
978-3-9810801-8-6/DATE12/ c©2012 EDAA

Designing FlexRay-based Automotive Architectures:
A Holistic OEM Approach

Paul Milbredt†, Michael Glaß?, Martin Lukasiewycz∗, Andreas Steininger‡, and Jürgen Teich?
† AUDI AG, Germany, paul.milbredt@audi.de

? University of Erlangen-Nuremberg, Germany, {glass,teich}@cs.fau.de
∗ TUM CREATE, Singapore, martin.lukasiewycz@tum-create.edu.sg
‡ Vienna University of Technology, Austria, steininger@ecs.tuwien.ac.at

Abstract—FlexRay is likely to become the de-facto standard
for upcoming in-vehicle communication. Efficient scheduling of
the static and dynamic segment of the communication cycle in
combination with the determination of more than 60 parameters
that are part of the FlexRay protocol is a challenging task.

This paper provides a formal analysis for interdependencies
between the parameters as well as a scheduling approach for the
static and dynamic segment. Experimental results give evidence
of a significant interdependency between the subtasks such that a
holistic scheduling approach becomes mandatory to provide high-
quality FlexRay schedules. As a solution, this work introduces
a complete functional FlexRay scheduling approach that takes
parameter selection, allocation of messages to the static and
dynamic segment, and concurrent scheduling into account. A
real-world case study from the automotive domain gives evidence
of efficiency and applicability of the proposed approach.

I. INTRODUCTION

Design and system integration are the most critical tasks of an auto-
motive original equipment manufacturer (OEM). In modern automobiles,
more than 80 Electronic Control Units (ECUs) are connected via different
buses. Upcoming applications like advanced driver assistance systems
require a higher bandwidth than provided by well-established field buses
like CAN. As a remedy, an industrial consortium [3] developed the
FlexRay bus. It offers a bandwidth of up to 10 Mbps and features two bus
access schemes in the static segment and dynamic segment, respectively.
In the static segment, messages are scheduled strictly time-triggered into
slots of equal size such that a deterministic transmission is guaranteed.
In the dynamic segment, the transmission is event-triggered into slots
of variable size, resulting in a high utilization. The configuration of the
FlexRay bus is a challenging task. More than 60 parameters that have to
be chosen carefully and a feasible schedule has to be determined. These
design decisions have a substantial influence on the utilization of the bus
and performance of the system.

Designing FlexRay-based automotive systems is a complex problem.
This complexity arises from the interdependency of the three required
design steps. The (a) scheduling of the static segment, the (b) scheduling
of the dynamic segment, and the (c) parameter determination. Previous
work studied these steps separately. However, an OEM is required to
resolve this interdependency to obtain an appropriate system implemen-
tation. In this work, a holistic and functional approach for the design
of FlexRay-based automotive systems is proposed. The presented design
approach integrates all design steps that are carried out by an OEM in
a well-orchestrated fashion. A globally optimized FlexRay-based system
is obtained where the determined schedules and parameters optimize the
bus utilization. Additionally, the approach considers the extensibility of
the schedules in order to consider future incremental extensions of the
system. This is achieved by a proposed layer of abstraction for the static
segment by assigning slots to virtual ECUs. For the dynamic segment, a
special scheduling is proposed that takes different operation modes of an
automobile into account and enables a guaranteed transmission of all data.

II. THE FLEXRAY PARAMETRIZATION PROBLEM

This section introduces the fundamentals of the FlexRay bus and
the strong interdependency between the schedule and parameter set. As
FlexRay is a time-triggered system for automotive applications, the main
scheduling optimization goal is the determination of an efficient schedule
that consumes as little communication time as possible. At the same time,
an easily extensible schedule is desirable due to the long product life cycle
of an automobile.

A. FlexRay Fundamentals
The FlexRay bus has a rather complex structure, see [4]: The global

time is divided into 64 cycles of equal length. In practice, the typically
chosen cycle length is 5 ms, resulting from the cycle times of existing
CAN applications. Also, the typical length of a Protocol Data Unit (PDU)
is eight byte to simplify a heterogeneous employment of FlexRay and
CAN buses in the same system.

Each FlexRay cycle consists of the static segment, the dynamic segment,
the symbol window, and the network idle time.
• The static segment consists of equally sized static slots that contain

the same amount of payload. Each slot is assigned to exactly one
or no ECU in all cycles.

• The optional dynamic segment consists of minislots. In contrast
to the static segment, slots may be assigned to different ECUs in
different cycles. Additionally, the frames within these slots may
contain a varying payload of 0− 254 bytes in two-byte steps.

• The optional symbol window may be used to transmit a media
test symbol. This symbol is employed for testing the optional
bus guardian. Currently, the symbol window is not used in any
implementation of FlexRay clusters.

• The network idle time (NIT) enables the synchronization of the local
clocks of the ECUs. This is mandatory for the correct behavior of
the system.

1) Timing hierarchy: The basic time unit in FlexRay is the microtick.
It is derived directly from the quartz of the node. All known FlexRay
implementations use a microtick length of 25 ns while the specification
would also allow 12.5 or 50 ns. To allow time-triggered communication, a
globally synchronized time unit is necessary: the macrotick. In each node,
the macrotick is built up of an integer number of microticks by a slightly
modification of the Bresenham algorithm [1], the parameters used in the
implementations are the number of microticks and macroticks per cycle.
The macrotick length τMT is used in the specification, but is only a helper
variable. The number of microticks that must pass before the macrotick
counter is increased is influenced by the clock synchronization, which
performs offset and rate correction, and the selection of the macrotick
length. The macrotick length is required to be in the range between 1 and
6 µs and the cycle length must be an integer multiple of the macrotick.
For a 5 ms cycle and a 25 ns microtick, the cycle length is 200,000
microticks. For a macrotick length of 1 µs, the cycle length is 5, 000

macroticks, and for a length of 6 µs, it is
⌈
5,000

6

⌉
= 834 macroticks.

This leads to 5, 000− 834 + 1 = 4, 167 possible macrotick lengths for a
5 ms cycle.

All other timing related parameters are derived from the macrotick as
integer multiples. These parameters are the static slot size, the minislot
size, the symbol window, the network idle time, and the action point offset.

B. Influences of the Parameter Set on Bus Utilization
In the following, effects that create significant interdependencies be-

tween the scheduling and the parameter determination are selected and
discussed. The key parameter in FlexRay is the macrotick.

1) The Static Segment: As a single static slot may only be assigned to
one node, the whole duration of a static slot utilizes the bus even if only
one bit must be transmitted. It is the task of the scheduling, to utilize the
slots. But it is the task of the parametrization to minimize the duration
of one slot. One static slot consists of three parts: (1) idle time at the
beginning until the action point offset, (2) the transmission of the frame,
and (3) idle time at the end. To avoid collisions, every transmission must be
within the borders of the slot. To compensate clock drifts and the minimal
physical propagation delay τ prop

min, the action point offset is calculated for
worst case circumstances.



1 2 3 4 5 6
0

1

2

3

Macrotick [µs]

R
ou

nd
in

g
er

ro
r

pe
r

sl
ot

[µ
s]

1 2 3 4 5 6

4

6

8

10

12

Macrotick [µs]

Id
le

tim
es

w
ith

in
a

sl
ot

[µ
s] 18 Byte payload

42 Byte payload

Fig. 1. Effect of rounding error for: (TOP) each action point offset for a given
topology with a theoretical action point offset of 3.107791238 µs; (BOTTOM)
each static slot for a given topology for two given payload lengths.

FlexRay 2.1 specifies a maximum clock deviation dc of 1,500 ppm in
the network. As a result, the real minimal absolute length of a macrotick
τMT
min is given as follows:

τMT
min =

τMT

1 + dc
(1)

The constraint 12 of the FlexRay specification [4] for the action point
offset τ apo must hold with respect to the shortest possible macrotick τMT

min
and the precision τ prec :

τ apo ≥
⌈
τ prec − τ prop

min

τMT
min

⌉
(2)

The action point offset should be chosen as the smallest integer multiple
of the macrotick fulfilling Equation 2. The resulting rounding error for a
given example topology (a known precision and propagation delay) is
depicted in Figure 1 top.

Besides the action point offset also the static slot size must be an integer
multiple of the macrotick. The idle time at the end of the frame must be
large enough to compensate imprecisions (like the action point offset) and
additionally let all other nodes determine that the bus is idle (τ idle

max). The
length of the frame is obviously influenced by its payload length. The
overhead is fixed and only the transmission start sequence is configurable
between 3 and 15 bits. It is dependent on the topology and constrained
by the specification. Usually, the smallest possible value is taken and then
the frame length for a given payload length is constant.

Hence, for the whole static slot duration τSlot, constraint 21 of the
specification prevents boundary violations under worst case (with the
maximum propagation delay τ prop

max , but fault free) circumstances:

τSlot ≥ τ apo +

⌈
τF + τ

prop
max + τ prec + τ idle

max

τMT
min

⌉
(3)

with a frame length τF (including idle detection) of a frame consisting
of lF (b) bits with a slow quartz, which generates bits of length τBit

max :

τF =
(
lF (b) + 10

)
τBit
max (4)

For our given topology, the first rounding error occurs for the action
point offset and the second for the whole slot for a given payload length.
The resulting total error (idle time) is depicted in Figure 1 bottom for two
of the 128 different possible payload lengths.

20 40 60 80 100

50

100

Payload [Bytes]

U
til

iz
at

io
n

[M
T

]

18 Byte payload
42 Byte payload

Dynamic segment

1 2 3 4 5 6
3,400

3,600

3,800

Macrotick [µs]

B
us

ut
ili

za
tio

n
[µ

s]

Fig. 2. Bus utilization of: (TOP) one ECU depending on its needed payload per
cycle; (BOTTOM) depending on the chosen macrotick in a 5 ms cycle.

2) The Dynamic Segment: For the minislot action point offset, con-
straint 14 of the FlexRay specification holds. It is identical to constraint
12 given in Equation (2). The same applies to the length of the minislot,
which is comparable to Equation (3) without the frame length.

If a node has data to transmit, the corresponding minislot is extended
to a full slot with a length of an integer multiple of one minislot. It can
be calculated with the helper variable aMinislotPerDynamicFrame
of the FlexRay specification.

Additionally, different payload lengths are allowed. For determining the
rounding error, the schedule must be known before. Then, the resulting
error for the dynamic segment can be calculated for a given macrotick
length.

An example for one node is given in Figure 2 top. Assume a node
which needs to transmit 20 bytes of payload per cycle. In the case of
scheduling its data in the static segment, two slots would have to be used,
if the static payload was 18 bytes. If the payload was 42 bytes, a single
slot, which is larger than the 18 byte slot, would be used. A dynamic
frame could contain exactly 20 bytes of payload, but it depends on the
chosen macrotick and derived parameters how many minislots this frame
needs for transmission.

3) Summarized Parametrization Effect: For the whole effect of the
parametrization, due to the large influence of the dynamic segment, the
schedule must be known. Only then, the effective rounding errors of all
slots can be calculated and minimized by selecting a good value for the
macrotick.

The other way around, for a given parameter set, the optimal schedule
might look differently. With our given topology, the selection of the
optimal macrotick is counterintuitive. With the methodology presented
during the remainder of this paper, a set of messages to be scheduled
with no additional constraints on the macrotick is depicted in Figure 2
bottom.

III. RELATED WORK

Several approaches are proposed that focus on solely parts of the
FlexRay scheduling problem: [10], [6], and [2] on the static segment,
[9] on the dynamic segment scheduling. Other approaches, e. g., [12],
investigate the combination of application task and bus scheduling. Timing
analysis for the static segment is also presented in [8]. However, the
approaches ignore the parametrization problem.

The priorization of the frames of the dynamic segment is investigated
in [11] where the assignemt of PDUs within a frame is done in advance.
Alternatively, each PDU equals one frame which is not optimal in terms
of bus utilization. Since our assumption is that the response time of all
frames is always lower than the cycle length, we extend the dynamic
segment until all frames fit inside it. However, if no schedule can be
found or our assumption does not hold, a combination of the approach in
[11] and our approach becomes feasible.

The optimization of the parameter set has been investigated only in
[7] so far. However, this work suffers from two major drawbacks: (1)



the macrotick is fixed at a length of 1 µs. However, the macrotick is
the key optimization parameter. (2) an optimization of the cycle length is
performed, which in practical automotive applications is fixed at 5 ms due
to the fixed minimal cycle lengths of automotive messages.

IV. FLEXRAY SCHEDULING

A. Bin Packing-based Static Segment Scheduling
The authors of [6] proposed an optimization approach, which considers

cycle-multiplexing restricted to the static segment. As all static slots
contain the same amount of payload, they transformed the problem to
a special bin packing problem. Every slot is assumed to be a bin in which
the PDUs are placed. The height of such an element corresponds to the
period (repetition rate) of the message. In a 5 ms cycle, a PDU which
must be scheduled every 5 ms is of full height, a 10 ms is of half height
and so on. The width of a element is the payload, i.e., a 42 byte bin (slot)
may contain five 8 byte 5 ms elements (PDUs) and their corresponding
five update bits, leaving 11 bits unused.

Let the number of occupied slots be uStatic. The goal of static scheduling
as proposed in [6] is to place the PDUs in such a way into slots that the
number of used slots is minimized:

minimize uStatic (5)

In this work, the methodology of [6] is extended to satisfy our
considerations upon the parameter set. If only the static segment is taken
into account, we would propose the following scheduling algorithm: (1)
Perform bin-packing according to [6] for all possible payload lengths, (2)
calculate the optimal macrotick for each possible payload. This is inde-
pendent from the schedule, cf. Section II, and (3) select the schedule with
lowest channel utilization. Within the context of this work, a modification
of the aforementioned optimization criteria becomes necessarry. Even a
pure static segment solution still requires at least the network idle time
for clock synchronization. The proposed static optimization criteria is to
minimize the utilzed time on the bus

minimize
(
uStaticτSlot + τNIT

)
τMT (6)

B. Bin Packing-based Dynamic Segment Scheduling
The dynamic segment offers three main advantages over the static

segment: (1) A node with only small communication demands does not
need to use a full static slot but can use a small dynamic slot instead
(see Figure 2). (2) A node with large communication demands can use a
large slot instead of multiple static slots. This saves overhead and, thus,
bus utilization (see Figure 2). (3) A node which has no communication
demand when its slot arrives, does not need to transmit and then uses only
an idle minislot.

In particular, the last advantage can be used for functional extensions
of the whole schedule. In different operation modes of the automobile,
different layouts of the communication exist. Let one mode be the normal
operation during driving. Here, e.g., large messages containing data from
environmental sensors are transmitted. Another mode is the reprogram-
ming of ECUs in the workshop. Here, no data from environmental sensors
is transmitted, but only the binary of the new application is transmitted.
As a consequence, the scheduler for the dynamic segment is supposed to
determine a schedule such that each operation mode fits into the dynamic
segment with guaranteed message transmission. As the communication is
known at design time, it is possible to determine the minimum length of
the dynamic segment for all modes. The length of the dynamic segment
must be equal or larger than the longest layout of the communication.
Note that the longest layout communication takes cycle-multiplexing into
account, i.e., the length of the dynamic segment is not simply given by
the length of all possible messages. Then, the transmission of messages in
the dynamic segment is guaranteed, which makes the use of this segment
feasible in the automotive domain.

For the usage of this segment, we have to consider two main disadvan-
tages: (1) As it is not guaranteed which nodes, before a specific slot, do
transmit, this leads to jitter of the frame due to shifts of slots. However, the
earliest and latest possible transmission time can be given if the dynamic
segment is chosen long enough as we proposed. (2) In FlexRay 2.1, noise
during the dynamic segment leads to a corrupted data for the remaining
cycle. This fault in the specification was fixed in FlexRay 3.0.

As the dynamic segment may contain frames of different length and
also use cycle multiplexing for the slots, the bin packing transformation
as proposed for the static segment is employed, adding two adoptions:
(1) The dynamic segment is treated as a single bin with height 64 (i.e.
cycles) and infinite length and (2) all elements (PDUs) can be placed
inside at any position. After the solution of the bin packing problem has

static segment prescheduling

partitioning

macrotick generator

select payload

dynamic segment schedule

select best schedule

idle capacity assignment

. . .

global
optimization

Fig. 3. Proposed overall design flow.

been calculated, the PDUs can be reordered by their sending nodes and
their priority. Afterwards, every sender will have its elements in a single
dynamic slot. In other words, the rectangle bin is cut, but the resulting
slots must not be a rectangle, because a slot may have different payloads
each cycle.

Compared to the static segment scheduling, the optimization criteria is
slightly different. Only for the whole segment, the occupied area must be
of a minimum size and for all cycles the length should not differ much.
It is more common, that a highly periodic message will be scheduled in
future versions, so the common length of all cycles ensures that this new
bin of full height will fit into the schedule.

The dynamic segment is scheduled for every operation mode, as stated
before. All operation modes build the set M . If in one mode m1 slots are
transmitted, which have a higher priority than some slots of mode m2,
their minislots pass, which lengthens m2 by these minislots. If they have
lower priority than all slots sin mode m2, their minislots do not appear,
as they may be lost out. The utilized minislots udyn(m, c) depend on the
mode m, and on the other hand on the cycle c ∈ {0, . . . , 63} , because of
the possibility to use different frame lengths and senders for each cycle.

The dynamic segment must be scheduled such that all modes fit into
the segment. Its minimum length τ dyn

min given in minislots is

τ
dyn
min = max

∀m∈M,c∈{0,...,63}
udyn(m, c) (7)

and the average utilization udyn
avg is

u
dyn
avg =

63∑
c=0

(
max
∀m∈M

udyn(m, c)

)
64

(8)

The length τSW of the symbol window is typically 0, as it is not used
in any known implementation of FlexRay clusters. Combining all four
segments, leads to holistic optimization criteria of minimizing

u =
τMT

(
uStaticτSlot + u

dyn
avgτ

Minislot + τSW + τNIT
)

τCycle
(9)

C. Holistic Design Flow

The proposed overall design flow is outlined in Fig. 3. In a first
step, several static schedules with reasonable slot sizes are generated.
Afterwards, the PDUs are assigned to either the static or dynamic segment.
Given the scheduling for different macroticks is independent of each other,
the next steps investigates all possible macrotick sizes in parallel. In the
same step, the payload size and dynamic schedule is determined as well.
From the set of investigated schedules regarding slot size and macrotick,
the schedule with lowest bus load is selected. At this point, a global
optimization may be incorporated that aims at finding an optimal schedule
by varying the partition of PDUs to static and dynamic segment. Since an
exhaustive search for the optimal schedule is likely to be impracticable,
a meta-heuristic search approach such as simulated annealing [5] is
employed to control the optimization process.



V. EXPERIMENTAL RESULTS

We took a real world communication example from the chassis and
powertrain domain. The data should be close to reality with only a short
amount of uncertainty. Our data consists of 17 ECUs, sending out 264
PDUs in total. In addition to these application level PDUs, a number
of network protocol related PDUs are distributed over the network, e.g.,
network management and transport protocols for diagnosis of the car.

The distribution of consumed bandwidth per ECU is as follows: One
ECU is below 1%, seven ECUs consume 1%, two ECUs consume 3%,
two ECUs consume 4%, two ECUs consume 5%, and the remaining four
ECUs consume 9, 13, 18, and 30% bandwidth. The lowest amount of used
bandwidth per ECU is 1,700 Bit/s, the highest amount is 325,900 Bit/s.

Only 3 ECUs, which come from a driver assistance application, make
more than 61% of the used bandwidth whereas 9 ECUs cosume less than
9% in total.

The more static slots a ECU consumes, the more overhead will be
needed. On the other hand, if an ECU uses only one slot partly, the
remaining space within the slot may only be consumed by this ECU and,
according to our optimization criteria in Equation 9, it will produce non-
optimal result. As a rule of thumb, ECUs with a huge amount of payload
should be scheduled into the dynamic segment due to the reduction of
overhead and ECUs with a small amount of payload, too, due to well
utilized small slots.

Due to the fact that messages in the dynamic segment will jitter, e.g.,
because data has been added at the beginning of the dynamic segment
in later versions of the schedule, but the ECU software is still “old”, or
messages are not sent out and therefore consume only one minislot. So
it must be up to the system designer to decide whether PDUs may be
scheduled in the dynamic segment or not. In our case, the two ECUs
with the highest amount of sent data and the ECU with the least amount
of data to be sent may be completely scheduled dynamically. For all
other ECUs, their application messages must be scheduled statically. All
network protocols may be scheduled in the dynamic segment, and we
already planned enough payload for later extensions of ECUs for them.

The application PDUs sum up to 1, 074, 100 Bits/s. Additionally, the
protocol related messages (including messages used by developers) sum
up to 2.5 MBit/s, which is not surprising, as these data is used for
reprogramming the ECUs, testing purposes, maintenance, etc.

151 of the application PDUs are, due to the ability to route them to a
CAN bus, of eight byte length, only two PDUs are of ten bytes length. All
other PDUs are either even shorter or can be scheduled in the dynamic
segment. The distribution of the period and the resulting bandwidth is
shown in Table I.

It should be up to the system designer, to choose the kind of free
bandwidth. He may choose between free available bandwidth in used slots,
if he expects a lot of integration of new functions in existing ECUs. Or it
may be freely available slots, if he expects new ECUs at the bus or wants
to be able to assign the slots for available ECUs freely. Additionally, he
must take into account whether more static slots (which avoid jitter) or a
larger dynamic segment (where the potential of less bus utilization due to
shorter overheads) is more valuable.

Our scheduling tool can leave this decision open. If the minimum
number of used slots is known (for a given payload, of course) and the
minimum length of the dynamic segment is known, the border between
the static and the dynamic segment can be done by an “engineered guess”.

Therefore, we provide a schedule for all possible static payloads. Af-
terwards, four numbers are given: (1) Bandwidth according to Equation 9,
(2) Usage of used slots in percent, (3) maximum number of free static
slots (if the dynamic segment is at its minimum size), and (4) number of
possible static slots for in-cycle repetition. The last number is useful, if
one expects messages which must be scheduled in half of the cycle time,
i.e., 2.5 ms PDUs for a 5 ms cycle. That leads to a static segment, which
is longer than 2.5 ms of course.

The result for some static payloads is given in Figure 4. The optimal
schedule with respect to Equation 9 has a static payload of 58 Bytes, due to

TABLE I
DISTRIBUTION OF PDU PERIOD

Period # PDUs kBit/s

5 30 176.0
10 35 218.4
20 78 538.8
40 63 108.0
80 36 27.9

160 4 1.6
320 18 3.4

Sum 264 1074.1

14 18 22 26 30 34 38 42 46 50 54 58 62 66 70
0

10

20

30

Static payload in Bytes

Fr
ee

Sl
ot

s

Add. possible slots
Possible 2.5 ms slots

0%

20%

40%

60%

80%

100%

U
til

iz
at

io
n

Utilization
SlotUtilization

Fig. 4. Scheduling result for the case study.

a total utilization of 69,49%. (A payload of 34 bytes leads to a utilization
of 69.59%. Additionally, also the utilized slots would leave more space
for extesions, but only for the nodes which occupy them already)

The execution time of the proposed scheduling approach without
employing the global optimization loop, see Figure 3, was 8 s on an Intel
Core 2 Duo desktop PC with 2.4 GHz. As a reference, the best found
solution as presented previously with 58 Bytes and 69.46 % utilization
is used to investigate the efficiency of the global optimization loop. As
a meta-heuristic optimization approach, simulated annealing was applied.
The heuristic required an execution time of 19 minutes to find a solution of
equal quality (in fact the same) as the proposed overall design flow without
the global optimization. After 411 minutes, the optimization achieved an
improvement of the utilization of only 0.2 %.

The case study indicates that the proposed overall design flow with
its initial partitions based on rules of thumb may achieve very high
quality solutions immediately. Given an execution time of only 8 seconds
compared to several hours for an insignificant improvement of only 0.2%
bus load, the global optimization should only be applied for the final
system implementation. On the other hand, the 8 second execution time
enables an interactive development and the exploration of several possible
system architectures and, thus, provides a significant amount of automation
and support for the automotive system engineer.

VI. CONCLUSION AND FUTURE WORK

We showed that a holistic FlexRay scheduling approach requires a deep
investigation of the parameter set. FlexRay is highly configurable, but this
is, with respect to the schedule, its flaw. Once chosen, the parameter set
must not be changed during the lifetime of a car or even a platform of
cars. Thus, the first schedule applied should be optimal, leaving enough
space for future extensions of the system. In this work, we combined
the parametrization with the scheduling of the static and the dynamic
segment, due to their strong interdependence. The provided case studies
gives evidence that the proposed holistic approach delivers better results
than previous work.

REFERENCES

[1] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM
Syst. J., 4:25–30, March 1965.

[2] S. Ding, N. Murakami, H. Tomiyama, and H. Takada. A ga-based scheduling
method for flexray systems. EMSOFT, September 2005.

[3] FlexRay Consortium. http://www.flexray.com/.
[4] FlexRay Consortium. FlexRay Communications System - Protocol Specica-

tion Version 2.1 Revision A, December 2005.
[5] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by Simulated

Annealing. Science, 220(4598):671–680, 1983.
[6] M. Lukasiewycz, M. Glaß, P. Milbredt, and J. Teich. FlexRay Schedule

Optimization of the Static Segment. In Proceedings of CODES+ISSS, pages
363–372, 2009.

[7] I. Park. Flexray network parameter optimization method for automotive
applications. Industrial Electronics IEEE Transactions, 58(4):1449–1459,
2010.

[8] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the
flexray communication protocol. Real-Time Syst., 39:205–235, August 2008.

[9] E. G. Schmidt and K. Schmidt. Message scheduling for the flexray protocol:
The dynamic segment. IEEE Transactions on Vehicular Technology, 58(5),
2009.

[10] K. Schmidt and E. G. Schmidt. Message scheduling for the flexray protocol:
The static segment. IEEE Transactions on Vehicular Technology, 58(5), 2009.

[11] H. Zeng, A. Ghosal, and M. Di Natale. Timing analysis and optimization of
flexray dynamic segment. CIT, 1932-1939 (2010)., 2010.

[12] H. Zeng, W. Zheng, M. D. Natale, A. Ghosal, P. Giusto, and A. Sangio-
vanni-Vincentelli. Scheduling the flexray bus using optimization techniques.
Proceedings of DAC, 2009.


