
An Adaptive Approach for Online Fault
Management in Many-Core Architectures

Cristiana Bolchini, Antonio Miele, Donatella Sciuto
Dip. Elettronica e Informazione - Politecnico di Milano

P.zza L. da Vinci, 32 - I20133 Milano - Italy
{bolchini|miele|sciuto}@elet.polimi.it

Abstract—This paper presents a dynamic scheduling solution
to achieve fault tolerance in many-core architectures. Triple Mod-
ular Redundancy is applied on the multi-threaded application to
dynamically mitigate the effects of both permanent and transient
faults, and to identify and isolate damaged units. The approach
targets the best performance, while balancing the use of the
healthy resources to limit wear-out and aging effects, which
cause permanent damages. Experimental results on synthetic case
studies are reported, to validate the ability to tolerate faults while
optimizing performance and resource usage.

I. INTRODUCTION

We are witnessing trends in technology, fabrication pro-
cesses and computing architectures that lead to the design and
development of multi-core and many-core systems constituted
by a relevant number of relatively low-cost execution resources
(e.g., processors and configurable accelerator units) to achieve
high-performance while leveraging on energy consumption.
These trends must cope with increasingly unreliable devices,
affected by the shrinking of components’ size, variations in the
manufacturing process and increased transient errors caused by
radiations and noise fluctuations. We aim at defining an ap-
proach for the implementation of a many-core architecture able
to cope with both permanent and transient faults to guarantee
a correct execution of the running applications while optimiz-
ing performance. We propose an adaptive fault management
mechanism acting at the scheduling level, whose main task
is to monitor the architecture’s processing units (PUs) and
to exploit only the healthy ones. In this paper, we envision
a working scenario based on a many-core architecture, such
as the Platform 2012 many-core accelerator (P2012, from a
cooperation between STMicroelectronics and CEA, [1]), for
the execution of multi-threaded applications. The architecture
consists of a configurable fabric constituted by several clusters,
each one aggregating a multi-core processing engine. The class
of applications that best exploits this architecture includes
multimedia (video/audio) applications, typically executing few
tasks on a large amount of data. Our proposal introduces
reliability properties by acting at two different levels; at
the fabric level, where the application is dispatched to the
available clusters, as well as locally, in the cluster, where the

This work is partially supported by EU-ARTEMIS SMECY project, grant
no. 100230.

978-3-9810801-8-6/DATE12/ c©2012 EDAA

processors and hardware accelerators are exploited to execute
the application threads.

The proposed solution introduces a reliability-aware re-
source management layer, whose main goal is apply software-
based techniques for detecting and tolerating faults occurring
in the processing elements, and to dispatch application threads
to the healthy resources only. The layer maintains information
on the status of health of the architecture resources, while
adopting a strategy to balance the load to limit negative bias
temperature instability (NBTI), which leads to degradation
effects [2].

The rest of the paper is organized as follows. Section II
presents the background. Then, Section III discusses the
proposed approach in all aspects, while Section IV reports
the results of its application to a set of case studies, to
evaluate the discussed approach. Section V discusses the
related work comparing our proposal against past approaches.
Final considerations and future work are discussed in the
closing section.

II. BACKGROUND

In this work we refer to the P2012 architecture, in de-
velopment, however the proposed approach is general in its
assumptions and can be adopted also for other architectural
solutions.

Architecture model. P2012 [1] is a many-core computing
fabric, highly modular and configurable; as shown in Fig 1a,
it is hierarchically organized in multiple clusters of computa-
tional units, connected by means of an asynchronous Network-
on-Chip (NoC). A fabric controller (FC) serves as the control
interface between the platform and the connected computing
system, and as a dispatcher of the applications. The controller
can be programmed to assign with a specified off-line or on-
line policy each application to a single cluster.

Each cluster is a multiprocessor system featuring up to 16
tightly-coupled processing units (PUs) sharing multi-banked
instruction and data memories through a local NoC. The
cluster also contains i) a hardware synchronizer, for the
management of parallel applications (thread creation, their
scheduling on the processing units and synchronization with
barriers), and ii) a cluster controller (CC), devoted to the
communications with rest of the platform and the booting of
the application.

NOC
SW

NOC
SW

cluster 1

cluster 2 cluster n

NOC
SW

NOC
SW

DMA
controller

fabric controller
dispatcher

CC

hardware
synchr.

PU PU PU

MEMORY

PU PU PU

CC

hardware
synchr.

PU PU PU

MEMORY

PU PU PU CC

hardware
synchr.

PU PU PU

MEMORY

PU PU PU

fork

fork

join

S0 S1 S2

join

fork

join

S3 S3'

a

a

for

(a) (b)

Figure 1. Reference a) architecture and b) programming models.

DTDQ PU PU

PU PU

idle

idleidle

runs
T1

HW
SYNC

fork
requests
2 tasks

DTDQ PU PU

PU PU

idle

idle

runs
T2

HW
SYNCruns

T3

T2 T3

idleidle

DTDQ PU PU

PU PU

idle

HW
SYNC

T2 T3

wake

wake

wake
wake

DTDQ
PU PU

PU PU

idle

idleidle

runs
T1 HW

SYNC

1 2

43

T1

T1

Figure 2. Application execution.

Application model. The programming model usually
adopted for implementing parallel multi-threaded applications
for many-core architectures is the fork-join model (for
instance implemented by Open-MP paradigm [3]). The ap-
plication starts with a main thread, and generates a set of
new children threads for the execution of parallel independent
elaborations; moreover, in turn, each one of the children
threads may request a fork. Thus, each thread that performs
a fork waits for all children threads to join before continuing
the execution. Fig. 1b shows a graphical representation of the
fork-join model. In particular, two separate nodes, that we also
call tasks, are shown for a single thread to depict the fork
and join instructions, however these pairing nodes (labeled
a in Fig. 1b) constitute a single thread.

Application execution. The application is executed by a
single cluster as follows (see [4] for details). The CC assigns
the execution of the main thread to one of the PUs, while
the others are in idle mode. When a fork instruction is
met, the PU requests the creation of the children threads to
the hardware synchronizer. This module adds a new entry
containing the list of descriptors of the created threads into
a specific table, called Dynamic Task Dispatching Queue
(DTDQ), and sends an event to wake all the idle PUs. Each
one of them iterates through the DTDQ table to execute all the
ready threads, returning to an idle state when no ready threads
exist. When the entire list of forked threads is executed, the
entry is removed from the DTDQ and the parent thread is
resumed on the same PU where it had been blocked (see an
example in Fig. 2). At the end, the CC transmits to the FC
the application outputs.

Fault model. The single failure model is adopted; one PU
exhibits (transiently or permanently) an incorrect behavior
by either producing erroneous results in the computation or
by stopping responding (silent failure). Subsequent transient
faults in different units are managed, provided the time be-

tween two consecutive events allows for the detection of such
an erroneous condition. It is possible to remove the limitation
of the single failure by leveraging on redundancy to tolerate
also multiple concurrent errors.

III. DYNAMIC FAULT MANAGEMENT

The proposed dynamic fault tolerant approach introduces
a two-levels system to enforce fault management policies:
two additional fault management layers are introduced in the
architecture, one in the FC (centralized, at top level), the other
in CC (distributed, at a lower level). Each one of these layers
can be exploited or not, depending on the expressed reliability
requirements; in particular, for each application a reliable or
performance-oriented execution mode can be specified; thus,
while in the former case fault-tolerant strategies are employed,
in the latter case, computation is carried out in a nominal
way, with no performance penalty. In this first proposal, we
focused on the cluster layer; by acting at this level, the method
achieves a prompt identification of failures in the PUs, to limit
the risk of fault accumulation and masking. Future work will
be devoted to a refinement of its policies, as the architecture
becomes more mature.

A. Cluster controller’s fault management layer

The CC is in charge of guaranteeing the correctness of the
computations of the executed applications, and of identifying
the occurrence of permanent failures. For this purpose, an
additional layer has been added, cooperating with an enhanced
version of the existing modules.

A few assumptions have been adopted. We assume the CC
and the hardware synchronizer to be designed as hardened
at the architectural level. This is necessary to avoid that a
fault affecting their activity would not be detected and would
cause the failure of the overall cluster execution without any
alert (single point of failure). The cluster is provided with a
memory protection mechanism allowing each thread to write
only its private variables, input data and output data. This
protection system prevents a thread affected by a fault from
randomly corrupting the memory of the other threads running
on the other cluster’s processing units, leading to the failure
of several threads (as in [5]). Finally, we will exploit the
existing watchdog timers for detecting violations of execution
deadlines caused by faults. Therefore, we can assume that any
physical fault causes the failure of the single PU running a
thread which will produce a wrong result within the expected
deadline. The various aspects of the fault management layer
are discussed in the following sections.

1) Fault mitigation strategy: The fault mitigation strategy
we propose is based on redundant executions of the applica-
tion. In particular, to tolerating the single functional failure
of a PU, we triplicate the application (i.e., Triple Modular
Redundancy – TMR). More precisely, we propose a loosely-
coupled application-level TMR schema: when receiving a new
application, the CC generates three replicas of the main thread;
creating three identical, independent, execution flows of the
same application, on the same cluster. We added in the fault

management layer a replica table, for tracing the triplets of the
generated replicas. The table is updated on thread creation and
corresponding replicas are identified by means of thread IDs.
Once a replica triplet is executed a voter thread is issued for
output comparison. Do note that TMR is applied only when
required by the user; otherwise the application is executed as
discussed in Sec. II.

2) Adaptive scheduling: The scheduling and the execution
of the ready threads (Sec. II) has been extended to manage the
reliability requirements. First, replicas belonging to the same
triplet have to be scheduled on different PUs. Therefore, the
replica table is also used for storing information on the unit
each thread is allocated on, thus, the hardware synchronizer
will avoid that the same processing unit attempts to execute
more than one of the same replicas in the DTDQ. Should a
memory violation be signaled or a watchdog timeout expire
during the execution of a thread, the replica table is updated
with the information about the failure. Furthermore, when a
thread completes the execution, it is tagged as executed in the
replica table, but it remains blocked on a barrier preventing
the joining of the parent thread until the voting is performed.
When all the three replicas finish, the CC executes the voting
task, and, finally, joins the parent threads. The voting task is
executed by the CC since it is the only fault tolerant unit in
the cluster, guaranteeing the correctness of the voting.

Indeed, the loosely-coupled approach is able to better adapt
to the cluster architecture than a fully connected one. In fact,
the latter would require the partitioning of all available re-
sources into groups of three elements, to concurrently execute
replicated threads (e.g., [6]). However, seldom the number of
resources is exactly a multiple of three, and, most important,
the availability of the resources is actually expected to change
at runtime, due to failures and resource usage.

3) Faulty unit diagnosis and management: The fault man-
agement layer is also in charge of classifying faults as tran-
sient/permanent and of adopting the appropriate recovery ac-
tions. The layer uses two support tables, a resource health table
and an error log table. The local resource health table (LHT)
stores information on the status of cluster and its PUs. Each
processing unit may assume three different states: i) healthy
if the PU is operational, ii) damaged if a permanent failure
has been identified, iii) under-analysis if the PU is suspected
to be damaged, requiring specific diagnostic procedures to be
executed.

The error log table stores the history on the errors occurred
in the computation, to determine whether the fault is transient
or permanent (on the basis of its occurrence), exploited also
during the diagnosis process. The log is updated by the CC
if a mismatch is detected during the execution of the voter
thread. The table is analyzed to determine whether the failure
may be due to a permanent or a transient fault, based on
errors frequency (by using classification strategies similar
to [7]). Suspected PUs are put in quarantine by setting its
status to under-analysis in LHT. In this way, the PU becomes
unavailable for the scheduler, and a diagnosis thread is started
on that resource. If the result of the diagnosis task is a

permanent failure, the PU is tagged has damaged and will not
be used; otherwise, the resource status is restored to healthy
and the unit will be again available to the scheduler.

The fault management layer is provided also with additional
scheduling policies to prevent and limit wear-out and aging
effects (e.g. NBTI). In particular, the LHT contains for each
PU its utilization level. Thus, to balance the average workload
of each unit, when there are new ready threads in the DTDQ,
the hardware synchronizer will awake the PUs according to
this new index.

B. Fabric controller’s fault management layer

The FC has also been enhanced to perform a reliability-
aware dispatching of the applications to be executed. We here
present a brief description of the features of the new layer. The
FC has a global resource health table (GHT) that summarizes
the status of the overall architecture. The table contains a line
for each cluster specifying the i) the busy/idle status, ii) the
percentage of damaged resources, and iii) an utilization index
(similar to the one used in the cluster). On top of this, we
define a basic dispatching strategy aimed at limiting wear-out
and aging effects, by allocating the application to be executed
to the first idle cluster, with the minimum utilization index.
Moreover, since the performance achievable by a cluster are
affected by the ratio of its healthy resources, the FC keeps
track of the health status of each cluster (in the GHT) and
when the number of healthy resources drops below a fixed
threshold, it disables the entire cluster.

IV. EXPERIMENTAL RESULTS

We evaluate the performance penalty introduced by the fault
tolerance layer by comparing it against the classical tightly-
coupled TMR solution (with PUs partitioned into triplets). Our
experiments are performed using a SystemC ([8]) transaction-
level simulator of the P2012 architecture with a 16-cores
cluster. We considered a large set of synthetic application
fork-join graphs, consisting of 10, 20, 30 and 40 threads,
respectively. Each node of the graph has been annotated
with a latency ranging from 500ns to 5000ns, while voter
threads require 500ns. We evaluated performances in a fault-
free situation, and after the occurrence of faults, disabling 1,
2 and 3 PUs, respectively.

The graphs in Fig. 3 report the result of the comparison;
the execution times are normalized w.r.t. the execution of the
application without fault tolerant mechanisms. Results show
that in the faulty-free scenario, both solutions present an
overhead with respect to the normal execution, ranging from
50% to 100%, for smaller to bigger applications. As expected,
the availability of numerous PUs limits the inherent penalty
introduced by the TMR method. Note that, in the fault-free
situation, the tightly-coupled TMR technique outperforms our
proposal in about half of the experiments; the scheduler better
fits the triplicated threads on the regular groups of PUs triplets,
with respect to the situation of 16 independently available
cores. This anomaly will be taken into account in future work,
to try to exploit such element to improve performance. As

0

0.5

1

1.5

2

2.5

0 1 2 3

N
or

m
al

iz
ed

 E
xe

c
Ti

m
e

#faulty PUs

10	 threads	

Proposed Tightly-Coupled

0

0.5

1

1.5

2

2.5

3

0 1 2 3

N
or

m
al

iz
ed

 E
xe

c
Ti

m
e

#faulty PUs

20	 threads	

Proposed Tightly-Coupled

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3

N
or

m
al

iz
ed

 E
xe

c
Ti

m
e

#faulty PUs

30	 threads	

Proposed Tightly-Coupled

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3

N
or

m
al

iz
ed

 E
xe

c
Ti

m
e

#faulty PUs

40	 threads	
Proposed Tightly-Coupled

Figure 3. Fault-Tolerance related performance overheads.

expected, the traditional solution provides worse performance
when permanent faults occur, with performance penalty over-
heads ranging from 7-11% (a single faulty PU) to 40-57% (3
faulty PUs), quite uniformly w.r.t. the application sizes. Lower
values refer to the small applications with only 10 threads,
easily accommodated on the available 16 cores; for all other
application sizes, improvements are basically similar, as the
number of cores is small with respect to the existing threads
and the loss of a unit has a relevant impact on the overall
performance.

Finally, we also analyzed the efficiency of the adopted
load distribution strategy vs. the traditional “first available
resource” scheduling, using an utilization index. Results show
an average 19% decrease of the maximum resources busy-
time, a significant step towards reducing possible wear-out
situations.

V. RELATED WORK

A comprehensive survey and comparison of approaches for
on-line detection and recovery for multicore processors is
presented in [9], discussing, among the others, solutions based
on redundant execution to achieve fault detection/tolerance.
Most of these works ([10], [6]) present interesting solutions
based on code replication and eventually checkpointing, re-
quiring though architectural support to manage the replicated
threads and the comparison/voting activity, such that reliability
would always be enabled. Moreover, most of these approaches
usually considers a single threaded application [11]. In our
proposal, we offer a flexible solution, allowing multi-threaded
applications to be executed in a fault tolerant fashion, or not,
based on the user’s requirements, since the architecture is
dynamically exploited to achieve reliability, when required. A
similar feature is offered by the work proposed in [5], although
the approach is mainly based on a architectural solution
consisting of loosely-coupled processors. TriThread [12] is
another application-level approach where OpenMP programs
are hardened with redundant threads; differently from us,
hardening is performed at design time, and the replicated

code is dynamically scheduled on the different cores, with
no specific heuristic.

Another class of available proposals refers to static schedul-
ing strategies suitable when executing a set of predefined ap-
plications (e.g., [13], [14]). In particular, application hardening
and scheduling are determined at design time, by taking into
account the different possible situations that may arise at run
time. The approach is affected by the complexity of analyzing
all possible faulty scenarios and by only virtually acting in an
adaptive way; moreover, only transient faults are considered.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a new adaptive application-level
approach for achieving fault tolerance in many-core architec-
tures. The proposed solution exploits thread redundancy to
tolerate errors due to both transient and permanent faults.
Application threads are dynamically scheduled on the healthy
units of the architecture, to keep high performance, and
to minimize device degradation. Future work is devoted to
enhance the dynamic management of the resources in the
fabric controller.

REFERENCES

[1] STMicroelectronics and CEA, “Platform 2012: A many-core pro-
grammable accelerator for Ultra-Efficient Embedded Computing in
Nanometer Technology,” in Research Workshop on STMicroelectronics
Platform 2012, 2010.

[2] J. Sun, R. L. Lysecky, K. Shankar, A. K. Kodi, A. Louri, and J. M.
Wang, “Workload capacity considering NBTI degradation in multi-core
systems,” in Proc. ASP-DAC, 2010, pp. 450–455.

[3] (2011, Sept.) The OpenMP API specification for parallel programming.
[Online]. Available: http://openmp.org/wp/

[4] M. Ojail, R. David, K. B., Y. Lhuillier, and L. Benini, “Synchronous
Reactive Fine Grain Tasks Management for Homogeneous Many-Core
Architectures,” in Proc. Workshop on Parallel Progr. Run-Time Mgmt
Techniques for Many-Core Architectures, 2011, pp. 144–150.

[5] P. M. Wells, K. Chakraborty, and G. S. Sohi, “Mixed-mode multicore
reliability,” in Proc. Int. Conf. Architectural Support for Programming
Languages and Operating Systems, 2009, pp. 169–180.

[6] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar, “Utilizing
dynamically coupled cores to form a resilient chip multiprocessor,” in
Proc. Conf. Dependable Systems and Networks, 2007, pp. 317–326.

[7] C. Bolchini and C. Sandionigi, “Fault Classification for SRAM-Based
FPGAs in the Space Environment for Fault Mitigation,” Embedded
Systems Letters, vol. 2, no. 4, pp. 107–110, Dec. 2010.

[8] Open SystemC Initiative, “www.systemc.org.”
[9] D. Gizopoulos et al., “Architectures for Online Error Detection and

Recovery in Multicore Processors,” in Proc. Design, Automation Test
Europe Conf., 2011, pp. 1–6.

[10] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design and
evaluation of redundant multi-threading alternatives,” in Proc. Intl Symp.
Computer Architecture, 2002, pp. 99–110.

[11] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith, “Con-
figurable isolation: building high availability systems with commodity
multi-core processors,” in Proc. ACM Int. Symposium on Computer
Architecture, 2007, pp. 470–481.

[12] H. Fu and Y. Ding, “Using Redundant Threads for Fault Tolerance
of OpenMP Programs,” in Proc. Int. Conf. Information Science and
Applications, 2010, pp. 1–8.

[13] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Synthesis of fault-tolerant
schedules with transparency/performance trade-offs for distributed em-
bedded systems,” in Proc. ACM Conf. Design, Automation and Test in
Europe, 2006, pp. 706–711.

[14] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin,
“Reliability-aware Co-synthesis for Embedded Systems,” J. VLSI Signal
Process. Syst., vol. 49, pp. 87–99, 2007.

