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Abstract—This tutorial paper describes novel scalable, non-
linear/generic, and industrially-oriented approaches to perform
variation-aware modeling, verification, fault simulation, and test-
ing of analog/custom ICs. In the first section, Dimitri De Jonghe,
Elie Maricau, and Georges Gielen present a new advance in
extracting highly nonlinear, variation-aware behavioral models,
through the use of data mining and a re-framing of the model-
order reduction problem. In the next section, Trent McConaghy
describes new statistical machine learning techniques that enable
new classes of industrial EDA tools, which in turn are enabling
designers to perform fast and accurate PVT / statistical / high-
sigma design and verification. In the third section, Bratislav
Tasić presents a novel industrially-oriented approach to analog
fault simulation that also has applicability to variation-aware
design. In the final section, Haralampos Stratigopoulos describes
describes state-of-the-art analog testing approaches that address
process variability.

I. VARIATION-AWARE BEHAVIORAL MODELING OF

ANALOG CIRCUITS

A. Introduction

We present a new technique for accurate, reliable, be-

havioral model extraction for large analog circuits under

process variations. For a designer, the ideal tool does one-

click macromodel generation from a given circuit netlist,

with sufficient speed and accuracy, and without having to

go through procedural difficulties like model selection and

training. However, today’s analog/custom design flows have a

high degree of specialization, and increasingly have variation

/ reliability issues on advanced technology nodes. Meeting all

these requirements at once is a challenge for EDA developers.

Nonlinear Model Order Reduction (MOR) techniques,

which extract the necessary data from the internal circuit

description, are becoming a standard for accurate and efficient

model extraction [1]. In MOR techniques, data mining is

applied on the Modified Nodal Analysis (MNA) matrices while

the circuit is simulated in transient analysis [2]. Before the

matrix samples are stored in a database, useful information

is reduced to a minimum by matrix projection. The resulting

model is a collection of low-rank / low-order local expansion

points of the original system. During evaluation, the model
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points are retrieved from the database and stitched together

by interpolation [3].

Transfer Function Trajectories (TFT) is a recent ap-

proach that transforms MNA matrices into a mixed state

space/frequency description using nonlinear regression [4],

[5]. The resulting models contain a compact set of equations,

which are more easily ported to general-purpose simulators

than an interpolation database. They have good scalability,

accuracy, and need minimal training. For industrial usage,

process variations must be considered; to handle them, TFT

exploits modern machine learning techniques [6].

We now describe MNA-based modeling, then regression-

based model generation, and finally experimental results.

B. MNA-Based Modeling

A general expression for MNA-modelled circuits is given

by the nonlinear branch equation:

d

dt
q(v) + i(v) = Biin (1)

which is the typical representation of a system using a SPICE

simulator. v = v(t) ∈ R
N are the N unknown node voltages

and inductor currents in the circuit. iin = iin(t) ∈ R
Mi are

the external inputs to the circuit. q(.) and i(.) ∈ R
N×N are

matrix-valued functions describing the charges and currents of

nonlinear components. B ∈ R
N×Mi is a constant incidence

matrix mapping the inputs to the internal nodes of the circuit.

A general trajectory sampling method stores the linearized

conductance and capacitance matrices, G and C, that are re-

turned at each time point k by the Newton-Rhapson algorithm

during transient simulation [1], [2]:

G(k) = ∇i(v)|
vk

, C(k) = ∇q(v)|
vk

(2)

After running projection-based MOR, the reduced matrices

can be used as a low-order expansion point in a piecewise

model [2]. Alternatively, a compact nonlinear model can be

found by transforming the MNA samples into the frequency

domain:

H(k)(s) =
V (k)(s)

I
(k)
in (s)

=
(

G(k) + s · C(k)
)
−1

B (3)



where H(k)(s) is the frequency response at time step k. The
data transformation is depicted more in detail in Fig. 1.

Fig. 1. Transformation of MNA trajectory samples into the frequency domain.

The Transfer Function Trajectory (TFT) approach mod-

els the state-dependent transfer functions as a hyperplane

T (x(k), s) in a mixed state space/frequency domain [5]:

H(k)(s) ≈ T (x(k), s) =
P∑

p=1

r̂p(x
(k))

s+ âp(x(k))
(4)

Here, x(k) = x[k] is a state estimator that links each state

k to l1 delayed inputs (FIR), l2 delayed autoregressive outputs

(AR) and PVT parameters such as process variations σp,

mismatch σm and temperature T :

x[t] =
(

iin[t], ..., iin[t− l1]
︸ ︷︷ ︸

FIR

,v[t− 1], ...,v[t− l2]
︸ ︷︷ ︸

AR

,σp,σm, T
︸ ︷︷ ︸

PVT

)

(5)

A Hammerstein model breaks an n-dimensional nonlinear

mapping into three sequential blocks: an input nonlinearity,

then a linear mapping, and a nonlinear output mapping. TFT

casts the approximation of system (4) into such a model [5],

[7]. For the linear block, the Vector Fitting Algorithm extracts

a common set of P ≪ N stable poles aP . The nonlinear

blocks are derived from the indefinite integral of the residue

data {r̂p (x[k])}. The next section explores suitable high-

dimensional nonlinear regressors for these residue samples.

C. Multivariate Nonlinear Residue Regression

The computational complexity of the nonlinear Hammer-

stein functions is determined both by the number of deter-

ministic input parameters and stochastic process parameters.

The dimensionality of the problem is l1 + l2 + K + 1,
where K is the number of explanatory PVT parameters.

Moreover, strongly nonlinear dynamic behavior is expected

for large signal input waveforms. We consider these regression

approaches: multivariate adaptive regression splines (MARS)

[8], least-squares support vector machines (LS-SVM) [9] and

a recent deterministic symbolic regression technique, fast

function extraction (FFX) [6]. Interpolation algorithms are not

considered due to their poor extrapolation performance.

Fig. 2 shows the model generation flow. First, a set of

PVT samples is generated with, for example, Monte-Carlo

sampling. Of course, this can be replaced by a more advanced

active learning strategy. The data is further fitted with Vector

Fitting and Residue Fitting and finally translated to a Ham-

merstein structure.

Fig. 2. Variation-aware TFT modeling flow.

D. Experimental Results

The variation-aware TFT approach has been verified on the

high-speed output buffer example, described in detail in [5].

The average normalized error (NMSE) for FFX, MARS and

LS-SVM is 1.3%, 2.7% and 2.5% respectively.

Fig. 3. Output buffer results: Left: Normalized model error (NMSE) for FFX
as a function of process variations. Right: Comparison of the TFT regressors
for the static nonlinear function. The fast (FF), typical (TT) and slow (SS)
corner are also plotted.

II. INDUSTRIAL VARIATION-AWARE DESIGN AND

VERIFICATION OF CUSTOM ICS

As Moore’s Law progresses [10] and variation gets worse,

the traditional approaches are becoming inadequate. We now

describe the issues, and how modern variation-aware flows and

tools can help manage PVT and statistical variation.

A. Fast PVT Design and Verification

Process, voltage, and temperature (PVT) variations are often

modeled as a set of PVT corners. Traditionally, only a few

were needed: {FF, SS} x {min V, max V} x {min T, max

T} = 8. But modern processes have more modelsets, and

tighter margins mean that more intermediate values must be

considered. Consider the reference VCO from the TSMC AMS

Ref. Flow 2.0 [11] on TSMC 28nm. A reasonable setup has

15 modelset values, 3 values for temperature, and 5 values

for each of its three voltage variables, totalling 3375 corners.

HSPICETM takes 70 s to simulate this, therefore it takes 66

hours to evaluate all corners.

Designers may cope by guessing which corners cause the

worst-case performance, but a wrong guess could mean failure

in testing (leading to a re-spin), or failure in the field. One

alternative is linear sensitivity analysis, but it will miss the

worst-case corners whenever the response is not linear enough.

Quadratic modeling is a bit more general, but will fail if the

response is not quadratic enough.



A new alternative is FastPVT [12], which is both fast and

accurate. The idea is to cast the PVT problem as a global

optimization problem: minimize performance in the space of

PVT variation; then to solve it reliabily using adaptive machine

learning with arbitrarily nonlinear models [13] and SPICE in

the loop. On the VCO listed above, FastPVT found the worst-

case PVT corner, with confidence, in 371 simulations (versus

3375, for a 9.1x speedup).

We have benchmarked FastPVT on a suite of 108 represen-

tative industrial problems. Figure 4 left shows the distribution

of speedups. The average speedup was 11.3x, and the max-

imum speedup was 43.1x. For the 56 problems with >200

corners, the average speedup was 19.3x. A few problems had

speedup of just 1.0x, which simply indicated that there was so

little structure in the mapping from PVT variables to outputs

that adaptive modeling could not help.

FastPVT is part of the rapid-iteration design flow shown

in Figure 5 left. The idea is to first extract one or a few

design-specific PVT corners; then to design against them with

feedback from SPICE; and finally to verify. Design iterations

are fast because there are so few corners. If verification

succeeds, then the designer can go to layout; otherwise he/she

adds the failed corners and goes back to the design step.

Fig. 4. Left: Distribution of FastPVT speedups on 108 industrial problems.
Right: QQ plot of sense amp power distribution, comparing 1M MC samples
(1M simulations) to 100M HSMC samples (<10K simulations).

B. Fast Statistical Design and Verification

Of course, PVT is not always the way. Some designers have

access to sufficiently good statistical MOS models to consider

doing statistical analysis, which is inherently more accurate

than PVT. However, since Monte Carlo (MC) simulations are

far too slow within the design loop, MC is traditionally run

as a verification afterthought. For high-sigma, the challenge is

even greater, since it is not feasible to do the 5 billion MC

simulations to verify at 6 sigma yield. Finally, designers tend

to think in terms of corners, not statistics.

There is a way for handle these challenges. The key is to

extract statistical corners that actually bound the 3-sigma or

6-sigma output performances for the circuit, versus traditional

MOS corners like “FF” which bound the performances of the

device. Then, changing device sizes to improve performance

on statistical corners will improve the whole performance

distribution. This is followed up by verification. Figure 5

middle and right illustrates the statistical flows.

Fig. 5. Fast, accurate, scalable corner-based design flows for PVT (left),
3-sigma statistical (middle), and high-sigma statistical (right).

The statistical flows in Figure 5 require corner extraction /

verification tools that are fast, accurate, and scalable. These

lead to subproblems that can be addressed via advanced

statistical, optimization, and machine learning techniques.

3-sigma corner extraction uses nonparametric density esti-

mation [14] on a small set of MC samples to identify a 3-sigma

target output value, then optimizes in process variable space

to find a process point that meets the target value. 3-sigma

verification relies on scalable low-discrepancy sampling [15]

to minimize the number of samples to verify 3-sigma yield.

For high-sigma, importance sampling [16] and statistical

blockade [17] are popular in the literature; unfortunately,

those have yet to demonstrate scalability to more than 6-12

process variables. High-sigma MC (HSMC) [18] generates a

huge set of MC samples (e.g. 5 billion), then uses adaptive

machine learning to rapidly identify the MC samples that have

extreme output values and simulate them. HSMC has bounded

complexity because it operates on a finite set of samples; and

has been applied to industrial problems with >1000 variables.

Figure 4 right shows example results on a sense amp with

150 process variables; we see that HSMC is able to correctly

identify the tail (top right hand corner) from 100M samples

generated in <10K simulations.

These advanced techniques enable corner-based, accurate,

and scalable flows for PVT, statistical, and high-sigma varia-

tion. As Figure 5 illustrates, the flows are are identical, except

for the corner extraction / verification tool. The result is a

unified, designer-friendly approach for variation-aware design.

III. FAST FAULT SIMULATION ALGORITHM FOR FAULT

AND MONTE-CARLO SIMULATIONS

A. Introduction

Simulating modern Analog Mixed Signal circuits typically

requires significantly large CPU time, especially for Defect

Oriented Test (DOT) Fault and Monte-Carlo (MC) simu-

lations, where one needs to perform a significant number

of simulations per circuit, see [19]. Fault simulations for

DOT involve calculations of the impact of probable defects

(typically bridges or opens) that are injected into the netlist

of the circuit and performing analog simulation (e.g. DC,

Transient, and AC) of the predefined test benches. Since the



number of possible defects is large (typically 1000-50000

for moderately large IC) CPU time needed to complete the

analog simulations is hardly feasible. Therefore, multiple ideas

have been introduced to overcome this issue, see e.g. [20]–

[22]. In [23], [24] we introduced applications of the novel

simulation technique that provides a significant speedup for

fault simulations. Here we provide an overview of the Fast

Fault Simulation algorithm with the extension, results obtained

and possible applications for statistical MC simulations.

B. Fast Fault Simulation Algorithm

The standard way of performing the fault simulations is

launching a series of sequential simulation runs. The runs are

unrelated, i.e. every fault run simulates the entire time interval

without any reuse of the knowledge obtained from the golden

(fault free) and previous fault runs. The main idea of the Fast

Fault Simulation approach is the reuse of the already obtained

simulation data by defining a parallel run during which all the

circuits are simulated simultaneously, as shown in Figure 6.

Fig. 6. Comparison between standard approach and Fast Fault Simulation

The Fast Fault Simulation concept is based on usage of

the already obtained golden circuit solution as the initial

value of the Newton-Raphson iterative process (enabling faster

convergence) and the bypassing of the unchanged circuit parts

which are unaffected by the fault impact. The benefit of two

speedup concepts can be illustrated by an example, shown in

Figure 7, where an NXP automotive product with 61 faults

has been analyzed by applying a transient test.

Fig. 7. Reuse of golden solution and bypassing benefits of FFS algorithm
(bypassing = 1 means the whole matrix is solved)

Assuming that all fault simulations require similar effort

as the golden simulation (workload corresponding to the first

input on the horizontal axis), it is clear that the algorithm

introduce benefits from the both aspects which are multiplied

to provide the final speedup. In practical applications, the algo-

rithm performs significantly better than the standard approach,

as shown in Table I, where several designs have been analyzed.

TJA1050 and TJA1055 are NXP products from the family of

CAN Transceivers, while CDAC stands for Control Digital to

Analog Converter, an IP block used in multiple NXP products.

Test case Number CPU Time [s] CPU Time [s] Speedup

of faults fault-free circuit faulty circuits

TJA1050 DC 923 17278.56 40.91 422.8

TJA1050 TR 923 2750.54 139.36 19.8

TJA1055 TR 200 117984 36419.72 3.2

CDAC Test1 100 216756 56477.76 3.9

CDAC Test2 100 6852513 662074.77 10.4

TABLE I
FFS SPEEDUP RESULTS ON SEVERAL NXP DESIGNS

The results shown in Table I are produced by using NXP

in-house simulator Pstar. However, the idea is independent of

simulator or simulation technique, since the algorithm can be

easily superposed to any analysis of choice.

C. Fault Sensitivity Analysis

Although FFS algorithm introduces a significant speedup,

for the already mentioned DOT setups the performance is

not always sufficient. Therefore, for most frequently used

and time-consuming transient simulations we exploit two

additional characteristics of the fault simulation: 1) the main

objective of the DOT method is to establish the detection status

of a defect and not to determine the actual output values of the

faulty circuit, 2) the output value is often measured at a few

time points and therefore it is sufficient to compute the output

value only for these time points while many time points have

to be computed in a standard transient analysis. Therefore, we

introduce a notion of the numerical discrete bridge model that

is present in the topology of the circuit at measurement points

only, as shown in Figure 8.

Fig. 8. Time points reduction: (a) standard model (b) bridge present at the
measurements points only

Of course, such an approach introduces significantly larger

speedups, as well as inaccuracies of the fault solution. To keep,

at least partly, the accuracy under control, we introduce the

nonlinear correction technique, which is based on Newton-

Raphson iterative correction steps. The algorithm has been

applied on already mentioned TJA1055 with 18 tests and

38000 extracted faults. Matching vs. speedup results are shown

in Table II. Since there are typically a large number of

tests, overall accuracy is at the acceptable level for practical

application. For example, total of 150 tests for TJA1055 has

95.1% average matching, which proved accurate enough when

compared to 1.5M IC samples measured.



Algorithm Worst match Best match Speedup CPU time

Standard 100% 100% 1 3 years

Linear FSA 72% 97% 1050 1 day

Nonlinear FSA (5 iter) 89% 97% 238 4.2 days

Nonlinear FSA (10 iter) 92% 97% 173 5.8 days

TABLE II
FAULT SENSITIVITY ANALYSIS PERFORMANCE

D. Monte-Carlo Simulations

Comparing MC and fault simulation problems, it is clear

that there are similarities. For example, many MC samples

are quite close to the nominal value or at least to each

other. Therefore, combining multiple samples in a joined

run would allow to exploit similar benefits as introduced for

fault simulation problem. The main difficulty here is how

to superpose the simulation algorithm to dynamic sampling

techniques, i.e. the ones that choose new samples based on

the outcome of the previous ones.

IV. ADVANCES IN VARIATION-AWARE TESTING OF

ANALOG ICS

A. Analog Test Challenges in the SoC Era

Today’s circuit design trends, namely channel-length scal-

ing, dense integration of heterogeneous systems onto a single

die, reduction of the form factor, etc., as well as the re-

quirement to meet stringent specifications, result inadvertently

in increased process variability. This reality places an ever

increasing emphasis on efficient test strategies to screen out

and discard circuits that fail to meet the desired specifications.

To this end, there has been a shift in the analog test paradigm

in recent years towards full specification-based test suites. The

current practice nowadays is to verify indiscriminately, one-

by-one all the performances that are promised in the data-

sheet. As a result, the cost of high-volume testing has been

increased dramatically in the recent years. According to recent

industry reports [25], testing the analog, mixed-signal, and RF

functions of a modern SoC may reach more than 50% of the

overall production cost, including silicon and packaging costs.

The test cost is mainly due to the sophisticated automatic test

equipment that is required and the lengthy test times that are

involved. Thus, the reduction of test cost can be achieved by

minimizing the test time per device, by increasing the number

of devices that are tested in parallel, and by alleviating the

dependence on expensive test equipment.

B. Towards Analog Test Cost Reduction

1) Statistical test: A generic approach to reduce the test

cost is to replace the specification-based tests by alternate

measurements that can be extracted rapidly on a low-cost

assortment of test equipment. Thereafter, the performances

can be implicitly inferred from the alternate measurements, as

long as there exists a high level of correlation between them.

Typically, however, it is not possible to obtain a closed-form

mathematical expression of the mapping between the alternate

measurements and the performances. For this purpose, the

mapping is derived through statistical learning which employs

a representative sample of devices that is collected during

the ramp-up phase across different wafers and lots. Once the

mapping is derived, it can be readily used to test future devices

based solely on alternate measurements.

There are two types of mappings that we can establish. One

possibility is to perform a direct go/no-go test by learning the

mapping f1 : x → pass/fail, where x denotes the vector

of alternate measurements. The simplest approach is to assign

test limits individually to each of the alternate measurements

which effectively results in examining the footprint of x with

respect to the position of a hyper-rectangular in the alternate

measurement space. However, a hyper-rectangular acceptance

region is often a crude approximation and, thus, a more

sophisticated approach is to allocate a non-linear hyper-surface

[26]. The second possibility, known as alternate test, is to

predict the values of the individual performances by learning

mappings of the form f2j : x → pj , where pj is the j-
th performance, [27]. In this case, we learn n regression

functions, where n is the number of performances.

2) Built-in test: Built-in test consists of adding auxiliary

circuitry into the device with the aim to perform part of the

test on-chip and, thereby, to provide simple digital, DC or

low-frequency measurements to the test equipment or even

just the pass/fail information. Built-in test facilitates the test of

embedded blocks, enables parallel test, reduces the complexity

of test instrumentation, and helps to diagnose the source

of failure so as to provide valuable information for yield

enhancement.

One built-in test approach is to migrate some features of

the test equipment into the circuit, i.e. build a miniature

tester on-chip, in order to perform various curve tracing,

oscilloscope, and spectrum analysis tasks. Several integrated

test cores have been demonstrated aiming at characterizing

the baseband frequency response [28], generating arbitrary

band-limited waveforms [29], and digitizing arbitrary periodic

analog waveforms [29].

Built-in test can also rely on reconfiguring the device into an

easily testable form. For example, a loop-back connection can

be established between the transmitter and the receiver chains

of an RF transceiver, in order to use purely baseband test

signals [30]. Another idea is to connect the device in a negative

feedback loop during the test mode such that sustainable

oscillations are produced at the output [31]. The amplitude

and the frequency of the oscillation can be used to detect the

presence of defects within the device.

Another built-in test approach is to integrate sensors into the

device with the aim to extract digital, DC or low-frequency

test signatures that nevertheless carry higher frequency in-

formation. Several such sensors have been demonstrated for

RF devices, including envelope detectors [32], current sensors

[33], and process sensors [34]. Process sensors are particularly

attractive because they are non-intrusive, i.e. they do not

degrade the performance of the device, whereas the envelope

detectors and current sensors necessarily require to be co-

designed with the device. The process sensors are basic analog



stages that mimic part of the architecture of the device (i.e. bias

stage, current mirrors, etc.) or basic layout components (i.e.

transistor, capacitor, etc.). They are laid out in close proximity

to the device and they monitor it by virtue of being subjected

to the same process variations. In particular, any degradation

in the performances of the device reflects on the outputs of

the sensors that shift away from their nominal values.

3) Adaptive test: Adaptive test is the dynamic adjustment

of the test program (e.g. test limits, test content, and test

flow) based on historical and real-time test data. In effect,

the aim of adaptive test is to define a decision-tree structure

that in the extreme could result in each device being uniquely

tested by a flow dictated by the observed response and by

historical test data. Adaptive test consists in (a) eliminating

specification tests on a lot-to-lot basis [35], (b) adapting the

test limits based on the test results of the preceding device

in order to obtain better quality control [36], (c) changing the

order of specification tests on-the-fly to move forward tests that

have proven to detect many failing devices [37], (d) assessing

on-the-fly the confidence of test decisions based on alternate

measurements and, in case the test decision is deemed to be

prone to error, forward the device to the standard specification

test approach [38], (e) skip specification tests if their pass

probability is beyond a confidence level threshold [39].
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