
A Hybrid HW-SW Approach for Intermittent Error
Mitigation in Streaming-Based Embedded Systems

Mohamed M. Sabry†, David Atienza†, and Francky Catthoor‡

† Embedded Systems Lab (ESL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
‡ imec, Leuven, Belgium.

email: {mohamed.sabry, david.atienza}@epfl.ch, catthoor@imec.be.

Abstract—Recent advances in process technology augment the
systems-on-chip (SoCs) functionality per unit area with the sub-
stantial decrease of device features. However, features abatement
triggers new reliability issues such as the single-event multi-bit
upset (SMU) failure rates augmentation. To mitigate these failure
rates, we propose a novel error mitigation mechanism that relies
on a hybrid HW-SW technique. In our proposal, we enforce SoC
SRAMs by implementing a fault-tolerant memory buffer with
minimal capacity to ensure error-free operation. We utilize this
buffer to temporarily store a portion of the stored data, named a
data chunk, that is used to restore another data chunk in a fully
demand-driven way, in case the latter is faulty. We formulate the
buffer and data chunk size selection as an optimization problem
that targets energy overhead minimization, given that timing
and area overheads are restricted with hard constraints decided
beforehand by the system designers. We show that our proposed
mitigation scheme achieves full error mitigation in a real SoC
platform with an average of 10.1% energy overhead with respect
to a base-line system operation, while guaranteeing all the design-
time constraints.

I. INTRODUCTION AND RELATED WORK

Future processing technologies permit the increase in sys-
tems functional complexity by integrating more transistors
within the same unit area. However, with CMOS scaling,
different reliability issues, such as Negative Bias Temperature
Instability (NBTI) [1], have become major challenges in
robust systems design and operation. To overcome the recent
reliability challenges that result in different error types such
as soft errors and wear-out [2], it is crucial to design robust
systems that reduce, and eventually eliminate, the high failure
rates at a reasonable cost (area, energy, and performance).

Single-event single-bit upsets (SSUs) have been a dominant
cause of error in on-chip SRAMs (e.g. SPMs). To alleviate
SSUs, error correction codes (ECCs) have been widely used
in different memory levels [3] as ECCs provide single-bit
correction with feasible area, energy and timing overhead. For
example, previous work [4] shows that single-error-correction
double-error-detection (SECDED) ECC adds 15% area over-
head when used to protect L1 SRAMs.

As technology scaling increases, single-event multi-bit up-
set (SMU) rate increases significantly [5], debilitating the

This research is partially funded by the Nano-Tera RTD project CMOSAIC
(ref.123618), financed by the Swiss Confederation and scientifically evaluated
by SNSF, the PRO3D EU FP7-ICT-248776 project, and a long term PhD grant
from imec.

978-3-9810801-8-6/DATE12/ c©2012 EDAA

SECDED ECC mitigation capability. Although multi-bit ECC
circuits can be used to mitigate SMU resulting errors, multi-
bit ECC circuitry demands significant area, energy and timing
overheads. These overheads can be feasible in high-capacity
memories (e.g. L2) [6]. However, these overheads are unac-
ceptable, from an industrial perspective, for low capacity em-
bedded SRAMs (e.g. 64KB). For example, the area overhead
of an 8-bit ECC integrated to a 64KB SRAM is reported to
be more than 80% [7].

Other HW-based approaches may consider module redun-
dancy. For example, May et. al [8] use resource duplication
and triplication in reliability-aware design of a low density
parity-check (LDPC) code decoder. The amount of resource
redundancy is based on the protection priority of the corre-
sponding resource. The controller and functional units in the
LDPC are triplicated, while only the most significant byte of
the SRAM memory is duplicated (or triplicated), to withstand
a small mean-time-between-failures (MTBF) value. However,
this approach has a significant area overhead that is also
accompanied by a substantial increase in the leakage power.

Since HW-based error mitigation techniques are cost inef-
ficient, SW-based mitigation techniques are more promising
in this situation especially when applied in a fully demand-
driven way. However, soft mitigation techniques are dependent
on the target applications, and may imply significant timing
and energy overheads. Thus, the quality-of-service (QoS) of
the application is degraded significantly. For example, Gupta
et al. [9] propose a delayed commit and rollback mechanism
to overcome soft errors. The authors rely their solution on a
violation detector that has a time lag (D). If a data element
is correct for a time period D and no violation is detected,
it is considered correct. Otherwise, it is considered faulty
and a rollback is performed. Although this approach seems
interesting, this approach has a performance loss that reaches
18%. Another proposal uses checkpoints and rollback or
forward error drop for error mitigation [10]. This work uses
a partially protected cache (PPC) to store a portion of the
streaming data, such that it is used to recover from an error
in the unprotected cache along with checkpoints. However, in
this work the size and impact of the protected memory word
is not considered on the overall system cost.

In this paper we propose a hybrid, fully demand-driven,
HW-SW error mitigation mechanism to overcome the in-
creased SMU error rates. In our proposal, we enforce the



system-on-chip (SoC) SRAMs by implementing a fault-
tolerant memory buffer with minimal capacity to ensure error-
free operation, taking into account the processing nature of the
target applications. This small memory buffer is implemented
with a multi-bit ECC that, in this case, has a negligible area
overhead to the system due to the minimal buffer capacity.
Then, we use this fault-tolerant buffer to temporarily store
a data segment, named a data chunk, that is used to re-
store another corrupted data chunk. We formulate the buffer
size selection as an optimization problem to minimize the
energy overhead, given that the time and area overheads
are restricted with hard constraints decided beforehand by
the system designers. We examine this proposal on a low-
power embedded system running streaming applications as
case studies. Simulation results show that we can achieve full
error mitigation within the hard time and area constraints, with
maximum 22% and average 10.1% energy overheads with
respect to a base-line system operation, while guaranteeing
all the design-time constraints. On the contrary, conventional
approaches that guarantee the reliable operation with strict
hardware, or software, solutions require an energy overhead
of more than 100%.

II. PROPOSED MITIGATION SCHEME

In the proposed mitigation mechanism, three concepts are
combined. Thus, we define them to prevent any possible
ambiguity as follows:
• Checkpoint. It is a software-based trigger (CH(i)) that

indicates the termination of certain computation phase
in time and the commencement of another computation
phase.

• Data chunk. It is the data segment (DCH(i)) that is
generated in computation phase(i) and/or should be alive
between two consecutive computation phases (e.g. flow
control registers, intermediate streaming data,...).

• Rollback. It is the process of restarting the system oper-
ation from the last successfully committed checkpoint.

Our proposed methodology relies primarily on the insertion
of a number of periodic checkpoints Nch within a task execu-
tion. At each checkpoint CH(i)|i ∈ [1, Nch], a data chunk is
stored in a protected memory buffer that we integrate to the
system. We refer to this buffer with L1′. When checkpoint
CH(i) is being committed, DCH(i) is buffered to L1′ to
overwrite DCH(i − 1) while the task is being executed.
However, if DCH(i) is faulty, it is regenerated using the error-
free DCH(i− 1), starting from CH(i− 1).

For illustration purpose, Fig. 1 shows an example of divid-
ing a computational task T1 into 5 phases Pi, i ∈ [1, 5]. After
each phase Pi, L cycles are elapsed to check for error. If
the data is error free, the data chunk DP (i) is buffered while
executing Pi+1. If an error occurs as in P3, only data chunk
DP (3) is re-computed. Thus, the deadline violation previously
occurred due to the introduced intermittent error is avoided in
this case.

This checkpoints inclusion and data division into chunks
imply timing and energy overheads. First, the data chunk

T1

T1

D(T1)

Time

P1 P2 P3 P4 P5

T1

D
P
(1

)

D
P
(2

)

D
P
(3

)

D
P
(4

)

P1 P2 P3 P4 P5

D
P
(1

)

D
P
(2

)

D
P
(3

)

D
P
(4

)

P3

Error

L

Buffering to L1'

Checkpoints

Rollback

Pointing arrow

Event arrow

Data buffering 
arrow

Fig. 1. An example of dividing the data of T1 into 5 chunks, showing the
impact on intermittent error mitigation.

produced at a certain phase (CH(i)) consumes additional
energy to be stored for a possible upcoming mitigation at
the consequent phase (CH(i + 1)). Second, checkpoints at
the end of each computation phase add additional time and
energy overheads to the overall execution time and energy
consumption. Finally, if an error occurs, the system is pe-
nalized additional time and energy to re-compute a faulty
data chunk. In order to make our proposal is energy, time,
area efficient, an optimum chunk size, as well as optimum
number of checkpoints, must be selected to minimize the
aforementioned overheads.

A. Chunk size selection

To select the optimum chunk size, and optimum number
of checkpoints, for a guaranteed error-free operation, we
quantitatively identify the overhead costs. We identify this
cost into storage and computation costs, such that the storage
cost (Cstore) is the cost introduced due to storing each data
chunk in the introduced buffer at each checkpoint (CH(i)).
The computation cost (Ccomp) is the cost resulted from two
items; the triggering of a checkpoint and the re-computation
of a data chunk to mitigate the runtime error. We use the
energy consumption to quantify both storage Cstore, and the
computation Ccomp costs. We compute the storage energy cost
as follows:

Cstore = (NCH · SCH + err) · E(SCH) (1)

where NCH is the number of checkpoints, SCH is the chunk
size (in bytes), err is the expected number of chunks that will
be faulty within a running task, and E(SCH) is the consumed
energy in accessing the buffer of size SCH . We define the
computing energy cost as follows:

Ccomp = NCH · ECH + err · (EISR + E(F (SCH))) (2)

where ECH is the additional energy consumed at each check-
point, EISR is the energy consumed by the mitigation routine
triggered when an error occurs, and E(F (SCH)) is the energy
consumed to re-compute a data chunk.

In our optimum chunk size selection, the additional over-
heads in terms of storage and computation cycle must be kept



Start

Check parity bit

Get read 
address

Data error?
Assert Read 

Error Interrupt

Read from Memory

End

No

Yes

(a) System read transaction

Start

Set memory to L1'

Restore status 
registers from L1'

End

(b) Interrupt service
routine

Fig. 2. System operation flow when a memory read is issued to apply our
mitigation proposal.

within acceptable ranges. Thus, in our problem formulation,
we present the required overheads as inequality constraints
to guarantee that the area overhead of the optimum buffer
size implementation A(SCH) is less than the affordable area
overhead in the system, while the cycle overhead required for
error mitigation D(SCH) is maintained within the allowed
cycle overhead. We formulate the chunk size SCH and number
of checkpoints NCH optimization as follows:

min
SCH ,NCH

J = Cstore + Ccomp (3)

Subject to :

A(SCH) ≤ OV1 ·M (4)
D(SCH) ≤ OV2 · SCH (5)

SCH = K ·Wsize (6)
NCH , K ∈ Z+ (7)

where SM is the total size of the system storage.

B. Hybrid demand-driven mitigation implementation

As mentioned earlier, our proposal involves a hybrid HW-
SW mitigation mechanism that adds to the system additional
HW modules and SW routines. In our proposal, we integrate
an additional intermediate memory storage layer, namely L1′,
between the L1 and the processing unit. L1′ has an a multi-
bit ECC circuitry that, due to the small L1′ capacity, has
extremely limited size. L1′ is used to buffer the chunk(s) at
checkpoint CH(i), that are essential and sufficient to mitigate
an error occurred between checkpoints CH(i) and CH(i+1).

Our mitigation mechanism is activated at every faulty mem-
ory read, as shown in Fig. 2(a). When a read command is
issued within checkpoints CH(i) and CH(i + 1), the read
memory word is checked for error. If it is faulty, an interrupt
titled Read Error Interrupt is triggered, that rollbacks the
system to checkpoint CH(i). At each checkpoint, the status
registers as well as the data chunk (if it is error free) are stored
in L1′, such that they can be used later in case of a read failure
between the this checkpoint and the subsequent one.

The flow of Read Error Interrupt service routine is briefly
shown in Fig. 2(b). First, the system replaces the stored status

Processing unit

Streaming data buffer 
(L1X)

Error-protected buffer 
(L1')

Scratchpad memory (L1Y)

Streaming 
data interface

Error-prone 
module

Error-protected 
module

Proposed 
buffer

Fig. 3. Schematic diagram of the system used in the aforementioned case-
studies.

0
2
4
6
8

10
12
14
16
18

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

Co
rr

ec
ta

bl
e 

bi
ts

 (p
er

 w
or

d)

Chunk size (number of words)

Feasible
Non feasible

Fig. 4. Feasible chunk areas with number of correctable bits, based on the
5% area overhead.

registers due to context switching (a cause of the interrupt)
with their values stored at the last checkpoint. Then, the
routine enables accessibility to L1′ to read the protected
chunk. It is worth mentioning that in some processor designs,
a pipeline flush is required, to stop the executed instructions
when an error is detected, for a successful rollback. When the
processor restores from this routine, it executes the program
segment that starts at the last committed checkpoint.

III. EXPERIMENTAL RESULTS

In our evaluation, we use streaming applications that rep-
resent typical periodic tasks. In particular, we deploy sev-
eral selected applications from the MediaBench benchmark
suite [11].

A. Target system architecture and constraints

We run the aforementioned applications on a single-core
NXP SoC platform [12]. The targeted platform is based on
the 32-bit ARM9 processor, which operates at a maximum
frequency of 250 MHz. In our experiments, we fix the operat-
ing frequency to 200 MHz. A schematic diagram of the target
system with the proposed L1’ buffer integrated is shown in
Fig. 3. This system has a 64KB L1 SRAM, which we select
as our targeted vulnerable memory. We use CACTI 6.5 [13]
to estimate the L1 SRAM and L1′ area, energy, and access
time using 65nm process technology.

In our evaluation, we select the affordable area overhead
(OV1) as 5%, which is the maximal affordable area overhead
provided by our industrial partners [12]. This overhead re-
stricts the storage capacity of L1′, as well as the maximum
number of correctable bits per word, as shown in Fig. 4.
This figure shows the feasible L1′ size values with different
error correcting capabilities, which we use in our optimization
problem.

Based on the used case studies and the target platform
characterizations, we select the affordable cycle overhead
(OV2) as 10%. In our experimentations, we use an error rate



TABLE I
OPTIMUM CHUNK SIZE OBTAINED FOR DIFFERENT BENCHMARKS

Benchmark Optimum protected Benchmark Optimum protected
buffer size (words) buffer size (words)

ADPCM encode 11 ADPCM decode 11
G721 encode 16 G721 decode 32
JPG decode 44

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

D
ef

au
lt 

SW
-b

as
ed

 
H

W
-b

as
ed

 
Pr

op
os

ed
 (o

pt
im

al
) 

pr
op

os
ed

 (s
ub

-o
pt

im
al

) 
D

ef
au

lt 
SW

-b
as

ed
 

H
W

-b
as

ed
 

Pr
op

os
ed

 (o
pt

im
al

) 
pr

op
os

ed
 (s

ub
-o

pt
im

al
) 

D
ef

au
lt 

SW
-b

as
ed

 
H

W
-b

as
ed

 
Pr

op
os

ed
 (o

pt
im

al
) 

su
b-

op
tim

al
 

D
ef

au
lt 

SW
-b

as
ed

 
H

W
-b

as
ed

 
Pr

op
os

ed
 (o

pt
im

al
) 

pr
op

os
ed

 (s
ub

-o
pt

im
al

) 
D

ef
au

lt 
SW

-b
as

ed
 

H
W

-b
as

ed
 

Pr
op

os
ed

 (o
pt

im
al

) 
pr

op
os

ed
 (s

ub
-o

pt
im

al
) 

D
ef

au
lt 

SW
-b

as
ed

 
H

W
-b

as
ed

 
Pr

op
os

ed
 (o

pt
im

al
) 

pr
op

os
ed

 (s
ub

-o
pt

im
al

) 

ADPCM 
decode 

ADPCM 
encode 

JPG decode G721 decode G721 encode Average 

N
or

m
al

iz
ed

 E
ne

rg
y 

Co
ns

um
pt

io
n 

Fig. 5. Normalized energy consumption with respect to the default case for
different benchmarks.

of 10−6 word per cycle, which is an upper bound comparable
to the rate values mentioned in previous work [14]. Thus, this
is the worst-case situation to consider.

B. Energy consumption and performance

We compare our results with three different cases: (1)
Default case, where the system is operating with no error
mitigation; (2) HW-mitigation case where the targeted L1 is
fully protected, but at the cost of a (too) large area overhead;
and (3) SW-mitigation case where the memory has minimal
ECC capability, while the mitigation is performed by task
restarting. Moreover, we show the results of our proposed
methodology with the optimal chunk size and number of
checkpoints, and with sub-optimal values as well.

Based on the problem formulation mentioned in Subsec-
tion II-A and the conditions mentioned above, we use the
MATLAB optimization toolbox, to get the optimum chunk
size and number of checkpoints. Table I shows the obtained
optimum chunk sizes for the used benchmarks.

In our exploration, we perform our simulations using
MPARM [15], which is a cycle-accurate SystemC-based multi-
processor simulator. MPARM is capable of generating accurate
timing waveforms, and good energy consumption estima-
tions of different modules. We set the simulation parameters
in MPARM (simulated architecture, memory size, operating
frequency,...) to simulate our targeted system (c.f. Subsec-
tion III-A).

Fig. 5 shows the energy consumption of the target system
with different benchmarks and the aforementioned mitigation
techniques. This figure shows that our proposed methodol-
ogy manages to meet the area and timing constraints, while
maintaining an error-free processing with a maximum of 22%
energy overhead, with respect to the default case. On average,
we observe that the energy overhead is 10.1%. However, the

energy overhead of both HW-mitigation and SW-mitigation are,
on average, more than 70% higher than the Default case. The
maximum energy overhead of both HW-mitigation and SW-
mitigation is more than 100%. This is due to the huge energy
overhead introduced to fully protect the L1 SRAM in HW-
mitigation case, and the substantial increased accessibility to
the L1 SRAM to mitigate the errors by SW-mitigation.

We observe the execution time of different mitigation
scenarios, when running various benchmarks. Our mitigation
scheme manages to maintain the execution time overhead
constraint we provide at design-time. On the contrary, the ob-
served overheads in HW-mitigation and SW-mitigation exceeds
the timing constraints by values reaching up to 100%.

IV. CONCLUSION

We have proposed in this paper a novel error mitigation
mechanism that relies on a hybrid HW-SW mechanism. We
enforce the error-prone on-chip SRAMs with a fault-tolerant
memory buffer with minimal capacity to ensure error free
operation. We utilize this buffer to temporarily store a data
chunk, that can be used to restore another data chunk, in
case the latter is faulty. We optimize the data chunk size to
minimize the energy overhead, subject to system constraints
that are decided beforehand by the system designers. We show
that our proposal achieves full error mitigation with only
10.1% average energy overhead (and 22% overhead in the
worst case) with respect to a baseline system operation, while
guaranteeing all the design-time constraints.

REFERENCES

[1] M. Agostinelli et al. Random Charge Effects for PMOS NBTI in Ultra-
Small Gate Area Devices. In IRPS’05, 2005.

[2] S. Mitra. Globally Optimized Robust Systems to Overcome Scaled
CMOS Reliability Challenges. In DATE’08, 2008.

[3] P. Kongetira et al. Niagara: a 32-Way Multithreaded SPARC Processor.
IEEE Micro, 25, 2005.

[4] S. S. Pyo et al. 45nm Low-Power Embedded Pseudo-SRAM with ECC-
Based Auto-Adjusted Self-Refresh Scheme. In ISCAS’09, 2009.

[5] E. Ibe et al. Impact of Scaling on Neutron-Induced Soft Error in SRAMs
From a 250 nm to a 22 nm Design Rule. IEEE Transactions on Electron
Devices, 57, 2010.

[6] S. Paul et al. Reliability-Driven ECC Allocation for Multiple Bit Error
Resilience in Processor Cache. IEEE Transactions on Computers, 60,
2011.

[7] J. Kim et al. Multi-bit Error Tolerant Caches Using Two-Dimensional
Error Coding. In MICRO-40, 2008.

[8] M. May et al. A Case Study in Reliability-Aware Design: A Resilient
LDPC Code Decoder. In DATE’08, 2008.

[9] M. S. Gupta et al. DeCoR: A Delayed Commit and Rollback Mechanism
for Handling Inductive Noise in Processors. In HPCA’08, 2008.

[10] K. Lee et al. Mitigating the Impact of Hardware Defect on Multimedia
Application - A Cross-Layer Approach. In MM’08, 2008.

[11] Ch. Lee et al. MediaBench: a Tool for Evaluating and Synthesizing
Multimedia and Communications Systems. In MICRO’97, 1997.

[12] NXP ARM-Based Microntrollers.
http://www.nxp.com/documents/data sheet/LH7A400 N.pdf.

[13] CACTI: an Integrated Access Time, Cycle Time, Area, Leakage, and Dy-
namic Power Model for Cache Architectures. http://www.cs.utah.edu/ ra-
jeev/cacti6/.

[14] L. Leem et al. ERSA: Error Resilient System Architecture For Proba-
bilistic Applications. In DATE’10, 2010.

[15] L. Benini et al. MPARM: Exploring the Multi-Processor SoC Design
Space with SystemC. Journal of VLSI Signal Processing Systems, 41(2),
2005.


