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Abstract—Variation in performance and power across 

manufactured parts and their operating conditions is an accepted 

reality in aggressive CMOS processes. This paper considers 

challenges and opportunities in identifying this variation and 

methods to combat it for improved computing systems. We 

introduce the notion of instruction-level vulnerability (ILV) to 

expose variation and its effects to the software stack for use in 

architectural/compiler optimizations. To compute ILV, we 

quantify the effect of voltage and temperature variations on the 

performance and power of a 32-bit, RISC, in-order processor in 

65nm TSMC technology at the level of individual instructions. 

Results show 3.4ns (68FO4) delay variation and 26.7x power 

variation among instructions, and across extreme corners. Our 

analysis shows that ILV is not uniform across the instruction set. 

In fact, ILV data partitions instructions into three equivalence 

classes. Based on  this classification, we show how a low-overhead 

robustness enhancement techniques can be used to enhance 

performance by a factor of 1.1x−5.5x. 

I.  INTRODUCTION 

Variability in transistor characteristics is a major design 
challenge in nanoscale CMOS technologies which causes 
performance and power uncertainty ‎[1]. Both static and 
dynamic variations arise from different physical sources such 
as: (i) static inherent process parameter variations, e.g. channel 
length and threshold voltage variations due to random dopant 
fluctuations and sub-wavelength lithography; (ii) dynamic 
environmental variations in ambient condition such as 
temperature fluctuations and supply voltage droops ‎[2]. Static 
process variations can sometimes be mitigated through binning 
or by post-silicon tuning, while dynamic variations change as a 
function of time and environment, and therefore cannot be 
compensated by static pre- and post-silicon tuning. 
Consequently accurate analysis coupled with efficient design 
techniques are required to overcome the variability challenge. 

Examples of dynamic variation from environmental and 
workload changes include supply voltage droops and 
temperature changes. Voltage droops result from abrupt 
changes in the switching activity, inducing large current 
transients in the power delivery system (dI/dt problem), and 
contain high-frequency and low-frequency components which 
occur locally as well as globally across the die ‎[3]. On the other 
hand, temperature variations occur at a relatively slow time 
scale with local hot spots on the die, depending on 
environmental, and workload conditions ‎[4]. Designers 
commonly use conservative guard-bands into the operating 
frequency and voltage to handle these variations to ensure 
error-free operation within the presence of worse case dynamic 
variations over circuit lifetime ‎[5]‎[6] that leads to loss of 
operational efficiency. 

An alternative is to use sensor circuits to detect dynamic 
variations coupled with an adaptive recovery methods for quick 
on-line error detection and compensation ‎[7]‎[8]. For instance, 
recent 45nm Intel resilient processor core ‎[9] integrates two 
fast error detection mechanisms: it uses error-detection 
sequential (EDS) ‎[10] circuits in critical paths to detect late 
timing transitions; and it also places a tunable replica circuit 
(TRC) ‎[11] per pipeline stage to monitor worst-case delays. To 
ensure recovery, the processor supports dynamic frequency 
scaling as well as multiple-issue instruction replay that corrects 
errant instructions. In a similar vein, Razor ‎[7] storage devices 
have been used in a 65nm ARM ISA processor ‎[12], running at 
frequencies over 1GHz, where fast dynamic variations are 
significant. Less intrusive and low-overhead on-chip variability 
sensors using PLLs ‎[2] and ring oscillators (RO) ‎[13] have 
been proposed to detect process, supply voltage, and 
temperature variations. 

Further progress in this area requires a careful analysis of 
the effect of variations on individual instructions. This paper 
makes three contributions. First, we analyze the effect of a full 
range of voltage and temperature variations on the performance 
and power of the 32-bit in-order RISC processor. Second, we 
introduce the notion of instruction-level vulnerability (ILV) to 
characterize dynamic variations. Our results show that ILV is 
not uniform across the instruction set. Third, using ILV data we 
show the effectiveness of a minimally intrusive and 
parsimonious technique to mitigate the dynamic variations that 
achieves up to 5.5x performance improvement in comparison 
to the traditional worst-case design. 

II. INSTRUCTION-LEVEL VULNERABILITY TO VARIATIONS 

A. Effect of Operating Conditions  

We analyze the effect of a full range of operating conditions on 
the performance and power of the LEON-3 ‎[14] processor 
compliant with the SPARC V8 architecture. Specifically, we 
used a temperature range of -40°C−125°C, and a voltage range 
of 0.72V−1.1V. Figure 1 shows how the critical path of the 
processor varies across corners. The higher voltage results in 
the shorter critical path, while the lower temperature leads to a 
higher delay in the low-voltage‎region‎(voltage‎≤‎0.9V), since 
MOSFET drain current decreases when the temperature is 
decreased in the deep submicron technologies ‎[15]. These 
operating condition (hence dynamic) variations cause the 
critical path delay to increase by a factor of 6.1x when the 
operating condition is varied from the one corner to the other. 
Consequently, a large conservative guard-band into the 
operating frequency is needed to ensure the error-free operation 
in presence of the dynamic variations.   
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Figure 1. Effect of voltage and temperature variations on the critical path (ns). 

B. Variability among Pipeline Stages  

We evaluate the critical paths of each pipeline stage for a 
given cycle time, while changing the operating conditions. 
Figure 2 shows the number of failed paths with a negative slack 
for each parallel pipeline stages across three corners. The cycle 
time is set at 0.85ns, and voltage varies from 0.72V to 0.88V, 
and then to 1.10V at a constant temperature of 125°C. As 
shown in Figure 2, most of the failed paths lie in the execute 
and memory stages in all three operating voltages. On the other 
hand, each of the fetch, decode, and register access stages 
contains less than 40K failed paths. Furthermore, there is a 
relatively small fluctuation in their number of critical paths 
across voltage variations for these stages. Quantitatively, the 
memory stage at operating voltage of 0.72V has 1.3x, 1.8x, 
3.8x more critical paths in comparison to the execute, write 
back, and decode stages, respectively. Memory stage at 
operating voltage of 1.10V also faces 1.4x, 1.9x more critical 
paths when the voltage drops to 0.88V, 0.72V, respectively.   
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Figure 2. Effect of voltage variation on the pipeline stages at 125°C. 

Similarly, the temperature of processor is varied from  
-40°C to 125°C at a constant voltage of 1.1V. As a result, there 
are no failed paths in the fetch stage when the temperature is 
varied, and only a small number of failed paths are found in the 
write back stage at the highest temperature. On the other hand, 
similar to Figure 2, many paths fail within the execute and 
memory stages. The execute and memory parts of the processor 
are not only very sensitive to voltage and temperature 
variations, but also exhibit a large number of critical paths in 
comparison to the rest of processor. Therefore, we would 
anticipate that the instructions that significantly exercise the 
execute and memory stages are likely to be more vulnerable to 
voltage and temperature variations.    

Let us now examine the situation of all paths through the 
processor under different operating condition and frequency. 
The Y-axis of Figure 3 shows the proportion of failed paths to 
non-failed paths for three corners. We observe that this 
proportion of failed paths suddenly drops below a certain 
threshold while the clock is finely scaled with a resolution of 
0.01ns. For instance, the proportion falls below 0.5 with only 
0.06ns clock scaling at (1.10V, 0°C); in the other words, the 
number of non-failed paths is twice as many as those which 
fail. Alternatively, the number of non-failed paths is doubled 
when the cycle time is increased for 0.3ns at (0.9V, 125°C). 
These provide an opportunity for an error-free running of some 
instructions that will not activate those failed paths. 
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Figure 3. The proportion of failed paths to non-failed paths versus clock. 

From the previous analysis, we get the intuition that 
instructions will have different levels of vulnerability to 
variations depending on the way they exercise the non-uniform 
critical paths across the various pipeline stages. To capture this 
phenomenon,  we define the concept of instruction-level 
vulnerability to dynamic variations. The classification of 
instructions is a valuable mechanism to alleviate the guard-
banding and improving performance: (i) within a fixed corner, 
by acquiring the knowledge about which class of instructions is 
running, the processor can adapt the guard-banding 
accordingly, without any need for the intrusive variability 
sensor/observer; (ii) across every corner, processor can adjust 
its guard-banding for all class of instructions by using a low-
overhead variability observer, e.g. PLL‎[2], RO ‎[13]. 

III. METHODOLOGY AND EXPERIMENTAL RESULTS 

In this section, we describe the instruction-level 
characterization methodology and experimental results for 
performance and power of the integer pipeline of LEON-3 ‎[14] 
with hardware multiplier/divider units as well as the 
instruction/data caches. First, we synthesized the open-source 
VHDL code of LEON-3 with the TSMC 65nm technology 
library, general purpose process. The sign off stage for accurate 
analysis of the operating conditions has been made with 
Synopsys PrimeTime, thanks to its voltage-temperature scaling 
features for the composite current source approach of modeling 
cell behavior. Mentor‎ Graphics’‎ ModelSim‎ is‎ also‎ used‎ for‎
detail gate-level simulation. 



A. Monte Carlo Gate-Level Simulation  

In the gate-level simulation, for each individual instruction, 
we apply the Monte Carlo method to observe instruction 
behavior. To accurately exercise each instruction, we use a 
normal distribution for the sources, destination, and immediate 
operands. A large sample of the SPARC ISA is evaluated, 
including the logical/arithmetic instructions, memory access 
instructions (load/store), multiply/divide instructions. To 
quantify the ILV to voltage and temperature variations, we 
define the probability of failure (PoF) for each instructioni in 
(1), where Ni is the total number of clock cycles in Monte Carlo 
simulation which takes to execute instructioni with random 
operands; and Violationj indicates whether there is a violated 
stage at clock cyclej or not.     

N

1

1
PoF Violation
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Violation

otherwise
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In other words, PoFi defines as the total number of violated 
cycles over the total simulated cycles for the instructioni. If any 
of the analyzed stages have one or more violated flip-flop at 
clock cyclej, we consider that stage as a violated stage at cyclej. 
Intuitively, if instructioni runs without any violated path, PoFi 
is 0; on the other hand, PoFi is 1 if instructioni faces at least one 
violated path in any stage, in every cycle.  

B. Instruction-Level Delay Variability  

The following tables (Table 1-2) summarize the PoF of 
each evaluated instruction across various corners. We finely 
change the clock cycle to observe the paths failure for every 
exercised instruction, and then consequently evaluate its PoF. 
As shown, instructions exhibit a very wide range of delay 
under different operating conditions ranges from 0.76ns to 
4.16ns. More precisely, the PoF values shown in tables 
evidence two important facts. First, for their vulnerability to 
variations, instructions are partitioned into three main classes: 
(i) the logical/arithmetic instructions, (ii) the memory 
instructions, and (iii) the multiply/divide instructions. The 1st 
class shows an abrupt behavior when the clock cycle is slightly 
varied. Its PoF switches from 1 to 0 with a slight increase in the 
cycle time (0.02ns) for every corner, mainly because the path 
distribution of the exercised part by this class is such that most 
of the paths have the same length, then we have a all-or-
nothing effect, which implies that either all instructions within 
this class fail or all make it. The 2nd class, the memory 
instructions, needs much more relaxed cycle time to be able to 
survive across conditions. For instance, as shown in Table 2, 
only 0.04ns more guard-banding on the cycle time of  the 1st 
class instruction can guarantee the error-free execution of the 
memory instructions while they are experiencing 40°C 
temperature fluctuation. The 3rd class is the multiply/divide 
instructions which need higher guard-banding in comparison to 
the 1st class instruction, ranges from 0.02ns at (1.1V, -40°C) to 
0.30ns at (0.72V, 125°C). Since this class highly exercises the 
execution unit1, it has a higher PoF in comparison with the rest 
of classes in the same clock cycle, for every corner. 

TABLE 1. PROBABILITY OF FAILURE OF ISA AT VOLTAGES 1.1V AND 1.0V, WHILE VARYING TEMPERATURE AND FREQUENCY. 

Corners (1.1V, -40°C) (1.1V, 0°C) (1.1V, 125°C) (1.0V, 25°C) 

Cycle time (ns) 0.74 0.76 0.78 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 1.08 1.10 1.12 1.14 1.22 
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 add 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

and 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

or 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

sll 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

sra 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

srl 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

sub 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

xnor 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

xor 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

M
em

 

load 1 0 0 1 0 0 1 0 0 0 0 0 1 0.786 0 0 0 

store 1 0 0 1 0 0 1 0 0 0 0 0 1 0.814 0 0 0 

M
u

l.

&
D

iv

. mul 1 0 0 1 0.967 0 1 0.042 0.015 0.012 0.002 0 1 0.998 0.976 0.074 0 

div 1 0.837 0 1 0.948 0 1 0.991 0.991 0.984 0.984 0 1 0.964 0.993 0.990 0 

TABLE 2. PROBABILITY OF FAILURE OF ISA AT CONSTANT VOLTAGE 0.72V, WHILE VARYING TEMPERATURE AND FREQUENCY. 

Corners (0.72V, -40°C) (0.72V, 0°C) (0.72V, 125°C) 

Cycle time (ns) 4.10 4.12 4.14 4.16 3.58 3.60 3.62 3.64 3.66 2.88 2.90 2.92 2.94 2.98 3.00 3.20 

L
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 add 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

and 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

or 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

sll 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

sra 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

srl 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

sub 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

xnor 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

xor 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

M
em

 

load 1 0.823 0.823 0 1 0.823 0.823 0 0 1 0.823 0.823 0.823 0.796 0.796 0 

store 1 0.847 0.847 0 1 0.847 0.847 0 0 1 0.847 0.847 0.847 0.823 0.823 0 

M
u
l.

&
D

iv
 

mul 1 0.995 0.995 0 1 0.996 0.994 0 0 1 0.998 0.997 0.996 0.996 0.996 0 

div 1 0.995 0.995 0 1 0.995 0.995 0.812 0 1 0.994 0.994 0.993 0.991 0.991 0 

1 Moreover,‎64%−82%‎(depends‎on‎the‎corner)‎of‎the‎failed‎paths‎in‎the‎execution stage lie in the hardware multiplier and divider units. 



Further, based on these results, we can define an adaptive 
clock cycle for each class of instructions to mitigate the 
conservative guard-banding, not only within a fix process 
corner, but also across corners. All instruction classes act 
similarly across the wide range of operating conditions: as the 
cycle time increases gradually, the PoF becomes 0, firstly for 
the 1st class, then for the 2nd class, and finally for the 3rd 
class. A processor can benefit from this by adapting its guard-
banding for each class of instruction by acquiring the 
knowledge about which class of instructions is/will be running. 

C. Evaluating Effectiveness of Less Intrusive Variation-

Tolerant Technique 

All intrusive techniques ‎[7]‎[9]‎[12] try to avoid timing 
failure for instructions that activate the critical paths by 
dynamically switching to two-cycle operation. These 
expensive, instruction by instruction timing adjustment 
techniques do not expose opportunity for further software-level 
optimizations especially for sequences and classes of 
instructions. Therefore, we could have an advanced dynamic 
clock speed adaptation technique, possibly compiler driven, 
which can quickly decide on the clock speed of the processor at 
a very fine grain‎[16], just looking at the fetched instructions 
and keeping track of their entry into the stages, and at the same 
time monitoring the current corner with a low-overhead 
monitoring hardware ‎[2]‎[13]. This technique not only provides 
great performance enhancement for processor, but also is a step 
forward to the less intrusive and parsimonious robust design.  

Table 3 shows how a program consisting of various classes 
of instructions can benefit by this technique under different 
operating conditions: the performance improvement when 
processor runs a program only consists of specific classes, in 
comparison to the traditional worst-case design. For instance, at 
the typical operating condition (1.0V, 25°C) processor can 
decrease the cycle time form 4.16ns (Table 2) to 1.22ns  
(Table 1), and consequently achieves 3.4x speed improvement, 
when its running program consists of all three classes. It can 
further reduce the cycle time to 1.12ns (3.7x speedup) when 
only the 1st, and 2nd classes of instructions are used in its 
program. As shown, the proposed solution can greatly achieve 
1.1x-5.5x performance improvement depends on the type of 
instruction and the operating condition. 

TABLE 3. PERFORMANCE IMPROVEMENT FOR CLASSES OF INSTRUCTIONS.  

Vol. (V) Temp. (°C) 1st and 2nd class 1st, 2nd, 3rd class 

1.10 -40 5.5x 5.3x 

1.10 0 5.5x 5.3x 

1.10 125 5.1x 4.6x 

1.00 25 3.7x 3.4x 

0.88 -40 3.9x 3.7x 

0.88 0 3.9x 3.7x 

0.88 125 3.9x 3.5x 

0.72 0 1.1x 1.1x 

0.72 125 1.3x 1.3x 

From the previous sections, we show how the delay of 
instructions varies intra- and inter-corner. Let us now examine 
the power variability of the instruction classes when the cycle 
time is adjusted for each class accordingly, i.e. the best 
frequency for each class is applied. As a result, all three classes 

of instructions experience a wide range of total power 
variability (0.1mW−2.6mW), 1.15x intra-corner power 
variation (across the three classes) due to exercising various 
parts of processor, and 26.7x inter-corner power variation, at 
maximum. This implies that ILV could potentially expose 
opportunity for further software-level optimizations for both 
performance and power. 

IV. CONCLUSION  

The concept of instruction-level vulnerability to dynamic 
voltage and temperature variations is defined. Based on that, all 
exercised instruction in the integer pipeline of LEON-3 are 
partitioned into three classes for the full range of operating 
condition: (i) the logical and arithmetic instructions, (ii) the 
memory instructions, and (iii) the multiply and divide 
instructions. Leveraging this classification in conjunction with 
less intrusive variability observers provides us a great 
opportunity to enhance processor performance by 1.1x−5.5x, in 
TSMC 65nm technology. It is also a step forward to the low-
overhead, efficient, and parsimonious robust design. Our 
ongoing work is focused on the characterization of a sequence 
of instruction including the control instructions. 
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