
Analysis of Instruction-level Vulnerability to

Dynamic Voltage and Temperature Variations
Abbas Rahimi†, Luca Benini‡, Rajesh K. Gupta†

†Department of Computer Science and Engineering, University of California, San Diego, USA

 ‡Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna, Bologna, Italy

abbas@cs.ucsd.edu, luca.benini@unibo.it, gupta@cs.ucsd.edu

Abstract—Variation in performance and power across

manufactured parts and their operating conditions is an accepted

reality in aggressive CMOS processes. This paper considers

challenges and opportunities in identifying this variation and

methods to combat it for improved computing systems. We

introduce the notion of instruction-level vulnerability (ILV) to

expose variation and its effects to the software stack for use in

architectural/compiler optimizations. To compute ILV, we

quantify the effect of voltage and temperature variations on the

performance and power of a 32-bit, RISC, in-order processor in

65nm TSMC technology at the level of individual instructions.

Results show 3.4ns (68FO4) delay variation and 26.7x power

variation among instructions, and across extreme corners. Our

analysis shows that ILV is not uniform across the instruction set.

In fact, ILV data partitions instructions into three equivalence

classes. Based on this classification, we show how a low-overhead

robustness enhancement techniques can be used to enhance

performance by a factor of 1.1x−5.5x.

I. INTRODUCTION

Variability in transistor characteristics is a major design
challenge in nanoscale CMOS technologies which causes
performance and power uncertainty ‎[1]. Both static and
dynamic variations arise from different physical sources such
as: (i) static inherent process parameter variations, e.g. channel
length and threshold voltage variations due to random dopant
fluctuations and sub-wavelength lithography; (ii) dynamic
environmental variations in ambient condition such as
temperature fluctuations and supply voltage droops ‎[2]. Static
process variations can sometimes be mitigated through binning
or by post-silicon tuning, while dynamic variations change as a
function of time and environment, and therefore cannot be
compensated by static pre- and post-silicon tuning.
Consequently accurate analysis coupled with efficient design
techniques are required to overcome the variability challenge.

Examples of dynamic variation from environmental and
workload changes include supply voltage droops and
temperature changes. Voltage droops result from abrupt
changes in the switching activity, inducing large current
transients in the power delivery system (dI/dt problem), and
contain high-frequency and low-frequency components which
occur locally as well as globally across the die ‎[3]. On the other
hand, temperature variations occur at a relatively slow time
scale with local hot spots on the die, depending on
environmental, and workload conditions ‎[4]. Designers
commonly use conservative guard-bands into the operating
frequency and voltage to handle these variations to ensure
error-free operation within the presence of worse case dynamic
variations over circuit lifetime ‎[5]‎[6] that leads to loss of
operational efficiency.

An alternative is to use sensor circuits to detect dynamic
variations coupled with an adaptive recovery methods for quick
on-line error detection and compensation ‎[7]‎[8]. For instance,
recent 45nm Intel resilient processor core ‎[9] integrates two
fast error detection mechanisms: it uses error-detection
sequential (EDS) ‎[10] circuits in critical paths to detect late
timing transitions; and it also places a tunable replica circuit
(TRC) ‎[11] per pipeline stage to monitor worst-case delays. To
ensure recovery, the processor supports dynamic frequency
scaling as well as multiple-issue instruction replay that corrects
errant instructions. In a similar vein, Razor ‎[7] storage devices
have been used in a 65nm ARM ISA processor ‎[12], running at
frequencies over 1GHz, where fast dynamic variations are
significant. Less intrusive and low-overhead on-chip variability
sensors using PLLs ‎[2] and ring oscillators (RO) ‎[13] have
been proposed to detect process, supply voltage, and
temperature variations.

Further progress in this area requires a careful analysis of
the effect of variations on individual instructions. This paper
makes three contributions. First, we analyze the effect of a full
range of voltage and temperature variations on the performance
and power of the 32-bit in-order RISC processor. Second, we
introduce the notion of instruction-level vulnerability (ILV) to
characterize dynamic variations. Our results show that ILV is
not uniform across the instruction set. Third, using ILV data we
show the effectiveness of a minimally intrusive and
parsimonious technique to mitigate the dynamic variations that
achieves up to 5.5x performance improvement in comparison
to the traditional worst-case design.

II. INSTRUCTION-LEVEL VULNERABILITY TO VARIATIONS

A. Effect of Operating Conditions

We analyze the effect of a full range of operating conditions on
the performance and power of the LEON-3 ‎[14] processor
compliant with the SPARC V8 architecture. Specifically, we
used a temperature range of -40°C−125°C, and a voltage range
of 0.72V−1.1V. Figure 1 shows how the critical path of the
processor varies across corners. The higher voltage results in
the shorter critical path, while the lower temperature leads to a
higher delay in the low-voltage‎region‎(voltage‎≤‎0.9V), since
MOSFET drain current decreases when the temperature is
decreased in the deep submicron technologies ‎[15]. These
operating condition (hence dynamic) variations cause the
critical path delay to increase by a factor of 6.1x when the
operating condition is varied from the one corner to the other.
Consequently, a large conservative guard-band into the
operating frequency is needed to ensure the error-free operation
in presence of the dynamic variations.

978-3-9810801-8-6/DATE12/©2012 EDAA

Figure 1. Effect of voltage and temperature variations on the critical path (ns).

B. Variability among Pipeline Stages

We evaluate the critical paths of each pipeline stage for a
given cycle time, while changing the operating conditions.
Figure 2 shows the number of failed paths with a negative slack
for each parallel pipeline stages across three corners. The cycle
time is set at 0.85ns, and voltage varies from 0.72V to 0.88V,
and then to 1.10V at a constant temperature of 125°C. As
shown in Figure 2, most of the failed paths lie in the execute
and memory stages in all three operating voltages. On the other
hand, each of the fetch, decode, and register access stages
contains less than 40K failed paths. Furthermore, there is a
relatively small fluctuation in their number of critical paths
across voltage variations for these stages. Quantitatively, the
memory stage at operating voltage of 0.72V has 1.3x, 1.8x,
3.8x more critical paths in comparison to the execute, write
back, and decode stages, respectively. Memory stage at
operating voltage of 1.10V also faces 1.4x, 1.9x more critical
paths when the voltage drops to 0.88V, 0.72V, respectively.

0

2

4

6

8

10

12

14

16

Fetch Decode Reg. acc. Execute Memory Write back

N
u
m

b
e
r

o
f

fa
ile

d
 p

a
th

s

x 10000 0.72V 0.88V 1.10V

Figure 2. Effect of voltage variation on the pipeline stages at 125°C.

Similarly, the temperature of processor is varied from
-40°C to 125°C at a constant voltage of 1.1V. As a result, there
are no failed paths in the fetch stage when the temperature is
varied, and only a small number of failed paths are found in the
write back stage at the highest temperature. On the other hand,
similar to Figure 2, many paths fail within the execute and
memory stages. The execute and memory parts of the processor
are not only very sensitive to voltage and temperature
variations, but also exhibit a large number of critical paths in
comparison to the rest of processor. Therefore, we would
anticipate that the instructions that significantly exercise the
execute and memory stages are likely to be more vulnerable to
voltage and temperature variations.

Let us now examine the situation of all paths through the
processor under different operating condition and frequency.
The Y-axis of Figure 3 shows the proportion of failed paths to
non-failed paths for three corners. We observe that this
proportion of failed paths suddenly drops below a certain
threshold while the clock is finely scaled with a resolution of
0.01ns. For instance, the proportion falls below 0.5 with only
0.06ns clock scaling at (1.10V, 0°C); in the other words, the
number of non-failed paths is twice as many as those which
fail. Alternatively, the number of non-failed paths is doubled
when the cycle time is increased for 0.3ns at (0.9V, 125°C).
These provide an opportunity for an error-free running of some
instructions that will not activate those failed paths.

0

4

8

12

16

20

24

28

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0
1
.0

5
1
.1

0
1
.1

5
1
.2

0
1
.2

5
1
.3

0
1
.3

5
1
.4

0
1
.4

5
1
.5

0
1
.5

5
1
.6

0
1
.6

5
1
.7

0
1
.7

5
1
.8

0
1
.8

5
1
.9

0
1
.9

5
2
.0

0
2
.0

5
2
.1

0

(#
 F

a
ile

d
 p

a
th

s
)
/

(#
 N

o
n
-f

a
ile

d
 p

a
th

s
)

Cycle time (ns)

(0.9V, 125 C)

(1.0V, 25 C)

(1.1V, 0 C)

Figure 3. The proportion of failed paths to non-failed paths versus clock.

From the previous analysis, we get the intuition that
instructions will have different levels of vulnerability to
variations depending on the way they exercise the non-uniform
critical paths across the various pipeline stages. To capture this
phenomenon, we define the concept of instruction-level
vulnerability to dynamic variations. The classification of
instructions is a valuable mechanism to alleviate the guard-
banding and improving performance: (i) within a fixed corner,
by acquiring the knowledge about which class of instructions is
running, the processor can adapt the guard-banding
accordingly, without any need for the intrusive variability
sensor/observer; (ii) across every corner, processor can adjust
its guard-banding for all class of instructions by using a low-
overhead variability observer, e.g. PLL‎[2], RO ‎[13].

III. METHODOLOGY AND EXPERIMENTAL RESULTS

In this section, we describe the instruction-level
characterization methodology and experimental results for
performance and power of the integer pipeline of LEON-3 ‎[14]
with hardware multiplier/divider units as well as the
instruction/data caches. First, we synthesized the open-source
VHDL code of LEON-3 with the TSMC 65nm technology
library, general purpose process. The sign off stage for accurate
analysis of the operating conditions has been made with
Synopsys PrimeTime, thanks to its voltage-temperature scaling
features for the composite current source approach of modeling
cell behavior. Mentor‎ Graphics’‎ ModelSim‎ is‎ also‎ used‎ for‎
detail gate-level simulation.

A. Monte Carlo Gate-Level Simulation

In the gate-level simulation, for each individual instruction,
we apply the Monte Carlo method to observe instruction
behavior. To accurately exercise each instruction, we use a
normal distribution for the sources, destination, and immediate
operands. A large sample of the SPARC ISA is evaluated,
including the logical/arithmetic instructions, memory access
instructions (load/store), multiply/divide instructions. To
quantify the ILV to voltage and temperature variations, we
define the probability of failure (PoF) for each instructioni in
(1), where Ni is the total number of clock cycles in Monte Carlo
simulation which takes to execute instructioni with random
operands; and Violationj indicates whether there is a violated
stage at clock cyclej or not.

N

1

1
PoF Violation

If any stage violates at cycle
Violation

otherwise

i

i j
i

j

j

j

N

1

0






 



 
 (1)

In other words, PoFi defines as the total number of violated
cycles over the total simulated cycles for the instructioni. If any
of the analyzed stages have one or more violated flip-flop at
clock cyclej, we consider that stage as a violated stage at cyclej.
Intuitively, if instructioni runs without any violated path, PoFi
is 0; on the other hand, PoFi is 1 if instructioni faces at least one
violated path in any stage, in every cycle.

B. Instruction-Level Delay Variability

The following tables (Table 1-2) summarize the PoF of
each evaluated instruction across various corners. We finely
change the clock cycle to observe the paths failure for every
exercised instruction, and then consequently evaluate its PoF.
As shown, instructions exhibit a very wide range of delay
under different operating conditions ranges from 0.76ns to
4.16ns. More precisely, the PoF values shown in tables
evidence two important facts. First, for their vulnerability to
variations, instructions are partitioned into three main classes:
(i) the logical/arithmetic instructions, (ii) the memory
instructions, and (iii) the multiply/divide instructions. The 1st
class shows an abrupt behavior when the clock cycle is slightly
varied. Its PoF switches from 1 to 0 with a slight increase in the
cycle time (0.02ns) for every corner, mainly because the path
distribution of the exercised part by this class is such that most
of the paths have the same length, then we have a all-or-
nothing effect, which implies that either all instructions within
this class fail or all make it. The 2nd class, the memory
instructions, needs much more relaxed cycle time to be able to
survive across conditions. For instance, as shown in Table 2,
only 0.04ns more guard-banding on the cycle time of the 1st
class instruction can guarantee the error-free execution of the
memory instructions while they are experiencing 40°C
temperature fluctuation. The 3rd class is the multiply/divide
instructions which need higher guard-banding in comparison to
the 1st class instruction, ranges from 0.02ns at (1.1V, -40°C) to
0.30ns at (0.72V, 125°C). Since this class highly exercises the
execution unit1, it has a higher PoF in comparison with the rest
of classes in the same clock cycle, for every corner.

TABLE 1. PROBABILITY OF FAILURE OF ISA AT VOLTAGES 1.1V AND 1.0V, WHILE VARYING TEMPERATURE AND FREQUENCY.

Corners (1.1V, -40°C) (1.1V, 0°C) (1.1V, 125°C) (1.0V, 25°C)

Cycle time (ns) 0.74 0.76 0.78 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 1.08 1.10 1.12 1.14 1.22

L
o

g
ic

al
 &

 A
ri

th
m

et
ic

 add 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

and 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

or 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

sll 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

sra 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

srl 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

sub 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

xnor 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

xor 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0

M
em

load 1 0 0 1 0 0 1 0 0 0 0 0 1 0.786 0 0 0

store 1 0 0 1 0 0 1 0 0 0 0 0 1 0.814 0 0 0

M
u

l.

&
D

iv

. mul 1 0 0 1 0.967 0 1 0.042 0.015 0.012 0.002 0 1 0.998 0.976 0.074 0

div 1 0.837 0 1 0.948 0 1 0.991 0.991 0.984 0.984 0 1 0.964 0.993 0.990 0

TABLE 2. PROBABILITY OF FAILURE OF ISA AT CONSTANT VOLTAGE 0.72V, WHILE VARYING TEMPERATURE AND FREQUENCY.

Corners (0.72V, -40°C) (0.72V, 0°C) (0.72V, 125°C)

Cycle time (ns) 4.10 4.12 4.14 4.16 3.58 3.60 3.62 3.64 3.66 2.88 2.90 2.92 2.94 2.98 3.00 3.20

L
o

g
ic

al
 &

 A
ri

th
m

et
ic

 add 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

and 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

or 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

sll 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

sra 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

srl 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

sub 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

xnor 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

xor 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

M
em

load 1 0.823 0.823 0 1 0.823 0.823 0 0 1 0.823 0.823 0.823 0.796 0.796 0

store 1 0.847 0.847 0 1 0.847 0.847 0 0 1 0.847 0.847 0.847 0.823 0.823 0

M
u
l.

&
D

iv

mul 1 0.995 0.995 0 1 0.996 0.994 0 0 1 0.998 0.997 0.996 0.996 0.996 0

div 1 0.995 0.995 0 1 0.995 0.995 0.812 0 1 0.994 0.994 0.993 0.991 0.991 0

1 Moreover,‎64%−82%‎(depends‎on‎the‎corner)‎of‎the‎failed‎paths‎in‎the‎execution stage lie in the hardware multiplier and divider units.

Further, based on these results, we can define an adaptive
clock cycle for each class of instructions to mitigate the
conservative guard-banding, not only within a fix process
corner, but also across corners. All instruction classes act
similarly across the wide range of operating conditions: as the
cycle time increases gradually, the PoF becomes 0, firstly for
the 1st class, then for the 2nd class, and finally for the 3rd
class. A processor can benefit from this by adapting its guard-
banding for each class of instruction by acquiring the
knowledge about which class of instructions is/will be running.

C. Evaluating Effectiveness of Less Intrusive Variation-

Tolerant Technique

All intrusive techniques ‎[7]‎[9]‎[12] try to avoid timing
failure for instructions that activate the critical paths by
dynamically switching to two-cycle operation. These
expensive, instruction by instruction timing adjustment
techniques do not expose opportunity for further software-level
optimizations especially for sequences and classes of
instructions. Therefore, we could have an advanced dynamic
clock speed adaptation technique, possibly compiler driven,
which can quickly decide on the clock speed of the processor at
a very fine grain‎[16], just looking at the fetched instructions
and keeping track of their entry into the stages, and at the same
time monitoring the current corner with a low-overhead
monitoring hardware ‎[2]‎[13]. This technique not only provides
great performance enhancement for processor, but also is a step
forward to the less intrusive and parsimonious robust design.

Table 3 shows how a program consisting of various classes
of instructions can benefit by this technique under different
operating conditions: the performance improvement when
processor runs a program only consists of specific classes, in
comparison to the traditional worst-case design. For instance, at
the typical operating condition (1.0V, 25°C) processor can
decrease the cycle time form 4.16ns (Table 2) to 1.22ns
(Table 1), and consequently achieves 3.4x speed improvement,
when its running program consists of all three classes. It can
further reduce the cycle time to 1.12ns (3.7x speedup) when
only the 1st, and 2nd classes of instructions are used in its
program. As shown, the proposed solution can greatly achieve
1.1x-5.5x performance improvement depends on the type of
instruction and the operating condition.

TABLE 3. PERFORMANCE IMPROVEMENT FOR CLASSES OF INSTRUCTIONS.

Vol. (V) Temp. (°C) 1st and 2nd class 1st, 2nd, 3rd class

1.10 -40 5.5x 5.3x

1.10 0 5.5x 5.3x

1.10 125 5.1x 4.6x

1.00 25 3.7x 3.4x

0.88 -40 3.9x 3.7x

0.88 0 3.9x 3.7x

0.88 125 3.9x 3.5x

0.72 0 1.1x 1.1x

0.72 125 1.3x 1.3x

From the previous sections, we show how the delay of
instructions varies intra- and inter-corner. Let us now examine
the power variability of the instruction classes when the cycle
time is adjusted for each class accordingly, i.e. the best
frequency for each class is applied. As a result, all three classes

of instructions experience a wide range of total power
variability (0.1mW−2.6mW), 1.15x intra-corner power
variation (across the three classes) due to exercising various
parts of processor, and 26.7x inter-corner power variation, at
maximum. This implies that ILV could potentially expose
opportunity for further software-level optimizations for both
performance and power.

IV. CONCLUSION

The concept of instruction-level vulnerability to dynamic
voltage and temperature variations is defined. Based on that, all
exercised instruction in the integer pipeline of LEON-3 are
partitioned into three classes for the full range of operating
condition: (i) the logical and arithmetic instructions, (ii) the
memory instructions, and (iii) the multiply and divide
instructions. Leveraging this classification in conjunction with
less intrusive variability observers provides us a great
opportunity to enhance processor performance by 1.1x−5.5x, in
TSMC 65nm technology. It is also a step forward to the low-
overhead, efficient, and parsimonious robust design. Our
ongoing work is focused on the characterization of a sequence
of instruction including the control instructions.

V. ACKNOWLEDGMENTS
This research was supported by NSF Variability

Expeditions Award CCF-1029783, and JTI SMECY
(ARTEMIS-2009-1-100230).

REFERENCES
[1] S.‎Ghosh,‎et‎al.,‎“Parameter‎Variation‎Tolerance‎and‎Error‎Resiliency:‎New‎Design‎

Paradigm‎ for‎ the‎ Nanoscale‎ Era,”‎ Proc. of the IEEE , Vol.98, No.10, pp.1718-

1751, Oct. 2010.

[2] K. Kang, et al.,‎“On-chip variability sensor using phase-locked loop for detecting

and correcting parametric timing failures,”‎IEEE Tran. on VLSI Systems, Vol. 18,

No. 2, pp. 270-280, 2010.

[3] K.‎ Bowman,‎ et‎ al.,‎ “Dynamic‎ Variation‎ Monitor‎ for‎ Measuring the Impact of

Voltage‎Droops‎on‎Microprocessor‎Clock‎Frequency,”‎Proc. CICC, pp. 1-4, 2010.

[4] S.‎Murali,‎et‎al.,‎“Temperature‎Control‎of‎High-Performance Multi-core Platforms

Using‎Convex‎Optimization,”‎Proc. DATE, pp.110-115, 2008.

[5] J.‎ Tschanz,‎ et‎ al.,‎ “Adaptive‎ circuit‎ techniques‎ to‎minimize‎ variation‎ impact‎ on‎

microprocessor performance‎and‎power,”‎Proc. ISCAS, pp. 9-12, 2005.

[6] K.‎ Bowman,‎ et‎ al.,‎ “Circuit‎ techniques‎ for‎ dynamic‎ variation‎ tolerance,”‎ Proc.‎

DAC, pp. 4–7, 2009.

[7] D.‎ Ernst‎ et‎ al.,‎ “Razor:‎ A‎ Low-Power Pipeline Based on Circuit-Level Timing

Speculation,”‎Proc. MICRO, pp. 7-18, 2003.

[8] N.‎Shah,‎et‎al.,‎“Built-In Proactive Tuning System for‎Circuit‎Aging‎Resilience,”‎

Proc. DFT, pp. 96-104, 2009.

[9] K.‎Bowman,‎et‎al.‎“A‎45‎nm‎Resilient‎Microprocessor‎Core‎for‎Dynamic‎Variation‎

Tolerance,” IEEE J. of Solid-State Circuits, Vol.46, No.1, pp.194-208, Jan. 2011.

[10] K. Bowman,‎et‎al.,‎“Energy-Efficient and Metastability-Immune Resilient Circuits

for‎Dynamic‎Variation‎Tolerance,”‎ IEEE J. of Solid-State Circuits, Vol.44, No.1,

pp.49-63, Jan. 2009.

[11] J.‎ Tschanz,‎ et‎ al.,‎ “Tunable‎ Replica‎ Circuits‎ and Adaptive Voltage-Frequency

Techniques‎for‎Dynamic‎Voltage,‎Temperature,‎and‎Aging‎Variation‎Tolerance,”‎

IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 112-113, 2009.

[12] D.‎ Bull,‎ et‎ al.,‎ “A‎ power-efficient 32b ARM ISA processor using timing-error

detection and correction for transient-error tolerance and adaptation to PVT

variation,”‎Proc.‎ISSCC, pp. 284-285, 2010.

[13] M.‎ Bhushan,‎ et‎ al.,‎ “Ring‎ oscillators‎ for‎ CMOS‎ process‎ tuning and variability

control,”‎IEEE Tran. on Semiconductor Manufacturing, Vol.19, No.1, pp. 10- 18,

Feb. 2006.

[14] LEON-3 [Online]. Available: http://www.gaisler.com/cms/index.php

?option=com_content&task=view&id=13&Itemid=53

[15] R.‎ Kumar,‎ et‎ al.,‎ “Reversed‎ Temperature-Dependent Propagation Delay

Characteristics‎ in‎ Nanometer‎ CMOS‎ Circuits,”‎ IEEE Trans. on Circuits and

Systems, Vol.53, No.10, pp.1078-1082, Oct. 2006.

[16] J.‎Tschanz,‎et‎al.,‎ “Adaptive‎Frequency‎and‎Biasing‎Techniques‎ for‎Tolerance‎ to‎
Dynamic Temperature-Voltage‎Variations‎and‎Aging,”‎Proc.‎ ISSCC,‎pp.292-604,

2007.

