
Analysis of Multi-Domain Scenarios for Optimized
Dynamic Power Management Strategies

Jochen Zimmermann†, Oliver Bringmann†
†FZI Karlsruhe, Germany

{zimmermann,bringmann}@fzi.de

Wolfgang Rosenstiel†‡
‡University of Tuebingen, Germany

rosenstiel@informatik.uni-tuebingen.de

Abstract—Synchronous dataflow (SDF) models are gaining
increased attention in designing software-intensive embedded
systems. Especially in the signal processing and multimedia
domain, dataflow-oriented models of computation are commonly
used by designers reflecting the regular structure of algorithms
and providing an intuitive way to specify both sequential and
concurrent system functionality. Furthermore, dataflow-oriented
models are qualified for capturing dynamic behavior due to
data-dependent execution. In this work, we extend those data-
dependent dataflow models to include dynamic power manage-
ment (DPM) aspects of a target platform while still meeting hard
timing requirements. We capture different system states in a
multi-domain scenario approach and develop a state space based
on this SDF representation for system analysis and optimization.
By traversing the state space of the power-aware scenario model-
ing we derive a power management configuration with minimized
energy dissipation depending on dynamic system behavior.

I. INTRODUCTION

Besides of guaranteeing the strict observance of deadlines
in real-time applications, power consumption has emerged
as one of the most important factors in embedded system
design, especially if systems are part of ultra-portable devices
or depend on long battery lifetimes in general.

On the hardware side of embedded electronic systems,
and especially in System-on-Chip (SoC) designs, there exist
several approved low-power technologies like clock/power gat-
ing and multiple voltage islands. However, today’s embedded
functionality is growingly implemented in software due to
flexibility and cost reduction reasons. Additional to compiler-
based power optimization, dynamic voltage and frequency
scaling (DVFS) with several different operating (power) modes
of the system is known to be one of the most efficient low-
power techniques on software execution level.

Synchronous dataflow (SDF) models [1], as well as
their modifications cyclo-static (CSDF) and scenario-aware
dataflow (SADF) models [2], got a lot of attraction recently
in modeling and specification of embedded software. They
allow to model dataflow-oriented applications in a very intu-
itive way which is usually a strong requirement in industrial
development processes. Furthermore, one can easily express
parallelism which eases application development for multicore
and manycore systems.

SDF models are of special interest for (hard) real-time
applications. They are statically analyzable as opposed to
more general models like Kahn Process Networks (KPN)
[3] which are proven to be undecideable. Hence, they allow
to provide system performance guarantees at design time.
[4] shows an approach to perform worst-case performance
analysis for synchronous dataflow scenarios, e.g. worst-case
throughput, but without considering any power-related issues.
By definition, an SDF graph is a timeless, connected graph
where each vertex (in SDF syntax called actor) represents
some sort of processing and each edge transports data (tokens)
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between those actors. When an actor is executed (fires), it
consumes a certain amount of input tokens and produces a
certain amount of output tokens (input and output rates) on
the FIFO channels it is connected to. A prerequisite for actor
firing is the availability of a sufficient amount of input tokens.
For modeling embedded software behavior, a so called Timed-
SDF is commonly used where each actor is associated with a
(usually) worst case execution time (WCET).

Many applications in the embedded domain are designed as
dynamic streaming applications, which means that their actual
behavior changes depending on their current state or input
data. A scenario-aware synchronous dataflow (SASDF) model
can be used to capture such application states and make them
analyzable.

II. RELATED WORK

Synchronous dataflow (SDF) models were first introduced
by Lee and Messerschmitt [1]. Static schedulability of SDF
graphs (SDFG) have been shown by Buck [5]. Recently, a lot
of research work has been done on performance analysis and
predictability, as well as multi- and manycore scheduling and
mapping [6]. First approaches to include dynamic behavior in
SDF models were researched by Buck [7] introducing actors
whose dataflow behavior is affected by boolean-valued control
tokens and extending analysis and scheduling techniques of
those SDF models. Cyclo-static SDF (CSDF) models were
introduced to overcome the limitation of static token produc-
tion and consumption rates in usual SDF models by defining
different phases of an actor’s input or output. In general SDF
context, scenario-awareness has been researched by Stuijk,
Gheorghita et al. [8] [9], senario-aware voltage scaling was
introduced in [10].

Optimizing the system energy consumption is a wide re-
search field. Benini [11] and Iranli [12] give an overview of
recent low-power techniques and dynamic power management
(DPM). Optimization approaches at design time are usually
related to energy-aware scheduling based on more general
task graphs rather than SDF [13]. Both Andrei et al. [14] use
an approach based on integer linear programming (ILP) to
minimize the energy consumption. However, ILP problems
are not able to capture dynamic runtime data-dependable
behavior and their complexity grows exponentially with the
exploration search space. Rong et al. [15] present a run-
time approach for optimizing processor time-out values based
on Markovian Processes. Probability-based DPM is shown in
[16]. Isci et al. [17] try to maximize performance while still
keeping a given power budget. In [18], a DVFS approach based
on the feedback of output queues is presented for streaming
applications.

III. DEFINITION OF MULTI-DOMAIN SCENARIOS

Scenarios are used to model different modes of operation
to capture dynamic behavior [19]. In past research activities,
mainly different worst case execution times of dynamic appli-
cations have been defined by scenarios e.g. capturing different
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frame types in multimedia algorithms. In the SDF model of
computation dynamic behavior means changing the properties
of an actor during runtime.

However, application-oriented scenarios are not enough
when it comes to terms of non-functional properties (NFP)
like average power dissipation because they are not solely
influenced by the application itself, but also by shared re-
sources and especially the underlying platform configuration.
Therefore, we suggest to consider also platform scenarios, e.g.
computing resources running in different power modes with
different execution times for the application (see Figure 1).

Application Scenarios
(Timing Paths)

Platform
Scenarios

Execution
Time

...
core 1, 1.2V

core 2, 0.8V

...

...
Fig. 1. Schematic Overview of Multi-Domain Scenarios

A. Application Scenario Models
Application scenarios [2] are used to capture dynamics

in communication and computation of the application, e.g.
data-dependent execution times. We especially use them to
model different timing paths inside the application to encode
controlflow properties. They are modeled either stochastically
with markov chains or with finite state machines (FSM).

An application scenario-aware dataflow graph is a 4-tuple
(V,E,Φ, Ψ) of an SDF-Graph (V,E) and contains both an SDF
representation of the application including actor dependencies
and an FSM describing the different application scenarios (see
upper part of Figure 2). For each derived scenario a function
Φ: V → Rn determines an actors properties (execution
time, power dissipation) in the actual state of the application
scenario FSM.
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Fig. 2. Application Specification, Mapping and PSM

For further definitions of application scenarios, as well as
proofs for boundedness and deadlock-freedom of markov-
based scenario-aware dataflow graphs we refer to [20].

However, the execution time eta of an actor a depends
not only on the application scenario, but also on the power
mode of the resource a is actually executed in. Let AS be the
set of all application scenarios and PMR1 the set of power
modes of resource R1. Then the execution time eta after being
mapped to resource R1 is defined as eta : AS×PMR1 → R.
Furthermore, switching the power mode implies an additional
switching delay. Without loss of generality and to ease the
understanding, we choose the example graph in Figure 2
similar to [4] and in low power mode PM2 twice the execution
times as in PM1. In general, the delays correspond to reduced

operational frequencies due to reduced supply voltages and can
be taken from target architecture specifications.

B. Platform Scenario Models
Platform scenarios describe different states of the underlying

platform, e.g. cores, caches, and the memory subsystem. For
platforms we use finite state machines to model different
power states, the switching overhead as well as its implications
on actors’ properties (execution time, power consumption).

Definition 1 (PSM): A power-state machine (PSM) of sys-
tem S is a 4-tuple (VPSM , EPSM , δPSM , ρPSM ) where
VPSM is a set of nodes defining the available power modes
of S, EPSM ⊆ VPSM × VPSM is a set of directed edges.
Function δPSM (vi, vj) : VPSM × VPSM → R defines the
switching delay between nodes vi, vj ∈ VPSM and function
ρPSM (vi, vj) : VPSM × VPSM → R defines the switching
power between nodes vi, vj ∈ VPSM .

Definition 2 (Platform Scenario): A platform scenario PSi
is a mode of operation of platform entities connected to one or
more actors aj and influencing the actors properties Prop(aj).
A platform entity is directly used by actors to process data
according to the appropriate platform state.

A platform scenario graph is a 4-tuple (Q,Σ, δ, q0) and de-
fines statically the switching points between different platform
scenarios for each related platform entity. It consists of a finite
set of system states Q, a finite set of transition events Σ in one
or more assigned PSMs, a transition function δ : Q×Σ→ Q,
and a starting state q0. The transition function δ triggers the
PSMs and assigns the switching overhead to the execution
time of the actors mapped to the switching platform entity.

IV. MULTI-DOMAIN SCENARIO MODEL

We will derive a multi-domain scenario model by the devel-
opment of a state space which contains states for combinations
of application scenario execution and platform power modes
such that a specified throughput is guaranteed.

A (max,+) algebra is used to capture SDF semantics.Let T
be the set of input tokens of an actor a and for every token
τ ∈ T tτ is the arrival time of token τ . Furthermore, let eta be
the execution time of this actor. The (max,+) algebra reflects
that the earliest time of tokens being available for the next
actor after firing of actor a is defined as maxτ∈T tτ +eta. For
(max +) algebra, mainly the standard semantics [21] and some
extensions are used which are briefly defined in the following.

Let b and c be vectors, b = [bi] and c = [ci] with bi, ci ∈
R−∞, d a scalar and M a matrix with column vectors mj .
• max(−∞, d) = max(d,−∞) = d, the maximum oper-

ator with −∞ being the neutral element
• b+d denotes [bi+d], adding a scalar to each vector entity
• b+ c results in a vector [bi + ci]
• ‖b‖ = maxibi
• bnorm denotes b− ‖b‖, the normalized vector b
• Md is defined as maxj(mj + d)
• bmod d := [bi mod d] denotes the modulo operation on

each entity in vector b
An iteration in SDF semantics is the timespan where each

channel contains exactly the same amount of tokens as in
the initial state. The production times are contained in a so
called timestamp vector υ which has as many entities as
the number of initial tokens. This means that a timestamp
vector υ0 becomes a vector υ1 after one iteration, but now
containing the new production times. So, the timing of the
following iteration can be determined by the timing of the
actual iteration.

We define υi,PMj as the timestamp vector of iteration i
which was executed in power mode PMj and PMk as the
power mode which is active in iteration k.



Furthermore, there exists a matrix GAS,PM for every ap-
plication scenario AS and every power mode PM . GAS,PM
contains information about the repetition vector of the corre-
sponding SDFG, as well as the actor execution times and the
scheduling which defines the execution order. Its entities quan-
tify a minimum distance in time between the tokens indicated
in column and row in consecutive iterations. An entity −∞
means that there is no dependency between these tokens. The
calculation of matrix GAS,PM is based on symbolic execution
of actor firings according to the minimum repetition vector,
actor execution time, and scheduling policy (for details please
refer to [22]). As GAS,PM depends on the power mode, the
possible switching overhead δ(PM i, PM i+1) in time between
different power modes PM in iteration i and i+ 1 has to be
taken into account.

The timestamp vector υi+1 can be calculated by

υi+1 =

{
GAS,PM ∗ υi + δ(PM i, PM i+1), PM i 6= PM i+1

GAS,PM ∗ υi ,else
(1)

Note that the use of iterations instead of single actor firings
reflects that data-dependent scenarios are typically correlated
to certain execution paths in a dataflow model which naturally
limits the state space.

For the ASADF graph in Figure 2 and a given self-timed
execution scheduling policy, calculation of matrix Gy,PM2

and
υ2 given that υ1 is [3, 3, 2] in power mode PM1 with switching
overhead δ(PM1, PM2) = 1 results in

υ2 = Gy,PM2
∗ υ1 =

[
2 −∞ 4
2 −∞ 4
−∞ 6 −∞

][
3
3
2

]
+ 1

=

[
max{2 + 3,−∞+ 3, 4 + 2}
max{2 + 3,−∞+ 3, 4 + 2}
max{−∞+ 3, 6 + 3,−∞+ 2}

]
+ 1 =

[
7
7
10

]
Considering the availability of the three tokens at [3, 3, 2]T ,

their production times after executing application scenario y
in power mode PM2 are [7, 7, 10]T . This is also illustrated in
Figure 3 with a specified throughput constraint of 1

4 .
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Fig. 3. Token production times calculated by timestamp vectors

A. Multi-Domain Scenario State Space
A DPM strategy can be deduced from the multi-domain

scenario state space by chosing a certain platform state for
a detected application scenario. The calculation of this state
space implies some extensions on the definitions given above.

Definition 3 (Slack Vector): Let υi be the timestamp vector
of iteration i and γ the throughput constraint. Given that σ0
is defined as vector [0, 0, 0]T , the slack vector σi of iteration
i, i > 0, is defined as

σi := σi−1 − (
1

γ
− (υi − υi−1)) (2)

Note that this definition of the slack vector is independent
from the actual iteration and is calculated by the normalized
timestamp vectors of the actual and the former iteration. This is
the key for pruning the state space described in Section IV-B.

To be able to determine a dynamic power management
strategy while still meeting (hard) timing requirements we as-
sume in the following that there exists at least one application
scenario where the specified throughput requirement is smaller
than the actual throughput of the application.

Now we describe the algorithm to build the state space
for feasible platform configuration solutions due to a given
throughput constraint γ by execution. A state s in the state
space S is a 2-tupel with a timestamp vector υi and a
slack vector σi. The transition function Θ uses equation 1
to calculate the next timestamp vector υi+1 and the slack
vector σi+1 in the next state using equation 2 for every
combination of application scenario sequence and platform
scenario sequence, e.g. power modes. Θ is annotated with
a state as in the application scenario state machine and a
state pm in the power state machine. Starting from an initial
configuration s0 the state space is built by executing transition
function Θ on each valid state through breadth-first search
order. If consecutive states are gained by one or multiple
executions of transition function Θ we will refer to a path
in the state space. In Section IV-B we present possibilities
how to prune this state space.

If ‖σ‖ > 0 holds for any state s after applying transition
function Θ, s is invalid due to violated performance con-
straints. In Figure 3, the slack vector in second iteration is[−1

−1
−2

]
−

(
4−

([
7
7
10

]
−

[
3
3
2

]))
=

[−1
−1
2

]
This means that ‖σ‖ = 2, so the production time of token 3
violates the throughput constraint 1

4 in the second iteration.
Obviously, there exists at least one valid path through

the state space by always taking the power mode with the
lowest execution times. Otherwise, there exists no mapping
and scheduling of applications which fulfills the timing re-
quirements at all.

B. Pruning the State Space
To get a closed form of the state space and to manage the

complexity, we developed methods to prune the state space:
1) States are invalid due to violated performance constraints

if ‖σ‖ > 0. Note that mode switching overheads are
included in the calculation of the timestamp vectors.

2) Due to focus on DVFS strategy, a path in the fastest
operation mode is skipped if there exists at least one
sibling path in a lower power mode (assumed to have
less power dissipation).

3) Since slack vectors σi depend on the relative distance
between timestamp vectors υi−1 and υi, the given
throughput constraint γ, and the slack vector of the
previous iteration σi−1, states sk and sl, k 6= l, can
be joined if σk = σl . Obviously, υmod γk = υmod γl
holds which builds a cycle in the state space.

The proof that the state space is finite follows directly from
the fact that the number of different slack vectors is limited
by the throughput requirement. The rules to prune the state
space are illustrated in Figure 4 assuming that a throughput
of 1

4 is required (maximum period is 4).
Figure 4 shows an excerpt of the state space’s pruning

process for the example graph in Figure 2. For each state in the
state space a scalar e indicating the energy consumption of the
execution of application scenario as in power mode pm can
be calculated using standard equations for static and dynamic
power dissipation (e.g. [14]) assuming that relevant properties
are known, e.g. supply voltages, frequencies. Following the
path with lowest power values minimizes the power dissipation
for a detected application scenario sequence.
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V. EXPERIMENTS

As a first experiment we calculated the whole state space
of the example graph in Figure 2 which contains 77 states.
The execution time on an Intel Core i5 system with 2.66GHz
was approx. 2.8ms. We also used our approach to derive a
DVFS strategy for a traffic sign detection algorithm (including
filter and transformation algorithms) on an ARM-based SoC
platform with supply voltages 0.975V-1.35V and appropriate
frequencies 125MHz-720MHz. The different application sce-
narios or timing paths respectively, depend on the number of
detected circles in the camera image. Calculated results show
savings up to 66.1% in static and dynamic power dissipation.

Obviously, the number of states in the state space highly de-
pends on the platform’s DPM capabilities, the variations of the
application due to different timing paths, and the performance
constraints. Nevertheless, experiments with several algorithms
(also synthetic benchmarks with randomly generated scenario
graphs) and different performance requirements show that
building and pruning the state space generally takes less than a
few second. At a first glance, relaxing throughput requirements
increases the state space due to more possibilities for switching
into lower power modes. But this in turn results in rather
similar values for the states’ slack vectors which increases
the possibility to prune the state space by building a cycle.
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