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Abstract—It is projected that increasing on-chip integration
with technology scaling will lead to the so-called dark silicon
era in which more transistors are available on a chip than
can be simultaneously powered on. It is conventionally assumed
that the dark silicon will be provisioned with heterogeneous
resources, for example dedicated hardware accelerators. In this
paper we challenge the conventional assumption and build a case
for homogeneous dark silicon CMPs that exploit the inherent
variations in process parameters that exist in scaled technologies
to offer increased performance. Since process variations result
in core-to-core variations in power and frequency, the idea is to
cherry pick the best subset of cores for an application so as to
maximize performance within the power budget. To this end, we
propose a polynomial time algorithm for optimal core selection,
thread mapping and frequency assignment for a large class of
multi-threaded applications. Our experimental results based on
the Sniper multi-core simulator show that up to 22% and 30%
performance improvement is observed for homogeneous CMPs
with 33% and 50% dark silicon, respectively.

I. INTRODUCTION

Technology scaling has enabled increasing on chip integra-
tion to the extent that, in the near future, a chip will have more
transistors than can be simultaneously powered on within the
peak power and temperature budgets. This has been referred
to as the dark silicon era [5] where, at any given point in time,
only a percentage of transistors on the die are operational. Dark
silicon multi-core systems have typically been thought of in
the context of heterogeneous computing using, for example,
a multitude of dedicated hardware accelerators to assist the
on-chip cores [6]. However, we take a different view of the
problem and attempt to the answer the following question
— is there a case for traditional homogeneous multi-core
chips in the dark silicon era? In other words, is there any
benefit in provisioning a chip multi-processor (CMP) with
more homogeneous cores than can be simultaneously powered
on? In this paper, we demonstrate that by exploiting the
core-to-core variations in leakage power dissipation and clock
frequency introduced by process variations, this question can
be answered in the affirmative.

Process variations have typically been thought of as a major
design concern for CMOS ICs. The magnitude of process vari-
ations increases with technology scaling and with decreasing

supply voltages, transistors are more susceptible to variations
in their process parameters. In their seminal work, Bowman
et al. demonstrated that up to 30% of performance can be
lost due to process variations alone in scaled technologies [2].
This result is based on the observation that the performance
of a synchronous digital system is dependent on the slowest
critical path on a chip. By the same token, the performance
of a multi-threaded application is typically determined by the
slowest core on a chip, if all cores are be utilized.

Dark silicon chips, on the other hand, offer a new oppor-
tunity to exploit process variations. In particular, since we are
allowed to pick and choose which cores on the chip to turn
on, we can potentially harness process variations to our benefit
by picking the subset of cores that best fit the application
characteristics. We refer to this intuitive idea as cherry-
picking. In this paper, we propose a framework to evaluate
the benefits of cherry-picking in dark silicon homogeneous
CMPs. In particular, we show that as the number of redundant
homogeneous cores increases, i.e., the percentage of dark
silicon increases, there is an increasing performance benefit
from the ability to cherry pick cores from a larger set.

Figure 1 shows an overview of the proposed approach using
an example of a 16 core homogeneous CMP with 4 redun-
dant cores (25% dark silicon). Multi-threaded applications are
mapped on to the CMP by choosing the optimal subset of
cores, i.e., cherry-picking cores, that maximize application
performance under a power budget. The unmapped cores are
left dark. We validate our proposed ideas on multi-threaded
applications from the SPLASH-2 and PARSEC benchmark
suites and perform detailed simulations using a modified
version of the Sniper multi-core simulation infrastructure [3].

II. RELATED WORK

Goulding et al. [6] and Esmailzadeh et al. [5] were amongst
the first to observe, using power performance projections, the
impending onset of the dark silicon computing era. Goulding
et al. propose populating the dark silicon area with dedicated
hardware accelerators optimized for common application tem-
plates [6]. Esmailzadeh et al. [5] explore the design space of
dark silicon CMPs but do not account for process variations.
Karpuzcu et al. have proposed Bubblewrap [9], a technique that978-3-9815370-0-0/DATE13/ c©2013 EDAA



Fig. 1. A homogeneous CMP with N cores overlaid on top of a process
variation map. Multi-threaded applications with M parallel threads (M ≤ N )
are mapped to the CMP by cherry-picking the best cores within a power
budget. The remaining cores are dark.

makes uses of the extra cores available on a chip to extend its
lifetime. In fact, extended product lifetime is another reason
for designing homogeneous dark CMPs. However, the focus
of this paper is on exploiting process variations in dark silicon
chips for performance improvement under a power budget.

A number of recent papers have addressed the problem of
process variation aware scheduling on homogeneous CMPs,
although none in the dark silicon context. In addition, we note
that all of the thread scheduling techniques proposed so far
focus on either multi-programed workloads where each thread
is a separate application [13], [12], or a simple performance
model where the application throughput is computed as the
sum throughput of each thread [7], [8], [14], [10]. These
models are inappropriate for a large class of multi-threaded
applications that are based on barrier synchronization. We note
that ours is the first paper to solve the problem of variation-
aware core selection and thread scheduling for these applica-
tion classes. Dighe et al. [4] have demonstrated the benefits of
variability-aware scheduling on an 80-core hardware prototype,
but make use of micro-benchmarks and synthetic workloads.

III. PAPER CONTRIBUTIONS

Compared to the prior state of the art, in this paper we make
the following novel contributions:
• We build a case for homogeneous CMPs in the dark

silicon regime that exploit process variations to improve
performance within a power budget, relative to a baseline
homogeneous CMP with no dark silicon.

• We propose a simple yet accurate performance model for
barrier synchronization based multi-threaded applications

and experimentally validate this model using benchmarks
from the SPLASH-2 and PARSEC benchmark suites.

• Based on the proposed performance model, we propose a
polynomial time algorithm for optimally picking a subset
of cores, mapping threads to cores in this subset and
assigning operating frequencies to each core in order to
maximize performance under a power budget. This is
referred to as core cherry-picking.

• Our experimental results using the Sniper multi-core sim-
ulation platform highlight the benefits of cherry picking
cores in homogeneous dark silicon CMPs — we report up
to a 22% increase in performance with 33% dark silicon
resources and a 30% performance increase with 50% dark
silicon.

IV. PROCESS VARIATION MODELS

In this paper, we focus on tiled homogeneous chip multi-
processors consisting of Ncores identical tiles. Each tile con-
sists of a processing core, a private L1 cache, a section of
the shared L2 cache and an on-chip router to communicate
with neighboring cores. As a result of manufacturing process
variations, the power dissipation and maximum frequency of
each core will be different, depending on the statistics of
the process variation distribution. We start by discussing the
process variation model used in this paper and the resulting
core frequency and power distributions.

To model process variation, the chip surface is modeled
as a fine grid of dimensions Nchip × Nchip. Let pij(i, j ∈
[1, Nchip]) represent the value of the process parameter at
grid cell (i, j). In the presence of process variations, pij can
be modeled as a Gaussian random variable with mean µp
and standard deviation σp. In addition, the process parameters
at two different grid points are correlated with a correlation
coefficient, ρij,kl, that reduces with increasing distance. Based
on the experimentally validated model proposed by [16], we
express the spatial correlation between two grid points as

ρij,kl = e−α
√

(i−k)2+(j−l)2 ∀i, j, k, l ∈ [1, Nchip], (1)

where the value of α determines how quickly the spatial
correlations die out.

In [2], the authors have shown that frequency of a digital
circuit under the impact of process variations can be accurately
modeled as the worst-case delay of Ncp identical critical paths.
Assuming that all the gates in a critical path lie entirely within
a grid cell and critical paths are uniformly distributed over
the core area, we can write the maximum frequency of core
i(i ∈ [1, Ncore]) as [8]:

fMAX
i = K ′ min

k,l∈SCP,i

(
1

pkl
), (2)

where K ′ is a technology dependent constant and SCP,i
represents the set of NCP grid cells in core i that contain
critical paths.

The power consumption of core i depends on its dynamic
and leakage power components. The total power consumption



Fig. 2. Execution time for different core frequency values for the radix and
fluid-animate benchmarks. The sequential thread is mapped to Core 0 and
the parallel threads are mapped to Cores 1 to 15.

of core i is written as

Pi =
∑
k,l∈Si

Cswkl V
2
DDfi + VDDI

S
kle
−K′′pkl (3)

= PDfi + PL,i (4)

where Si represents the set of all the grid cells in core i,
Cswkl represents the average switched capacitance of a grid
cell, VDD is the chip supply voltage, ISkl is the nominal sub-
threshold leakage current for the gates in a grid cell, and K ′′ is
a technology dependent constant. The values of the technology
dependent constants can be derived by curve fitting circuit
simulation outputs.

V. PERFORMANCE MODELING FOR MULTI-THREADED
APPLICATIONS

We focus on multi-threaded applications from the scientific
computing domain, such as those found in the SPLASH-2 and
PARSEC benchmark suites. These applications consist of two
phases of execution — a sequential phase, which consists of
a single thread of execution; and a parallel phase in which
multiple threads process data in parallel. The parallel threads
of execution in a parallel phase typically synchronize on a
barrier, in other words, all threads must finish execution before
the application can proceed to the next phase. Therefore, the
latency of a parallel phase is dominated by the worst case
execution latency across all parallel threads. Based on this
observation, we model the execution time of an application,
E, as

E =
Wseq

fseq
+

Wpar

M ×mini∈[1,M ](fpar,i)
, (5)

where Wseq and Wpar represent the sequential and parallel
components of the application, respectively. M is the number
of parallel threads in the application. Furthermore, fseq and
fpar,i refer to the frequency at which the sequential and the ith

parallel thread are executed, respectively. These values depend
on the scheduling of threads to cores in the CMP system, and
the frequency assigned to each core. Determining the optimal
scheduling of threads to cores and the core frequency values
is the primary goal of this work. To this end, we assume that
each application is pre-characterized in terms of its Wseq and
Wpar values.

Figure 2 shows simulation data for the radix and fluid-animate
benchmarks that validates the proposed model on a 16-core
CMP. In both examples, the sequential thread is mapped to
Core 0 and the parallel threads are mapped to Cores 1-15. In
each experiment, the frequency of Cores 2-15 is kept constant
and the frequency of Core 1 is varied. We observe that when
Core 1 is slower than Cores 2-15, it dominates the application
execution time. However, when the frequency of Cores 2-15 is
slower than Core 1, the application execution time no longer
changes with increasing Core 1 frequency. Additional data
validating the proposed model will be presented in Section
VIII where we discuss our experimental results.

VI. CHERRY-PICKING: VARIATION-AWARE CORE
SELECTION AND SCHEDULING

As mentioned before, dark silicon chips consist of more
cores than can be simultaneously powered on at any given
point in time because of a peak power constraint. Assume that
the peak power constraint is given by a designer specified value
Pmax. We will now propose an online optimization strategy
to optimally determine for a homogeneous CMP affected by
process variations: (a) which cores are turned on and which
cores are left dark, (b) which core to run the sequential thread
and parallel threads on, and (c) what frequency to run every
core at. The goal of the online optimization is to maximize
performance (minimize application execution latency) under
the peak power constraint.

Let xseq(xseq ∈ [1, Ncore]) represent the core on
which the sequential thread executes and, correspondingly,
xpar,i(xpar,i ∈ [1, Ncore]) be the core on which the ith parallel
thread executes. Furthermore, fi(i ∈ [1, Ncores]) represents
the frequency at which each core in the CMP executes. To
maximize performance within a power budget, we need to
solve the following optimization problem.

min
x,f,M

Wseq

fxseq

+
Wpar

M ×mini∈[1,M ](fxpar,i
)
, (6)

subject to:

∑
i∈[1,M ]

Pxpar,i
=

∑
i∈[1,M ]

PDfxpar,i
+ PL,xpar,i

≤ Pmax (7)

fi ≤ fMAX
i ∀i ∈ [1, Ncores] (8)

xpar,i 6= xpar,j ∀i, j ∈ [1, Ncores], i 6= j (9)

Equation 7 represents the dark silicon constraint, i.e., the
peak power dissipation during the parallel phase must be less
than the maximum power budget. In this formulation, we
have assumed for mathematical simplicity that the cores that
are off do not dissipate any power (perfect power gating),
although a more realistic scenario in which off cores dissipate
a fraction of leakage power is modeled in our experimental
results. Note that in the dark silicon constraint, the leakage
power dissipation differs from one core to another due to



process variations. Equation 8 represents the process variation
constrained maximum operating frequency of each core. If
required, cores can be assigned frequencies lower than their
respective maximum frequency constraint to conserve power
and meet the maximum power budget. Equation 9 ensures that
only one thread is mapped to each core.

The optimization formulation presented here represents a
mixed-integer non-linear program (MINLP). We note that
Teodorescu et al. [13] have previously proposed a simpler inte-
ger linear programming (ILP) based variation-aware schedul-
ing solution. However, their formulation only address multi-
programmed and not multi-threaded workloads and does not
take into account dark silicon constraints.

We now propose a polynomial time solution to the opti-
mization problem formulated above. Assume that x∗ and f∗

are the optimal solutions for this problem.
Assume that the sequential thread is scheduled for execution

on core i, and the slowest parallel thread is scheduled on core
j. Let the set Qi,j represent the set of cores on the chip (not
including i and j) with frequency greater than fmaxj . The
elements of the set Qij are ordered in ascending order of their
leakage power dissipation. With the help of this definition,
we can now compute the optimal scheduling and frequency
assignment for the remaining M − 1 parallel threads.

Lemma 1. If |Qij | ≥M − 1 then the optimal mapping of the
remaining M − 1 threads can be written as:

xpar,k = Qijk−1∀k ∈ [2,M ].

The optimal frequency assignment is determined based on the
following conditions. If

Pmax −MPDf
max
j − Lj −

M−1∑
k=1

LQij
k
≥ 0

then
fxpar,k

= fMAX
xpar,k

∀k ∈ [1,M ].

Else,
fxpar,k

= θijf
MAX
xpar,j

∀k ∈ [1,M ].

where

θij =
Pmax − Lj −

∑M−1
k=1 LQij

k

MPD
.

Proof: We only provide a proof sketch due to space
constraints. The if condition corresponds to the case in which
the dark silicon power budget can be met while still running a
subset of the cores at their respective maximum frequencies.
The else condition corresponds to the case in which the core
frequencies are scaled to meet the power budget. The scaling
factor θ decides how much each core is slowed down to meet
the power budget while maximizing performance.

Finally, note that Lemma 1 provides the optimal scheduling
and frequency assignment given the two cores on which the
sequential and slowest parallel threads run. There are O(N2

core)
such pairs in a CMP with Ncore cores. These pairs can
be exhaustively searched (in polynomial time) to determine

the best overall scheduling and frequency assignment that
maximizes performance within the dark silicon peak power
budget.

Algorithm 1 is a formal description of the proposed schedul-
ing and frequency assignment algorithm.

Algorithm 1 Optimal core selection, frequency scheduling and
frequency assignment

1: E∗ ←∞
2: for i ∈ [1, Ncores] do
3: for j ∈ [1, Ncores] j 6= i do
4: if |Qij | ≥M − 1 then
5: ∆← Pmax −MPDf

max
j − Lj −

∑M−1
k=1 LQij

k

6: if ∆ ≥ 0 then
7: θ ← 1
8: Enew ← wseq

fi
+

wpar

MfMAX
j

9: else
10: θ ← ∆

MPD

11: Enew ← wseq

fi
+

wpar

MθfMAX
j

12: end if
13: if Enew < E∗ then
14: E∗ ← Enew
15: x∗seq ← i
16: x∗par,1 ← j

17: x∗par,k ← Qijk−1∀k ∈ [2,M ]
18: f∗k ← 0 ∀k ∈ [1, Ncores]
19: f∗i ← fMAX

i

20: f∗j ← θfMAX
j

21: if θ < 1 then
22: f∗

Qij
k

← θfMAX
j ∀k ∈ [1,M − 1]

23: else
24: f∗

Qij
k

← fMAX
j ∀k ∈ [1,M − 1]

25: end if
26: end if
27: end if
28: end for
29: end for
30: return {x∗, f∗}

VII. EXPERIMENTAL METHODOLOGY

In this paper, we evaluate the proposed ideas for the 22 nm
technology node with a nominal VDD = 1.0V .

A. Process Variation Parameters

The variability parameters are set as follows. We divide the
chip surface into a 100 × 100 grid and model variations in
effective gate length on this grid. The standard deviation of
process variations is set to be 10% of the nominal process
parameters (σp

µp
= 0.1). The spatial correlation parameter α

is set such that spatial correlations become negligible (< 1%)
at a distance of half die length [16]. The technology specific
parameters that model the relationship between the process
parameter and delay/leakage (K ′ and K ′′) are set based on



Core Parameters Value
Nominal Frequency 3.0 GHz

Area 10.3 mm2

Peak Dynamic Power 4.08W
Peak Leakage Power 2.1W

L2 Cache Parameters (per core) Value
Size 2 MB
Area 11.2 mm2

Peak Dynamic Power 0.76W
Peak Leakage Power 1.56W

TABLE I
MICRO-ARCHITECTURAL DETAILS

curve fitting SPICE simulations of ring oscillators in a 22 nm
predictive technology model (PTM).

B. Application Evaluated and Performance Modeling

We experiment with five multi-threaded applications from
the SPLASH-2 [15] and PARSEC [1] benchmarks suites:
blackscholes, fft, fluid-animate, radix, and swaptions. The applica-
tion parameters Wseq and Wpar are extracted by demarcating
the beginning and end of the sequential and parallel sections
and measuring their respective execution times on the Sniper
full-system multi-core simulator.

C. Micro-architectural Parameters

We model homogeneous CMPs of varying size with
Ncore = {16, 24, 32} and in all cases, we set the dark silicon
peak power constraint to be 110W .

Table I shows the architectural configurations of a single
tile (core+L2) in the homogeneous CMP architectures that we
model. Experiments are run on the Sniper multi-core simulator
[3] which accurately models the core, network and memory
sub-system components of a CMP using a trace-driven timing
model. The simulator is extended to allow for online binding of
threads to cores, in order to validate the proposed scheduling
algorithms. Finally, McPAT [11] is used to estimate the area
and power consumption of the on-chip components.

Note that the 16-core CMP has a nominal peak power
dissipation of 108W in the absence of process variations,
which is just within the power budget of 110W . Thus, the
16-core CMP serves as the baseline design in our experiments
since it does not have any dark silicon. On the other hand, the
24-core and 32-core CMPs have 33% and 50% dark silicon,
respectively.

VIII. EXPERIMENTAL RESULTS

A. Performance Model Validation

We begin by validating the proposed performance model
against full-system Sniper simulations which , does not take
into account leakage. To do so, we ran 30 simulations with
randomly selected frequency values and thread to core map-
pings for the 16-core, 24-core and 32-core CMPs. The number
of parallel threads in the application was set to M = 16.
Figure 3 shows the scatter plot of predicted versus measured
performance for each CMP architecture. The average error over

Fig. 3. Accuracy of proposed performance model. Ideally, all points should
lie along the dotted line.

Fig. 4. Average execution time for the 16-core baseline, 24-core and 32-core
chips over all runs of Monte Carlo simulations.

all Monte Carlo runs and across all five applications is only
4.3% while the root mean square (RMS) error is 7.2%.

B. Performance Improvements

We performed experiments using the proposed core selec-
tion, thread scheduling and frequency scaling algorithms for a
power budget of 110W for three different CMP architectures:
Ncore = 16 (baseline design, no dark silicon), Ncore = 24
(33% dark silicon) and Ncore = 32 ( 50% dark silicon). The
process variation parameters used are the ones described in the
previous section. Note that since in all cases the power budget
remains the same, all benefits in performance come from
the ability of dark silicon chips to exploit process variations.
For each experiment, we performed 5 runs of Monte Carlo
simulation.

As shown in Figure 4, the average performance improve-
ment of the 32-core CMP (50% dark silicon) is 21% and that
of the 24-core CMP (33% dark silicon) is 16%. The maximum
performance improvement with respect to the 16-core baseline
chip is 30% for the 32-core chip (on the radix benchmark) and
22% for the 24-core chip (on the swaptions benchmark). Note
that in all these cases, the performance improvement is a result
of the greater ability to exploit process variations in the 24-
and 32-core chips and not a result of increasing parallelism.



Fig. 5. Power and frequency scatter plots for a 16 core and a 32 core CMP.
Also shown are the cores on which the sequential and parallel threads are
scheduled and the dark cores for the 32 core CMP case. Note: best viewed in
color.

The results also that, as expected, indicate that cherry-picking
provides more benefits for applications with higher percentage
parallelism.

As expected, the execution latency decreases in all cases
with increasing power budgets, since higher leakage cores can
be selected for execution. It is observed that cherry-picking
consistently provides performance benefits over the 16-core
baseline over a range of power budget values.

To understand the reason for the performance benefits that
arise from cherry-picking cores in dark silicon homogeneous
CMPs, we show in Figure 5 a scatter plot of frequency and
power values for a 16 core and a 32 core homogeneous CMP.
Also shown in the figure are the cores that are picked for
sequential and parallel execution and the cores left dark (only
for the 32 core CMP) when scheduling blackscholes on these
platforms. It can be seen that because there are more cores
to pick from and more core-to-core variability in the 32 core
CMP case (i) the sequential core picked on the 32 core CMP
is 6.4% faster than the sequential core picked on the 16 core
CMP; and (ii) the slowest parallel core on the 32 core CMP is
33% faster than the slowest parallel core on the 16 core CMP.

IX. CONCLUSION AND FUTURE WORK

In this paper we challenge the conventional wisdom that
dark silicon chips must be heterogeneous in nature, and build
a case for homogeneous CMPs in the dark silicon era. In
particular, we observe that process variations introduce core-
to-core variations in the power and frequency of cores in
homogeneous CMPs and these variations can be exploited
to (i) cherry-pick the best subset of cores, and (ii) to opti-
mally map threads to the selected cores, so as to maximize
performance under a power budget. To evaluate the benefits
of cherry-picking in homogeneous dark silicon CMPs, we
have proposed an accurate analytical performance model for
barrier synchronization based multi-threaded applications, and

a polynomial time algorithm for the joint core selection, thread
mapping and frequency assignment problem. Our experimental
results show that up to 30% improvement in performance can
be obtained for a homogeneous CMP with 50% dark silicon.
Our future work will focus on optimal mapping for multiple
multi-threaded applications.
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