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Abstract—Current technology scaling is leading to increasingly
fragile components, making hardware reliability a primary de-
sign consideration. Recently researchers have proposed low-cost
reliability solutions that detect hardware faults through software-
level symptom monitoring. SWAT (SoftWare Anomaly Treat-
ment), one such solution, demonstrated with microarchitecture-
level simulations that symptom-based solutions can provide high
fault coverage and a low Silent Data Corruption (SDC) rate.
However, more accurate evaluations are needed to validate such
solutions for hardware faults in real-world processor designs.

In this paper, we evaluate SWAT’s symptom-based detectors
on gate-level faults using an FPGA-based, full-system prototype.
With this platform, we performed a gate-level accurate fault
injection campaign of 51,630 fault injections in the OpenSPARC
T1 core logic across five SPECInt 2000 benchmarks. With an
overall SDC rate of 0.79%, our results are comparable to previous
microarchitecture-level evaluations of SWAT, demonstrating the
effectiveness of symptom-based software detectors for permanent
faults in real-world designs.

I. INTRODUCTION

Experts agree that future processor designs will suffer
from increased rates of in-field hardware failures as a result
of decreasing feature size [1]. Conventional solutions use
heavyweight redundancy with high performance, area, and
energy overheads, making them prohibitive for many processor
designs. Recent work has explored lighter-weight solutions
based on the insight that only faults that affect software
behavior are problematic; faults that are masked at different
system levels need not be detected [3, 5, 7, 10, 13]. These
approaches therefore rely on monitors of anomalous software
behaviors (e.g., fatal traps and kernel panics) as symptoms of
hardware faults. The SoftWare Anomaly Treatment (SWAT)
project [5] represents the state-of-the-art in such systems.
SWAT employs very low cost monitors for fault detection.
In the infrequent case of a detection, SWAT triggers a more
sophisticated fault diagnosis and checkpoint-based recovery
procedure. While SWAT can detect most hardware faults, some
faults may corrupt application outputs without triggering a
SWAT detector. Such events, called silent data corruptions
(SDCs), have been shown to occur for < 1% of hardware
fault injections in microarchitectural simulations [5] making
SWAT a promising reliability solution.
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However, since microarchitectural simulators simplify many
of the low-level design features of a processor, it is important
to evaluate SWAT’s detectors on a realistic system to validate
the results obtained through less detailed models. An accurate
evaluation of SWAT needs to meet three requirements: (1)
gate-level hardware modeling, since real faults manifest at
the gate level and can impact software behavior differently
from microarchitecture-level fault models, (2) the ability to
inject hardware faults across the entire processor design to
account for differences in the behavior of hardware compo-
nents (e.g., microarchitecture-level simulations typically do
not model control paths), and (3) the ability to quickly run
millions of instructions and a full-system software stack (e.g.,
OS and application) because these layers can influence fault
propagation and thus software behavior.

Meeting these criteria with software simulators is imprac-
tical due to the amount of computation required to sim-
ulate a full hardware design for millions of cycles. Gate-
level software simulations run at tens of cycles per sec-
ond [11]. To improve simulation speed, SWATSim [6], a
hybrid microarchitecture/gate-level simulator, was developed
to allow for gate-level fault injection experiments at the
speed of microarchitecture-level simulations by modeling just
the faulty component with gate-level accuracy. However, this
simulator could lose evaluation accuracy at the interfaces
between microarchitecture-level and gate-level components.
Additionally, the evaluation in SWATSim was limited to three
hardware components (address generator, arithmetic logic unit,
and decoder); extending the framework to a full processor is
difficult [6].

An approach to achieve higher accuracy, speed, and proces-
sor coverage is to use reconfigurable hardware, such as Field-
Programmable Gate Arrays (FPGAs), to emulate faults in
digital designs. Previous work [2, 9, 11] performed gate-level
fault injections on a processor design mapped on an FPGA,
but their evaluations did not study the effects of hardware
faults on software with a full OS and application running. This
work develops a comprehensive and high performance FPGA
framework to study gate-level hardware faults on a real-world
system running a complete full-system software stack. We
built our platform on the OpenSPARC project [12], augmented
with SWAT detectors and the CrashTest infrastructure [11] to
allow for fault injection experiments with detailed fault models
without hindering performance or accuracy.

CrashTest [11] automatically instruments a digital design
with the logic necessary to model hardware faults at the gate
level. It takes as input the design’s RTL and the number of
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Fig. 1: Experimental setup and design modifications.

faults to inject, and it automatically injects hardware faults
leveraging accurate fault models. It then maps the fault-
enabled design to a hardware emulation platform. It injects
multiple fault sites for each synthesized netlist, as the last step
for FPGA mapping typically requires a considerable amount
of time; however, each fault site can be individually enabled.
CrashTest can accelerate the resiliency analysis of industrial-
size designs by up to six orders of magnitude compared to
equivalent software simulations [11].

Our final platform (OpenSPARC + SWAT detectors +
CrashTest on an FPGA) meets all three of the above-mentioned
evaluation requirements for SWAT by allowing us to perform
accurate gate-level evaluation of hardware faults across the
entire processor design and run complete applications on top
of a full OS and hypervisor.

We used this platform to evaluate the effectiveness of
SWAT’s detectors with a total of 30,800 stuck-at and 20,830
path-delay fault injection experiments across five SPECInt
2000 benchmarks. Overall, these experiments validate the
results previously reported by software-based simulations of
SWAT, but also reveal some interesting differences: (1) a high
fault masking rate (62.56% of experiments); (2) silent data
corruptions (0.79% of experiments) are concentrated within
a handful of functional units in the processor data path; (3)
the range of software symptoms detected is much wider than
recognized in previous evaluations of SWAT.

II. EVALUATION PLATFORM

Our FPGA platform builds on the OpenSPARC T1
project [12] from Sun Microsystems and is mapped onto a
Xilinx Virtex-5 FPGA. The FPGA design includes a processor
core based on the UltraSPARC T1 design and a Xilinx Mi-
croBlaze core that handles processor features not implemented
in the OpenSPARC core. The platform runs the OpenSolaris
operating system, the hypervisor, and SPARC-V9 applications.
Our platform was modified to include the following features
for fault injection experiments on the system. The core was
instrumented with CrashTest to emulate faulty gates. A check-
point and restore system was added to reduce setup time
(Section II-A). Several SWAT detectors were implemented
in hardware (Section II-B). We added logic for a second
serial port and a control channel between the MicroBlaze and
OpenSPARC core to enable CrashTest fault logic. The DRAM
controller was enhanced to support higher memory capacities.

Figure 1 shows a high-level representation of our experi-
mental setup, with the major design modifications highlighted
by a darker tone. Our fault-enabled OpenSPARC core on the
FPGA has a clock rate of 10MHz, a six orders of magnitude
speedup compared to software simulations with equivalent
fault accuracy. Our software modifications to the OpenSPARC
distribution were confined to the MicroBlaze firmware. The
firmware was modified to allow for fault injection control and
to perform the checkpoint and restore operations.

A. Checkpoint and Restore System

In the original platform, OS boot time is a major bottleneck
in performing the large set of experiments required for a sta-
tistically accurate evaluation. In order to avoid this large setup
time, we implemented a checkpoint and restore mechanism for
the OpenSPARC T1. With this system, the time required for
a single board setup is shared among several fault injections,
significantly reducing total experiment runtime.

The checkpoint operation copies the processor architectural
state to shadow registers added to the OpenSPARC processor
design, and the rest of the system state is saved into a reserved
section of DRAM. The MicroBlaze firmware ensures that these
parts form a consistent checkpoint. A restore operation rolls
back to the checkpointed state.

B. Fault Detectors

We evaluated a variety of fault detectors inspired by the
SWAT system, customizing them to fit the OpenSPARC de-
sign. In a full SWAT implementation, most of these detectors
would be implemented through software or firmware traps (for
this work, there was insufficient support to recompile the OS
and hypervisor with our modifications).
Fatal Traps and Kernel Panics: Previous SWAT work [5]
reports that these detectors are commonly invoked in the
presence of faults. Fatal traps include traps due to events such
as divide-by-zero, misaligned accesses, maximum trap level
reached and kernel panics. We monitor for these two latter
events in hardware.
Hypervisor Crashes: Error outputs to the console from the
hypervisor are considered as successful fault detections. An
example is a TLB miss at the hypervisor privilege level.
In a real system, these cases would trap to the firmware
diagnosis/recovery at the point of failure detection and before
sending the error message output.
Firmware Checks: These detectors are triggered by failing
checks in the firmware running on the MicroBlaze. We report
failed checks as fault detections since these events (e.g. out-of-
bounds addresses for memory operations, invalid I/O requests)
cause the firmware to abort execution.
Hardware Stalls: We detect a fault if a hardware thread has
not issued instructions for a period longer than a predefined
threshold of 300 million cycles. This high time limit was
selected to eliminate any false positives.
Application Abnormal Exits: These symptoms are detected
by monitoring the standard output of the benchmark and
they include the following application outcomes: segmenta-
tion fault, core dump, dynamic linker errors, error messages
from the operating system, abnormal program termination and
program assertion failures. Again, in a real system, these
symptoms would invoke diagnosis/recovery, and not result in
an erroneous standard output message.
SWAT detectors not included: Others SWAT detectors not
included here are a hang detector and a high OS detector [5].

III. METHODOLOGY

A. Fault Locations

We injected stuck-at and path-delay faults in random nets
in the design. To meet timing constraints, the core was
partitioned into multiple modules with each module having
a number of fault locations proportional to its area. The area



TABLE I: OpenSPARC modules injected with faults.

OpenSPARC T1 Gate FF Stuck-at Path-delay
module count count Faults Faults
Arithmetic Logic - ALU 1,968 65 19 9
Divide - DIV 3,277 486 31 65
Error Corr. and Ctl. - ECC 998 237 10 32
Execution Control - ECL 1,727 335 17 45
Float. Point FE - FFU 5,776 836 55 112
Instruction Fetch - IFU 13,980 3,775 225 511
Load Store - LSU 24,127 4,397 635 594
Multiplier - MUL 14,665 647 138 87
Reg. Management - RML 1,206 231 11 31
Reg. Bypass Logic - BYP 5,938 708 56 95
Shift - SHFT 1,767 0 9 0
Trap Logic - TLU 18,693 3,737 334 502

was approximated by the number of gates in the module’s
gate-level netlist, and the total number of fault locations was
computed for a confidence level of 95% and a confidence
interval of 4%. Faults were injected in the control logic of
memory arrays but not in their storage elements, since those
can be protected by error correcting codes. Table I lists the
fault enabled modules, the total number of gates in each
module, and the number of different fault locations within
each module.

B. Benchmarks

We evaluated the effects of stuck-at and path-delay fault
models on five applications (mcf, vpr place, parser, vortex,
and twolf) from the SPECInt 2000 benchmark suite with the
test or reduced input sets [4]. Using smaller input sizes was
a necessity since every fault that is not detected requires that
the application runs to completion to determine if the fault
has silently corrupted the application. To run the 50,000 faults
with the reference inputs would require an expected FPGA
run-time of 40 years. All benchmarks were compiled for the
SPARC-V9 architecture with −O3 optimization.

C. Fault Injection Experiments

For our experiments, we performed fault injections in two
application execution points: the first one is immediately after
benchmark initialization, the second is approximately halfway
through its execution. A restore operation is performed after
each fault injection. After each restore, we allow 5 seconds
(50 million cycles) for the system to rewarm the caches and
populate its TLB. Experiments that do not trigger any fault
detector require executing the benchmark until completion to
determine if the fault corrupted the application outputs. For
this work, we activated a single fault per experiment.

IV. RESULTS

For our evaluation, we performed 30,800 stuck-at and
20,830 path-delay fault injection experiments across all mod-
ules of the OpenSPARC T1 core. For each fault experiment,
we monitored the behavior of the system and categorized the
possible outcomes into five mutually exclusive categories that
we discuss in detail below. Figure 2 shows the outcome of the
stuck-at-0, stuck-at-1, and path-delay experiments.

A. Masked

This category is for experiments that completed the ex-
ecution with correct output. We observed a high mask-
ing rate of 60.7% for stuck-at and 65.3% for path-delay
fault. These results are higher than previously observed in
microarchitectural-level permanent fault injections [5] (16%)

and the hybrid mircoarchitectural/gate-level simulation results
for three modules simulated with SWATSim (30% to 40%) [6].
Following are several factors that we believe contributed to this
difference:
1) The OpenSPARC core was originally designed to support

four hardware thread contexts. However, limited FPGA
resources constrained us to using the one threaded version
of the OpenSPARC T1 core, which has some design details
leftover from the original multi-threaded processor design.
These unused components are in the synthesized design
and are candidates for fault injection sites, thus potentially
increasing the overall masking rate.

2) A few modules, such as the multiplier, the floating point
frontend, and the trap logic unit, contain circuitry that is
not exercised frequently, if at all, by our applications.

3) Our infrastructure models design aspects not previously
simulated (such as gate-level characteristics of the design),
thus adding extra layers of masking that could prevent
injected faults from affecting application outputs.

4) Previous fault injection campaigns performed through
SWATSim only analyzed a part of the design, not testing
three large modules – instruction fetch, load-store unit, and
trap handling logic– which all have a masking rate above
55% for both stuck-at and path-delay experiments.

The ALU is a particularly interesting case, since our exper-
iments produced a much lower masking rate than the one ob-
served for stuck-at and path-delay faults with SWATSim (up to
40%). We explain this difference by the fact that OpenSPARC
uses the ALU for both address generation and normal arith-
metic integer operations, whereas SWATSim modeled a core
with separate address generation and arithmetic/logic units.

B. Detect

We declare a fault to be detected when one of our detectors
(Section II-B) is triggered during application execution. The
overall detection rate is 30.4% and 29.4% for stuck-at and
path-delay fault models, respectively. Table II shows the
percentage of detections that each detector is responsible for.
We found that a large portion of hardware stalls, roughly 54%,
were due to hardware faults injected in control logic in the
load-store unit. Also, 38.9% of detections are kernel panics
due to faults in the datapath submodules of the load-store unit.
Overall, the types of detections occurring in the OpenSPARC
platform compose a larger variety than the ones reported in
previous SWAT evaluations due to unexpected application or
OpenSolaris services failure.

C. Timeout

About 6.4% of our fault injections experiments reached our
simulation time limit of twice the expected fault-free run-time
for an application. 7.8% and 4.2% of the experiments for
stuck-at and path-delay timed out, respectively. We believe
that most of these cases are erroneous infinite loops at some
level of the software stack, but we were unable to clearly
identify them due to the lack of an on-line hang detector in

TABLE II: SWAT fault detector breakdown.
Fault Kernel Fatal Firmware Hypervisor Abnormal Core
Type Panics Traps Checks Crashes Exits Stalls

Stuck-at 31.7% 25.0% 11.0% 9.6% 6.8% 15.9%
Path-delay 44.7% 20.4% 4.7% 3.6% 9.0% 17.6%
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Fig. 2: Breakdown of experiments for stuck-at-0 (0), stuck-at-1 (1), and path delay (PD) faults. The x-axis indicates the OpenSPARC module studied, while the y-axis
reports the percentage of fault injections resulting in a given outcome.

our platform. Future work will look at implementing on-line
hang detectors similar to those presented in [8].

As a first step to understanding the timeout cases, we
developed a feature to allow us to trace the currently retiring
program counters (PCs). We performed this logging only for
path-delay experiments due to time limitations. Our logging
feature allows us to record roughly 1K PCs in a minute. In
order to detect infinite loops, we relied on sampling batches
of 1K PCs across six different time slots in a ∼30 million
instruction window. With these records, we could determine if
the PCs logged in a sample period are a subset or a superset
of all other sample periods. For simplicity, we removed the
PCs corresponding to hypervisor interrupts. With this analysis,
we found that 274 out of 867 experiments that timed-out are
likely to be hangs. Classifying the other cases was infeasible
due to our sampling technique and the interference of OS and
hypervisor services running in the background.

D. Other Anomalous Outcomes

About 0.27% of our experiments were placed into the
“Other” category (0.2% of stuck-at experiments and 0.4% of
path-delay experiments). A fraction of these cases were due
to erroneous software behavior that caused the file system
to become unusable or full. In a deployed machine, the file
system free space will typically be much larger than on our
experimental platform, so it is unclear how these failures
would affect a real system. Additionally, there are a number of
cases where we could not interact with the standard input and
output interface of the machine for a few hundred seconds.

E. Silent Data Corruptions

The last outcome is for experiments where the application
finishes and the application output differs from the expected
application output; i.e., a silent data corruption (SDC). Our
overall SDC rate is 0.82% for stuck-at faults and a 0.75% for
path-delay faults.

Interestingly, we found that all but four units produced none
to very few SDCs (0 SDCs for ALU, ECL, and RML; under
0.4% SDC rate for BYP, ECC, IFU, LSU, and TLU). SHFT,
DIV, and MUL had higher SDC rates, but under 5%. The
FFU had the highest SDC rate at 7.55% for stuck-at faults
and 10.47% for path-delay faults. Thus, the vast majority of
the SDCs are concentrated in units that compute data values
for the program (as opposed to addresses or control related
operations) – these should be the focus of further investigations
to improve reliability.

V. CONCLUSIONS AND FUTURE WORK

This paper tested the effectiveness of low-cost fault detec-
tors proposed by SWAT on an industrial-strength micropro-
cessor core with an extensive number of gate-level permanent
fault injections. We injected a total of 30,620 stuck-at faults
and 20,830 path-delay faults throughout the logic of the
OpenSPARC core. The current set of SWAT detectors were
able to detect 80.2% of the unmasked faults, and many of the
remaining undetected cases may be application or OS hangs.
Overall, a very small fraction (0.79%) of the experiments led
to silent data corruptions. These results are significant since
they constitute a crucial step towards validating SWAT and
other symptom-based detection solutions in general, for use
as a reliability solution in industrial hardware.

In the future, we would like to extend this work by studying
more fault models and more benchmarks.

REFERENCES

[1] S. Borkar. Designing Reliable Systems from Unreliable Compo-
nents: The Challenges of Transistor Variability and Degradation.
IEEE Micro, 25(6), 2005.

[2] P. Civera et al. FPGA-Based Fault Injection Techniques for Fast
Evaluation of Fault Tolerance in VLSI Circuits. Lecture Notes
in Computer Science, 2147, 2001.

[3] M. Dimitrov and H. Zhou. Unified Architectural Support for
Soft-Error Protection or Software Bug Detection. In Proc.
PACT, 2007.

[4] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A New
SPEC Benchmark Workload for Simulation-Based Computer
Architecture Research. IEEE Computer Architecture Letters,
1, 2002.

[5] M. Li et al. Understanding the Propagation of Hard Errors to
Software and Implications for Resilient Systems Design. In
Proc. ASPLOS, 2008.

[6] M. Li et al. Accurate Microarchitecture-Level Fault Modeling
for Studying Hardware Faults. In Proc. HPCA, 2009.

[7] G. Lyle et al. An End-to-end Approach for the Automatic
Derivation of Application-Aware Error Detectors. In Proc. DSN,
2009.

[8] N. Nakka et al. An Architectural Framework for Detecting
Process Hangs/Crashes. In Proc. EDCC, 2005.

[9] S. Nomura et al. Sampling + DMR: Practical and Low-overhead
Permanent Fault Detection. In Proc. ISCA, 2011.

[10] K. Pattabiraman et al. Dynamic Derivation of Application-
Specific Error Detectors and their Implementation in Hardware.
In Proc. European Dependable Computing Conference, 2006.

[11] A. Pellegrini et al. CrashTest: A Fast High-Fidelity FPGA-based
Resiliency Analysis Framework. In Proc. ICCD, 2008.

[12] Sun Microsystems Inc. OpenSPARC T1. http://opensparc-
t1.sunsource.net/, 2005.

[13] N. Wang and S. Patel. ReStore: Symptom-Based Soft Error
Detection in Microprocessors. IEEE Trans. on Dependable and
Secure Comp., 3(3), 2006.


