-
ble cores to the resource manager (EfPenalty): core reservation by 
one application may hurt the energy efficiency of other simultane-
ous ly-executing applications. Therefore, SEAD employs a penal-
ty cost of the application with potentially worst loss of energy ef-
ficiency in the reservation profit. 

Formal Problem: Given an application ai from a set of applications 
A={a1, …, an}, the objective is to select a set of cores (NRes) from the 
total allocated cores (NC) of the owner application ai that can be put 
into ViPG mode at the shrink operation such that, the ED2P of ai is 
minimized for the upcoming expand operation. To further improve the 
energy efficiency, the objective is to determine an appropriate sleep 
state OFF IR R Ip SPS= S S S{ , , , } for each of the reserved core. 

Algorithm: Fig. 7 shows the pseudo-code of our SEAD scheme. 
SEAD instance is associated with an application a, which receives NC 
cores from the resource manager. The output of SEAD is the number 
of reserved cores and their corresponding power states. First, the 
hybrid prediction is performed for different parameters like TSE, TES, 
NRes, NE and NS, which are associated with expand-to-shrink and 
shrink-to-expand operations (line 2). These parameters are used for 
computing the reservation energy profit and sleep state (lines 6 and 
22). The ViPG loop (lines 4-19) iterates over all the available cores in 
terms of core steps CS, i.e. number of cores required to take the 
application a to the next speedup step (this highly depends upon an 
application’s parallelization potential and data flow properties). For 
each cStep from the set of core steps CS, the energy benefit of the 
reservation is computed as the reservation profit (resProfit, line 6-15) 
and the cStep number of cores to be reserved (i.e. put in ViPG state) if 
the reservation profit is positive (line 16). Since ViPG makes local 
decision for the owner applications, it may not take system-wide 
optimal decisions. Therefore, additional information (i.e. resource 
deficiency and loss in energy efficiency of other simultaneously 
executing applications) is forwarded from the resource manager to the 
ViPG manager. The ViPG manger incorporates this energy loss 
information in the reservation profit function as a penalty term (see 
lines 7-14). This makes SEAD a hybrid and self-adaptive power-
management scheme. Depending upon the predicted time period 
between shrink and upcoming expand of an application, ViPG-driven 
DPM may decide to power-gate the virtually-power-gated cores 
depending upon the amortization of the wakeup overhead. The key is 
to leverage the ViPG-level information (like TSE and NRes) to obtain an 
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improved prediction of sleep periods of ViPG cores. This will avoid 
frequent power-on/-off switching of ViPG cores under frequently 
expanding/shrinking operations and highly un-aligned shrink-to-
expand and expand-to-shrink time periods. Therefore, after determin-
ing the ViPG cores, SEAD determines an appropriate sleep state for 
them using the ViPG-driven DPM technique (lines 20-25) considering 
a multiple sleep state model (see Section II). 

1. SEAD (Input: application a, allocated resources NC; Output: 
Reserved resources NRes and their power states PRes) 

2. SE ES Res S E, , , , HyPred(a, a.PDF, V= T a.H, a.C);T N N N{ }  
3. Res S0;N  N 0; // initialize reservation and shrink candidates 
4. while CS a getCoreSteps( )     {!=(( . ) )  
5.  cStep C  {S    

// Compute the energy benefit for reservation, resource allocation, and 
shrink-to-expand operation using the given energy function (i.e., ED2P)  

6.   Res RM SEEf ,Ef ,Ef computeEnergyFunction a,V ;{ } ( )  
// Compute the energy penalty from the worst loss among all other 
applications demanding the same cStep resource 

7.   PenaltyEf 0;  
8.   a z A    {\  
9.    E Cif(z.N >z.N )    {  
10.     ED z.N cStep;  
11.     Loss EEf z getEnergyLoss D,z N ;. ( . )  
12.     Penalty Loss affectLoss Penal dty eif(Ef >Ef )  ;f A z Ef E ;  
13.    }  
14.   }  

// Compute the reservation profit and perform ViPG 
15.   Res RM SE PenaltyresProfit Ef Ef Ef Ef ;  
16.   Res Resif(resProfit>0)  N N + CScStep;  cStep;CS \  
17.   S C ResN N N ;  
18.  }  
19. }  

// Perform ViPG-Driven DPM 
20. ResN  c    {  
21.  OFF IR R Ip =  S S SPS , , ,   S     {{ }  
22.    benefit SE Leak overheadif(E (T ,p.P )>E (p))    {  
23.     PowerGate(c,p);   break;    }  
24.  }  
25. }  

Fig. 7 Pseudo-code of our SEAD Scheme 
IV. EXPERIMENTAL SETUP 

We simulated applications from the parsec benchmark suite [16] that 
exhibit varying degree of parallelism, which is important to realize 
expanding/shrinking applications (see Fig. 8). We extended the parsec 
applications to model a resource-aware behavior, i.e. perform shrink-
ing and expanding. The selected applications demonstrate considera-
ble variation in their resource requirements and execution times 
depending on the input data. bodytrack tracks a person in a sequence 
of 3D-camera images. We used input sets A and B with 1000, 2000, 
and 4000 particles. x264 is a parallel H.264/AVC video encoder. We 
combined several HD video sequences: Mix 1 refers to bluesky, 
station, eledream, Mix 2 refers to in_to_tree, old_town_cross, ele-
dream, and Mix 3 refers to sunflower, station2, crowd_run. 
We used a cycle-accurate performance simulator (Gem5 [18]) with an 
ITRS-based power simulator (McPAT [19]) as depicted in Fig. 8. 
Every experiment is executed for 20x109 cycles. 
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Fig. 8 Experimental Setup 
V. RESULTS AND DISCUSSION 

A. Comparison to State-of-the-Art 
We compare our SEAD scheme with advanced state-of-the-art power 
management policies [4][8] (Fig. 9 b, c, d) and the baseline system 

(i.e. without SEAD scheme, Fig. 9 a) for varying number of simulta-
neously executing applications for a given number of cores. Fig. 9 
illustrates the normalized ED²P reduction of our SEAD scheme 
compared to the comparison partners; bars denote the average, while 
the line denotes the standard deviation. 
Fairness of Comparison: for fairness of comparison, we provide the 
same power state machine to all schemes. We also allow all schemes 
to access the expand/shrink knowledge of all owner applications to 
provide them the knowledge of resource requirements. 
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Fig. 9 Average ED²P improvements compared to state-of-the-art 
(bars denote average savings, line-ends show max/min savings) 

1) Comparing to the Baseline System, i.e. w/o SEAD (Fig. 9 a): In 
the baseline system the applications expand and shrink, but the unused 
cores are active all the time. Compared to the baseline case, our SEAD 
scheme provides up to 96.9% (average 59.68%) ED²P reduction; see 
Fig. 9 a. For a more realistic evaluation, we adopt advanced state-of-
the-art power management schemes UtilPG [4], IdlePG [4], and 
MaxBIPS [8] for comparison. 
2) Comparing to the UtilPG Scheme [4] (Fig. 9 b): UtilPG [4] 
does not support shrink, i.e. application do no return their dispensable 
cores, rather power-gates them in case the utilization is under a pre-
defined threshold. These power-gated cores are unavailable to other 
applications, and only the owner applications can activate them for 
usage in case of workload increase. Therefore, UtilPG suffers from 
energy inefficiency in case of multiple competing applications due to 
the unavailability of the expand/shrink knowledge of other applica-
tions. In contrast, ViPG manager in our SEAD scheme accounts for 
other application in the reservation benefit function thus allows 
shrinking in case other applications are in urgent need of the resource. 
As a result, compared to the UtilPG [4], our SEAD scheme provides 
up to 42.56% (average 10.26%) ED²P reduction; see Fig. 9 b. 
3) Comparing to the IdlePG Scheme [4] (Fig. 9 c): IdlePG [4] is a 
timeout based power management scheme. The cores are power-gated 
if the cores’ idle time exceeds a predefined threshold. Like UtilPG, 
IdlePG also does not account for other simultaneously executing 
applications. Therefore, IdlePG suffers from energy inefficiency along 
with significant performance degradation; especially in case of sudden 
expand time periods. In contrast, our SEAD leverages the application 
specific knowledge and monitored statistics to enhance the prediction 
of time period and core requirements during the expand/shrink 
periods. Moreover, hybrid prediction of SEAD allows for accurately 
predicting the overlapping expand and shrink time periods of different 
applications. SEAD thereby achieves up to 17.33% (average 6.97%) 
ED²P reduction compared to the IdlePG scheme; see Fig. 9 c.  
4) Comparing to the MaxBIPS Scheme [8] (Fig. 9 b): MaxBIPS is 
a throughput optimizing power management scheme, where execution 
phases are predicted based on the application’s prior knowledge and 
the workload demand of the future is unknown. The core benefit of 
SEAD arises from its reservation policy, as MaxBIPS will return its 
resources during a shrink operation. Moreover, the hybrid prediction 
provides an edge to our SEAD scheme by providing an accurate 
estimate of the upcoming expand/shrink operations. As result SEAD 
achieves up to 15.95% (average 6.6% %) ED²P reduction compared to 



the MaxBIPS scheme; see Fig. 9 d. Note: even 7%-16% ED²P savings 
are significant as the comparison is purely based on the power man-
agement policy and all other system conditions are set to be same for 
all the comparison partners. 
B. Results for Scalability w.r.t. number of Cores and Applications 

Fig. 10 illustrates SEAD’s ED²P savings normalized to MaxBIPS [8] 
for an increasing amount of cores (see Fig. 10 a-d) and number of 
simultaneously executing applications. It is worthy to note in Fig. 10a) 
that the ED²P savings becomes constant after 52 cores. It is due to the 
fact that core requirements of all applications were fulfilled. There-
fore, to analyze the scalability to a large number of cores, the number 
of simultaneously executing applications is increased; see 22  33  
44 applications when moving from 72 to 192 cores. 
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Fig. 10 : Scalability of SEAD’s ED²P savings compared to MaxBIPS 
[8] w.r.t. number of cores and simultaneously executing applications  

Fig. 10 a-d shows that SEAD achieves improved energy efficiency in 
most of the cases. However, in a few cases SEAD suffers from energy 
inefficiency. This is because of the expansion of another application 
by a significant amount, while another application already reserved 
many cores. This sudden expansion was not sufficient for the penalty 
function to avoid reservation. Therefore, though one application 
exhibits better energy efficiency, another application suffered. This 
resulted in overall energy efficiency by less than 5% (see Fig. 10 c, 
near 102 cores case). However, in case of longer executions, due to 
continuous system feedback, SEAD moves towards overall energy 
efficient operating points and the overall savings improve. In sum-
mary, Fig. 10 shows that SEAD outperforms the state-of-the-art 
MaxBIPS[8] scheme in almost all the cases. In Fig. 10 e) we compare 
SEAD against the IdlePG [4] and in Fig. 10 f) against MaxBIPS [8] 
for a varying amount of applications. Note, there are certain set of 
spikes in the ED²P savings. This is because of the fact that an applica-
tion ED²P is improved in steps, i.e. to move to the next ED²P point, an 
application requires more than 1 core. This short-time energy penalty 
would also be compensated in long execution cases. 
C. Results for Prediction Accuracy of Hybrid Prediction 

Technique in SEAD 
The prediction accuracy is presented in Fig. 11 for SEAD and a 
sliding average history based predictor compared to the actual core 
requirements of applications. In average, SEAD accurately predicts 
the core requirements (avg 0.00 cores, stdev 0.57 cores). However, the 
sliding average predictor underestimates the core requirements by 
0.94 cores, stdev 5.39 cores. The improved prediction accuracy is 
primarily due to the joint consideration of application-specific 
knowledge and hardware-level monitored statistics. 
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Fig. 11 : Prediction Accuracy 

VI. CONCLUSIONS 
We presented a self-adaptive dynamic power management scheme for 
scenarios of simultaneously executing applications with sudden 
expanding/shrinking resource requirements. It employs the novel 
concept of Virtual Power Gating to temporarily reserve cores along 
through a hybrid prediction technique to provide high energy efficien-
cy. Compared to advanced state-of-the-art techniques [4][8], we 
achieve 15%-40% ED²P reduction. Our self-adaptive scheme enables 
applications to autonomously control the power states of their re-
source. This provides a foundation for scalable power management of 
future many-core systems. 
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