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Abstract—This paper targets at an embedded system with phase change
memory (PCM) and NAND flash memory. Although PCM is a promising
main memory alternative and is recently introduced to embedded system
designs, its endurance keeps drifting down and greatly limits the lifetime
of the whole system. Therefore, this paper presents a block-level flash
memory management scheme, WAB-FTL, to effectively manage NAND
flash memory while reducing write activities of the PCM-based embedded
systems. The basic idea is to preserve each bit in flash mapping table
hosted by PCM from being inverted frequently during the process of
mapping table update. To achieve this, a new merge strategy is adopted in
WAB-FTL to delay the mapping table update, and a tiny mapping buffer
is used for caching frequently updated mapping records. Experimental
results based on Android traces show that WAB-FTL can effectively
reduce write activities when compared with the baseline scheme.

Index Terms—Phase change memory, NAND flash memory, flash
translation layer, endurance, write activity.

I. INTRODUCTION

Due to its high density, in-place update, and low standby power,
phase change memory (PCM) is considered as a DRAM alternative
and has been used as a main memory with a small-sized DRAM
cache in embedded systems [1–3]. However, compared to DRAM,
PCM can only sustain limited write operations (106 to 108 bit flips
per cell) [4], so it is necessary to reduce write activities in PCM
to enhance its lifetime. On the other hand, NAND flash memory is
widely used as a secondary storage and has been integrated into PCM-
based embedded systems [5, 6]. How to avoid a fast worn-out of such
emerging embedded systems and effectively manage NAND flash
memory should be taken into account. Extensive work recently has
been done to reduce write activities for enhancing the lifetime of PCM
[2, 3, 6–10]. However, none of them considers write activities caused
by the management procedure of NAND flash memory. Therefore,
this paper focuses on exploring a write-activity-aware NAND flash
memory management scheme in PCM-based embedded systems to
enhance the lifetime of the entire system.

To manage NAND flash memory, flash translation layer (FTL) is
designed to emulate it as a disk drive, by mapping logical addresses
to physical addresses at a granularity of page-level or block-level
[11–15]. Following I/O requests, an FTL mapping table is employed
to keep track of the continually updated mapping records. To provide
fast lookup, FTL mapping table is usually loaded into main memory
after system is booted, and put back to NAND flash memory
once the system is shut down. In DRAM-based main memory, the
most-updated FTL mapping table can be lost due to power failure.
However, as PCM is non-volatile, FTL mapping table can be kept into
PCM-based main memory permanently without considering power
failure. Therefore, Kim et al. [5] propose a page-level FTL, hFTL,
whose page-level FTL mapping table is kept in PCM and user data is
stored in NAND flash memory. Nevertheless, hFTL does not consider
write activities imposed in PCM because of the frequently updated
FTL mapping table, which may lead to a shortened PCM lifetime.

Though a page-level-based FTL technique is proposed for im-
proving the lifetime of PCM-based embedded systems [16], page-
level FTL requires significant memory requirement, so it may not
be applicable for current PCM chips whose capacity is reported
as 128Mb [17], e.g., the page-level mapping table of a 1GB flash
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memory occupies approximately 12.5% space of the 128Mb Micron
P5Q PCM. Thus block-level FTL with much less memory require-
ment is more applicable for PCM-based embedded systems[13, 14].
Several block-level FTL schemes have been proposed, but none of
them considers write activities imposed to PCM. Since the lifetime
of PCM is mainly determined by the maximum number of bit flips
in each PCM cell, no matter how smaller the block-level mapping
table is, it is important to reduce the maximum number of bit flips in
each PCM cell to enhance the reliability of the entire system. These
observations motivate us to propose a block-level FTL scheme to
reduce write activities in PCM, such that the lifetime of the entire
PCM-based embedded systems is enhanced.

In this paper, we propose a Write-Activity-aware Block-level FTL
scheme, called WAB-FTL, to reduce write activities in PCM during
the management procedure of NAND flash memory and, at the same
time, to enhance the lifetime of the PCM-based embedded systems.
Our basic idea is to preserve each bit in FTL mapping table, i.e., each
bit in PCM cell, from being inverted frequently, during the update
process of FTL mapping table, such that the maximum number of
bit flips in each PCM cell is reduced and the lifetime of PCM is
enhanced. To achieve this, a new merge strategy, called Lazy-Merge,
is adopted in the proposed WAB-FTL to delay the mapping table
update, and a tiny mapping buffer, called Cooling-Pool, is used for
caching frequently updated mapping records. Then by utilizing a fine-
grained hardware feature [7], in which a write can be eliminated if
its designated PCM cell holds the same value. In WAB-FTL, we can
actively choose a destination mapping slot, wherein the old mapping
record has the minimum Hamming distance to the new mapping
record, and then only update (flip) the bits distinct from that in the
new mapping record. To the best of our knowledge, WAB-FTL is
the first block-level flash memory management scheme proposed for
reducing write activities in PCM-based embedded systems.

We conduct a series of experiments on a set of realistic I/O traces
collected from Google AndroidTM2.3. Compared with a well-known
block-level FTL scheme, experimental results show that our technique
achieves an average reduction of 80.76% and a maximum reduction
of 82.61% in the maximum number of bit flips.

This paper makes the following contributions:
• We present for the first time a block-level flash memory manage-

ment scheme to reduce write activities in PCM-based embedded
systems for enhancing the PCM lifetime.

• We demonstrate the effectiveness of our technique by comparing
with representative block-level FTL schemes using a set of
realistic I/O workloads collected from Google AndroidTM2.3.

The rest of this paper is organized as follows. Section II introduces
the background and motivation. Section III presents our proposed
WAB-FTL technique. Section IV reports the experimental results.
Finally, in Section V, we conclude the paper.

II. BACKGROUND AND MOTIVATION

A. PCM-Based Embedded Systems

Fig. 1 shows a typical PCM-based embedded system, which
consists of a hybrid PCM-based main memory and a NAND flash
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Fig. 1: PCM-based embedded system with NAND flash memory.

memory. To obtain a best capacity and latency, the hybrid main
memory adopts a large-sized PCM and a small-sized DRAM. PCM
acts as a main memory for maintaining frequently accessed OS
pages and the FTL mapping table, while the DRAM acts as a
cache and bridges the gap between PCM and the processor. In the
system, NAND flash memory is employed as a secondary storage
for storing user data that accessed by file systems. Following I/O
requests, the mapping from logical address to physical address will
be updated continually in FTL mapping table. So the FTL mapping
table is the most heavily updated component in PCM and may shorten
PCM lifetime if some unnecessary write activities are performed.
Therefore, to avoid the lifetime degradation of PCM, it is necessary
to make block-level FTL scheme write activity aware in PCM-based
embedded systems.

B. The Baseline Scheme

In this section, we briefly revisit a well-known block-level FTL
scheme, BL-FTL, which is widely used in embedded systems [14].
In BL-FTL, a logical page number (LPN) is divided by the number of
pages in a block to obtain its logical block number (LBN) and block
offset, where the LBN is the quotient, and the block offset is the
remainder of the division. A block-level mapping table redirects the
write operations on logical block (LBN) to a physical primary block
(PPBN). For each primary block, only one physical replacement block
(PRBN) is allocated to handle subsequent update operations. A write
operation to an LPN is mapped to a page in a primary block first based
on block offset, and subsequent update operations to the same LPN
are written into the corresponding replacement block consecutively.
Therefore, the most-updated content can be found by reading the
replacement block backwards. If a replacement block is full, a merge
operation (denoted by Full-Merge hereinafter) is evoked to reclaim
the replacement block and its associated primary block, and all valid
pages in the two blocks are copied into a new primary block.

An example of BL-FTL is shown in Fig. 2. To simplify the
example, we assume each block has eight pages, and there are only
two free blocks in the free block list. The address of pages/blocks
is represented by binary number to demonstrate bit flips in mapping
table. The I/O requests of write operations (w) are listed in Fig. 2(a).
According to the I/O requests, Fig. 2(b) shows the status variation of
the blocks in NAND flash memory, and Fig. 2(c) shows the bit flips
occurred due to the update of block-level mapping table in PCM. As
shown, for the first 12 requests, a primary block (PPBN #010) and its
replacement block (PRBN #001) are allocated, so the corresponding
mapping (010, 001) is recorded into the block-level mapping table.
Once the replacement block (PRBN #001) is full, both of these two
blocks (PPBN #010 and PRBN #001) are erased together and the
valid pages are copied into a newly allocated primary block (PPBN
#101). Meanwhile, the eased primary and replacement blocks are put
into free block list for further use. For the remaining requests (13-
20), they are served in a similar way. Finally, as shown in Fig. 2(c),
the total number of bit flips caused by the update of mapping table
is 12, and the maximum number of bit flips in each PCM cell is 2.

C. Motivation

In the motivational example, it is noticed that each bit used to
represent the mapping record is inverted in a round trip (0→1→0)
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Fig. 2: Motivational example. (a) I/O access requests. (b) The status
variation of blocks in NAND flash memory. (c) The bit flips caused
by the update of block-level mapping table in PCM.

due to the update of mapping table. If this bit-flip pattern continually
happens in realistic applications, then the lifetime of PCM will de-
crease faster. In addition, as the lifetime of PCM is mainly determined
by the maximum number of bit flips in each cell, it is important to
avoid unnecessary bit flips during the update of FTL mapping table.
Once the maximum number of bit flips in each PCM cell is reduced,
then the lifetime of PCM is enhanced. These observations motivate
us to propose a write-activity-aware block-level FTL to reduce the
maximum number of bit flips in PCM, such that the lifetime of the
entire PCM-based embedded systems is improved.

III. WAB-FTL: WRITE-ACTIVITY-AWARE BLOCK-LEVEL FTL

A. Overview

The basic idea of WAB-FTL is to preserve each bit in FTL mapping
table hosted by PCM from being inverted frequently. Thus, to make
WAB-FTL write activity aware, we develop the following techniques:

• A new merge strategy, named Lazy-Merge, is proposed to delay
the update of mapping records in FTL mapping table. With
Lazy-Merge, a replacement block will be erased if it is full,
but its associated primary block with corresponding mapping
record is preserved until no free blocks is left.

• A tiny buffer, named Cooling-Pool, is proposed to reduce write
activities in block-level mapping table, by caching the frequently
updated mapping records which may impose significant number
of bit flips in PCM.

B. WAB-FTL with Lazy-Merge Strategy

In WAB-FTL, Lazy-Merge strategy is a simple yet effective tech-
nique to reduce write activities occurred during the update process
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Fig. 3: Example of WAB-FTL. (a) The status variation of blocks
in NAND flash memory. (b) The bit flips caused by the update of
block-level mapping table in PCM.

of block-level mapping table. Unlike Full-Merge, we propose Lazy-
Merge strategy, by which we only erase the replacement block and
preserve its associated primary block from being erased. It is noticed
that an update to the mapping record of the primary block is avoided,
such that some write activities to PCM are reduced. Moreover, the
block erase counts can also be reduced if the primary block is
preserved in a merge operation.

In our Lazy-Merge strategy, when a replacement block is erased,
all valid pages in the old replacement block will be copied into a new
allocated replacement block, and the corresponding mapping record
of the old replacement block will be updated by the new one. For
the associated primary block, its corresponding mapping record in
mapping table remains unchanged until the primary block is erased
in a garbage collection for reclaiming more free blocks. Therefore,
with Lazy-Merge strategy, lots of updates to the mapping records of
the primary blocks are eliminated, and thus bit flips in each PCM
cell are effectively reduced.

An example is illustrated to show Lazy-Merge in Fig. 3. Based
on the same I/O requests and assumptions in Fig. 2, for the first 12
requests, the status variation of blocks and mapping table in Fig. 3
is exactly the same as that in motivational example. However, by
adopting our Lazy-Merge strategy, we only erase replacement block
(PRBN #001) and preserve the primary block (PPBN #010), and
at the same time, copy the valid pages from the old replacement
block (PRBN #001) to a new allocated replacement block (PRBN
#101) in a consecutive order. Correspondingly, the PRBN in mapping
table is updated with only one bit flip occurred. Then the new
replacement block (PRBN #101) can be used to serve the rest requests
(13-17). With our Lazy-Merge strategy, the remaining requests are
served in a similar way. Finally, as shown in Fig. 3(b), the total
number of bit flips caused by the update of mapping table is only
3, and the maximum number of bit flips is 1. This example shows
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Fig. 4: WAB-FTL Management.

that our technique achieves a reduction of 75.00% (50.00%) in the
total (maximum) number of bit flips compared to the motivational
example. The example may not reflect realistic applications, however,
the experimental results with realistic I/O traces in Section IV show
that our approach can significantly reduce write activities in PCM.

C. WAB-FTL with Cooling-Pool

In WAB-FTL, by adopting Lazy-Merge, the mapping records of
replacement blocks are updated more frequently than that of primary
blocks. This motivates the design of Cooling-Pool for caching the
frequently updated mapping records, to prohibit the PCM area with
frequently updated mapping records from being wear out earlier.
Fig. 4 shows the structure of WAB-FTL. As shown, in addition
to the block-level mapping table (main mapping table), WAB-FTL
employs a Cooling-Pool, in which multiple candidate mapping slots
for primary blocks (Pri. Slots) and replacement blocks (Rep. Slot)
are allocated, for caching the mapping records of frequently updated
requests. In WAB-FTL, all new mapping records are first written into
the main mapping table, and the following updated mapping records
are written into the Cooling-Pool.

Algorithm III.1 shows the detailed process of WAB-FTL manage-
ment. When the I/O requests arrive, WAB-FTL first checks if the
corresponding LBN is mapped to a PPBN in the main mapping
table. If no mapping record is found, it means that this is a new write.
WAB-FTL will allocate a new primary block and set the (LBN ,

Algorithm III.1 The algorithm of WAB-FTL
Input: I/O requests.
Output: Map LBN to PBN .

1: Check current mapping state.
2: if There exists no (LBN , PPBN ) mapping in main mapping table or Cooling-

Pool then
3: This is a new write, allocate a new primary block PPBN , and write the contents

based on block offset.
4: Add (LBN , PPBN ) mapping into main mapping table.
5: end if
6: if There exists (LBN , PPBN ) mapping in main mapping table or Cooling-Pool

then
7: This is an update.
8: if There exists (LBN , PRBN ) mapping in main mapping table or Cooling-

Pool then
9: if The number of free pages in replacement block ≤ number of update pages

to be written then
10: Allocate one new replacement block.
11: if The (LBN , PRBN ) mapping resides in main mapping table then
12: Allocate one entry in Cooling-Pool.
13: else
14: Get (LBN , PRBN ) entry in Cooling-Pool.
15: end if
16: Update (LBN , PRBN ) mapping in the Cooling-Pool entry.
17: end if
18: Write the new contents to replacement block.
19: Invalidate original pages that are updated in primary block (if any) or

replacement block (if any).
20: else
21: Allocate one new replacement block and write the new contents.
22: Add (LBN , PRBN ) mapping into the replacement slot of Cooling-Pool.
23: end if
24: end if



PPBN ) mapping in main mapping table. Otherwise, it will further
check whether there is PRBN mapped for the incoming LBN . If
so, and the replacement block is not full, updates will be written to the
replacement block consecutively. If the replacement block is full, a
new replacement block will be allocated, and a new (LBN , PRBN )
mapping record will be added into the Cooling-Pool. Therefore, in
Cooling-Pool, a mapping slot who incurs the minimum number of
bit flips will be selected for accommodating the new PRBN value.
In case that no replacement block is allocated for the LBN , WAB-
FTL will allocate a new replacement block, and the PRBN will
be written to the replacement block slot in main mapping table.
When the Cooling-Pool is full, an entry that is not frequently updated
will be selected as a victim for replacement, and the corresponding
mapping records will be moved to the main mapping table. Note that
the Cooling-Pool is extremely small, and its size is merely 1% of the
main mapping table size. Therefore, the capacity overhead introduced
by Cooling-Pool is acceptable when compared to its contribution of
the write activities reduction in PCM.

IV. EVALUATION

To evaluate the effectiveness of WAB-FTL, we conduct a series of
experiments and present the experimental results with analysis in this
section. We compare and evaluate our proposed WAB-FTL scheme
over a well-known block-level FTL scheme (BL-FTL), in terms of
the maximum and total number of bit flips in PCM cells.

In this paper, we assume that the FTL mapping tables are stored
in a single-level cell (SLC) PCM, and the user data is stored in a
multi-level cell (MLC) NAND flash memory, which is widely used
in embedded systems.

A. Experimental Setup

The evaluation is conducted by a trace-driven simulation. We have
developed a simulator to evaluate BL-FTL and our WAB-FTL. Traces
along with various NAND flash parameters, such as block size and
page size, are fed into our simulator. The page size, number of pages
in a block, and size of the OOB area for each page are set as 2 KB,
64, and 64 Bytes, respectively. Table I summarizes the configurations
of Android Emulator and our simulation environment. The simulated
system also features 128Mb PCM for storing mapping tables.

Four traces of I/O requests were collected from Google
AndroidTM2.3 with Android Emulator (included in Android SDK),
as shown in Table II.

TABLE I: Experimental Setup
CPU ARM926EJ-S

Android Emulator OS Kernel Linux 2.6.29
Configuration I/O Scheduler NOOP

Android Version 2.3

Simulation
Environment

OS Kernel Linux 3.0
Flash Size 1GB
PCM Size 128Mb

TABLE II: Trace Applications
Trace Name Applications

NetApps Web Browser, EMail, Search, Settings
MultiApps Music, Camera, Gallery, Settings
CommApps Phone, Contacts, Messaging, Voice Dialer
MixedApps Browser, EMail, Music, Contacts, Settings

B. Results and Discussion

Experimental results in Table III show that WAB-FTL can signif-
icantly reduce write activities in PCM in comparison with BL-FTL.
Compared with BL-FTL, WAB-FTL can achieve an average reduction
of 80.76% and a maximum reduction of 82.61% in the maximum
number of bit flips. As shown, WAB-FTL reduces almost half of
write activities in PCM. For the total number of bit flips, WAB-
FTL reduces 52.09% bit flips on average, with a maximum reduction

of 57.77%. Therefore, WAB-FTL is more applicable in PCM-based
embedded systems. By adopting WAB-FTL, the lifetime of PCM can
be prolonged.

TABLE III: The Comparison of PCM Bit Flips

Total Number of Bit Flips Maximum Number of Bit Flips
WAB-FTL WAB-FTL

Trace BL-FTL WAB-FTL over BL-FTL WAB-FTL over
BL-FTL BL-FTL

NetApps 98582253 44842764 54.51% 170523 32948 80.68%
MultiApps 86669414 50804270 41.38% 118046 25110 78.73%
CommApps 101417631 45938112 54.70% 171381 32527 81.02%
MixedApps 66624451 28135697 57.77% 129795 22571 82.61%

Avg 52.09% 80.76%

V. CONCLUSION

In this paper, we have proposed a write-activity-aware block-level
flash memory management scheme, WAB-FTL, which can effectively
reduce write activities in PCM-based embedded systems. In WAB-
FTL, the performance improvement is achieved by preserving a bit
in a PCM cell from being inverted frequently. Through the proposed
Lazy-Merge strategy and Cooling-Pool in PCM, unnecessary write
activities to PCM-based embedded systems are directly reduced.
We conducted experiments on a set of realistic I/O traces collected
from Google AndroidTM2.3. Experimental results demonstrate the
advantage of WAB-FTL in write activity reduction when compared
with the baseline scheme.
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