
Model Driven Resource Usage Simulation for  
Critical Embedded Systems 

Michaël Lafaye, Laurent Pautet, Etienne Borde 
LTCI 

Telecom ParisTech 
Paris, France 

{lafaye,  pautet, borde}@telecom-paristech.fr 

Marc Gatti, David Faura 
Centre Competence Calculateur 

Thales Avionics 
Meudon La Foret, France 

{marc-j.gatti, david.faura}@fr.thalesgroup.com 
 

Facing a growing complexity, embedded systems design 
relies on model-based approaches to ease the exploration of a 
design space. A key aspect of such exploration is performance 
evaluation, mainly depending on usage of the hardware 
resources. In model-driven engineering, hardware resources 
usage is often approximated by static properties. In this paper, 
we propose an extensible modeling framework, to describe 
with different levels of detail the hardware resource usage. Our 
method relies on the AADL to describe the whole system, and 
SystemC to refine the execution platform description. In this 
paper we expose how we generate and compose SystemC 
models from the execution platform model described in AADL. 
We also present promising experimental results obtained on an 
avionics use-case. 

AADL, SystemC, mapping, early modeling, real-time systems  

I.  INTRODUCTION 
In the design process of embedded systems, integration is 

a critical phase since it might alleviate performance issues 
related to the adequacy between the software application 
and its underlying execution platform. In order to reduce 
this risk, model driven engineering (MDE) allows exploring 
the design space by analyzing models of a system. 
Performance evaluation based on MDE methods 
approximate hardware components characteristics by sets of 
predefined properties corresponding to a general category of 
component, thus they lack of precision since their results are 
obtained independently of the usage context of these 
resources as opposed to the real execution. As a 
consequence, MDE methods dedicated to performances 
evaluation of embedded systems need improvements to be 
able to assess more precisely usage of the execution 
platform resources. Besides, to be used in an iterative design 
process, these methods must be extensible to provide more 
and more precise resources usage estimations.  

Our objective is to bring that modeling part and 
complement those methods. In this paper, we propose a 
flexible code generation approach that produces a 
simulation environment from the model of an embedded 
system, allowing a detailed description of the execution 
platform resources usage. Our method aims at being 
complementary to high-level static modeling methods 
(giving more approximate results) and virtualization 
methods (focusing on functional evaluation).  

We present here a prototype that produces SystemC [1] 
code from an AADL [2] specification. As a first step, we 
limited the scope of our prototype to the mapping of 
hardware AADL components into SystemC code. We made 
a first case study based on software architecture principles 
dedicated to the avionics domain. The results of these 
experiments are also presented in this paper. 

The remainder of this paper is organized as follows: 
Section 2 gives an overview of the approach we propose. 
Section 3 describes the flexible modeling and simulation 
process that produces the simulation environment 
corresponding to the execution platform of an embedded 
system. Section 4 presents the simulation results obtained 
using this process on an avionic use-case. Finally we 
conclude this paper and present our future works.  

II. APPROACH 
Current MDE approaches are of great interest to anticipate 

on system performance. However they often approximate 
the hardware components description as black boxes with a 
few properties. Our objective is to complement such process 
by proposing an extensible modeling and simulation facility 
so as to explore the resources usage of an execution 
platform. The objective we pursue is represented on figure 
1: from specification of the execution platform and a 
characterization of the software application, we propose to 
model the software application, its underlying execution 
platform and the deployment of software components onto 
hardware components thanks to the AADL. 

 
Figure 1. Modeling and simulation process 
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A. System Modeling with the AADL 
AADL (Architecture and Analysis Description Language) 
[2] is an architecture description language developed by the 
SEI1 and standardized by the SAE2. AADL was selected for 
this study since it allows to model both the software and the 
hardware architecture can be modeled, as well as the 
mapping of software components onto the execution 
platform. The language was used in several projects [4], 
taking advantages of the several annexes enriching the 
language. Especially, the ARINC653 annex [3] provides 
rules and properties to model partitioned systems. Indeed, to 
allow the execution of more than one application on the 
same execution platform while fulfilling safety 
requirements, avionics systems are developed following the 
ARINC653 standard. This standard specifies spatial and 
time partitioning concepts: each application is enclosed in 
one or several partitions (independent software module) and 
owns a part of the main memory (spatial partitioning). 
Moreover, each partition can access all the hardware 
resources during its execution window (time partitioning).  

Thanks to the ARINC annex, those partitioning rules can be 
easily modeled as AADL processes (ARINC partitions) 
bounded to a part of the main memory component and 
scheduled by the main processor. As a consequence, AADL 
is thus particularly adapted for modeling partitioned real-
time and embedded systems at high-level description.  

B. System Description with SystemC 

The target of our model-driven simulation framework is 
the SystemC, IEEE standard promoted by the OSCI. It is a 
hardware description language for system 
hardware/software co-design and validation through 
simulation thanks to the provided simulation kernel. 
SystemC is widely used in industry and supported by many 
tools that allow simulation and debug of a SystemC model. 
The language is defined as a set of modules that contain 
ports, methods and processes describing the component 
functionality, and communicate via channels.  

SystemC can be used for system modeling at different levels 
of abstraction, and aims at simplifying systems conception 
by being a common language used from functional system 
description to detailed design conception. Among this 
abstraction levels, TLM [5] is becoming a de facto standard 
in industry for early exploration and verification processes 
[6]. It offers a good compromise between time development, 
description accuracy and simulation speed, 100 to 1000 
times faster than CABA and RTL model simulation 
depending on the timing precision. Consequently, SystemC 
and its TLM library are particularly adapted for execution 
platform description and exploration through simulation 
thanks to its simulation kernel. 
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III. AADL TO SYSTEMC SIMULATION 
We present in this section a method to produce the SystemC-
TLM model corresponding to an AADL hardware model. We 
propose both a mapping for set of predefined AADL 
hardware components, and a method to integrate user-defined 
hardware components. Since our goal is to generate an 
execution platform, we focus on the following hardware 
components: memory, processor, bus and device. Generally, 
the mapping we propose relies on a database of SystemC 
configurable components. Each SystemC component defines 
a set of TLM sockets dedicated to the reception (respectively 
emission) of transactions from (resp. to) other components, 
and a priced state machine that describes the component’s 
behavior upon reception of a transaction. In the remainder of 
this section, we present in more details the semantics of 
sockets and automata defining SystemC components. 

A. Mapping Connections 

In order to manage the communications between SystemC 
components, we generate for each component a set of TLM 
socket(s): from a hardware component instance in AADL 
system model, we retrieve the bus it is connected to and 
define an input/output TLM socket for the component and 
its bus, and connect them. Figure 2 illustrates this approach, 
including properties retrieving from the AADL model to 
configure the generated SystemC bus. 

 
Figure 2. Connection Mapping from AADL to SystemC model 

Each socket is bound to a generic SystemC method, 
b_transport(), which works on the initiator/target model. 
Initially written to simplify the communications by frame 
between initiator components such as processors and target 
components such as memory, we use this communication 
model and apply it on all the execution platform components 
we consider. The b_transport() method contains two 
parameters, generic_payload specifying the transactions 
arguments (command read/write/ignore, data address, data 
length and transaction status as “ok”, “error”…) and delay , 
parameter we use as a simulation counter. We also add our 
own parameters to the communication model. As we said, 
components communicate by frames through the 
b_transport() method. When a component receives such 
frame, it decodes the address and if it matches its address, 
stimulates the state machine describing its behavior. For 
example, a memory component will decode the command 
parameter and executes a read or write operation before 
returning response status. 



B.  Mapping Hardwware Component into Automata 

1) Automata Description 

To describe the internal behavior of components, we use 
dedicated priced state machines. In these automata, each 
state represents an abstract action and the resources (time, 
power consumption…) consumed to realize it, and each 
transition defines the conditions that have to be verified to go 
from a source state to a target state. These conditions are 
specified over the content of a received transaction (in 
comparison to predefined constants retrieved from AADL 
properties). Finally, each automaton has at least two states: 
an idle state (corresponding to the situation when the 
component is not working) and one or some action states. 
The transitions represent conditions that have to be fulfilled 
to pass from one state to the next. Condition can be “when 
action is complete, i.e. when action time is totally consumed, 
go to the next state”, or “when the signal S is set to 1, go to 
the next state”. 

The implementation of a SystemC automaton is defined 
in a generic SystemC-TLM method, b_transport, which 
simplifies the connections between components. Each time 
an instruction is received by the component, the b_transport 
method is called, decodes the frame properties and executes 
its behavior code. The goal of those state machines is to 
describe more precisely the component behavior and then 
introduce variability. For example, in a processor model, the 
execution time will be different for L1 cache hit or miss.  

 

Figure 3. Generated SystemC simple memory automata from AADL model 

2) Automata Database 

The database can be used in several ways, and is not limited 
to one. We present here two ways to configure the SystemC 
models: using simplified predefined automata, and using 
refined automata depending on the accuracy of the 
information contained in the AADL model. For instance, to 
describe a memory component, we can use the memory 
simple automata configured only with AADL properties 
read_time, write_time, memory_protocol and word_size, or 
using a refined component DRAM. In such component, the 
variability comes for example from the refresh operation, 
which does not occur at each reading or writing execution 
but comes periodically.  

The goal of refined automata is to be more accurate in the 
component description, and then more accurate during the 
simulation and the performance analysis, and introduce 
variability, where other static based approach work with 
constant worst-case execution time value. To add a new 
component, we define a method allowing the user to define 
his component and adding it to the database. This method is 
composed of 3 steps: 

• Adding the new automata in the SystemC database 

• Adding the component kind in the corresponding 
supported_<component_type>_kind 

• Adding the properties. In the AADL, components 
properties are defined in a specific file. To be 
consistent with the AADL, we propose, to add the 
corresponding property_set defining its properties.  

For example, to describe a DRAM, we first add to the 
memory_supported_kind AADL property the “DRAM” type. 
Then we create a new property_set, dram_properties, in 
which we define the additional properties, for instance:  
refresh_period and refresh_time. These properties can be 
used together with the memory properties still defined (word 
size, read/write_time…). At least, we create and add in the 
database the corresponding DRAM SystemC automaton. 
Thus it is possible to elaborate an execution platform 
containing a DRAM component by declaring in the AADL 
model a memory with the memory_kind property set to 
DRAM. Figure 4 sums up how we generate the refined 
memory component thanks to the AADL adding properties: 

 

Figure 4. SystemC DRAM component generation 

IV. CASE STUDY 
Our main objective is to evaluate the usage of a proposed 

avionic execution platform according to a given set of 
applications stimuli. Then, to test our mapping and 
exploration process, we first model the avionic system with 
AADL using the ARINC653 annex, and generate with our 
mapping process the SystemC corresponding execution 
platform description. Then we stimulate it with a given test 
application. Both architecture and application are described 
in the next sub-sections. 

A. Test Application 
The application we use to test our process is an avionic 

communication application, which reads and sends data on 
input/output ports. It contains four partitions following the 



temporal partitioning rule (each partition can access al the 
resources during its execution). Each partition mainly 
reads/writes data into memory (caches, dram) and targets an 
I/O, i.e sends read/write SystemC instruction to some 
hardware components. 

B. Execution Platform 
The execution platform is composed of two parts: the 

ARINC services connected to the hardware architecture. 
ARINC services are modeled as state machines targeting 
some hardware components. For example, 
"get_partition_status" service mainly reads data from the 
memory (operating mode, identifier, period, etc.) through the 
CPU. Hardware components are also modeled as 
interconnected state machines. In our example, the hardware 
architecture is composed of one CPU, one I/O controller, one 
main DRAM, four I/O interfaces and some buses (PCI, PCIe 
etc.). 

C. Simulation and results 
To explore the execution platform resources usage, we 

run the SystemC frames we extracted from the test 
application (ARINC653 services and calculation part, 
addition, affectation…). This extraction is currently 
"handmade", but automatic extraction is on development. 
Thanks to the SystemC simulation kernel, we run the stimuli 
and extract the execution platform response in term of 
resources consumed. In that example, we focus on the CPU 
usage during the first 200ms (figure 5). Values are computed 
each 50us. We also test our analyze process by setting a test 
requirement: CPU usage has to be under 80%. We can see in 
the figure 5 that the processor usage rate stays under this 
value, then the proposed architecture matches that 
requirement.

 
Figure 5. CPU usage of in each partition over the time 

V. CONCLUSION AND FUTURE WORKS 
In this paper, we have presented an approach to model an 

execution platform into a simulation environment that 
enables to evaluate its resources usage. This approach is 
extensible, allowing to model execution platforms with 
different levels of detail. The process takes advantage of two 
standardized languages, AADL for high-level system 
modeling, and SystemC-TLM for refined execution platform 
description and simulation thanks to its simulation kernel.  

Our modular approach, based on a database of SystemC 
behavioral components, allows adding easily some new 
components to this database in order to refine SystemC 
execution platform description, and explore the hardware 
resources usage under different angles thanks to the 
viewpoints (timing, power consumption etc.). We saw our 
analyze process allow us to check the compliancy between a 
proposed execution platform architecture and given 
requirements.  

We are currently improving our method by comparing 
our simulation results with real avionic applications 
performance. Another work in progress is to automate the 
extraction of software stimuli and their translation into 

SystemC frames. We are also integrating the modeling of the 
network connecting the processing modules in order to 
describe a whole avionic execution platform At least, we 
plan to target larger systems as systems of connected 
systems. 
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