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ABSTRACT
For a design with multiple functional errors, multiple patches
are usually needed to correct the design. Previous works on
logic rectification are limited to either single-fix or partial-fix
rectifications. In other words, only one or part of the erro-
neous behaviors can be fixed in one iteration. As a result,
it may lead to unnecessarily large patches or even failure
in rectification. In this paper, we propose a multi-patch
generation technique by interpolation with cofactor reduc-
tion. In particular, our method considers multiple errors in
the design simultaneously and generates multiple patches to
fix these errors. Experimental results show that the pro-
posed method is effective on a set of large circuits, including
the circuits synthesized from industrial register-transfer level
(RTL) designs.

1. INTRODUCTION
As VLSI technology continues to advance, late design mod-

ifications are nearly unavoidable in order to deal with the
specification changes or to repair the design bugs. For the
reasons of time-to-market and cost saving, it is unlikely that
the designers would modify the design in register-transfer
level (RTL) and re-run the flow from scratch. In contrast,
designers would like to produce patch circuits in gate-level
such that the design differences can be rectified with minimal
netlist changes. This procedure is called logic rectification.

In this paper, we consider the multi-error logic rectifica-
tion problem as follows. Given old and new circuits, where
the old circuit is an erroneous gate-level implementation con-
taining multiple errors, and the new circuit is a golden speci-
fication, we would like to generate multiple patches to fix the
errors in the old circuit and make it functionally equivalent
to the new one. The objective of the logic rectification prob-
lem is to minimize the total number of gates in the patches.
Note that in the sequel, we will use the term rectification
function instead of patch when we want to emphasize its
functional counterpart more than its component part.

In the literature, there are a number of logic rectifica-
tion methods. These methods can be classified into three
categories: fault modeling, resynthesis, and structure-based
methods. Fault modeling methods use common fault mod-
els to characterize the inconsistent behaviors between the
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old and new circuits [1, 6, 24]; however, when the old and
new circuits are synthesized from RTL designs, these two
circuits can be drastically changed due to logic synthesis.
Therefore, fault modeling methods are not adequate to de-
scribe the differences. Resynthesis methods utilize symbolic
techniques to fix erroneous designs [5, 9, 11, 14, 15, 16, 18,
27]. These methods are effective, but often with expensive
runtime cost. Structure-based methods identify the differ-
ences of the old and new circuits by comparing their circuit
structures [3, 4, 10, 12, 21]. These methods are efficient,
but limited by the circuit similarity between the old and
new circuits.

More recently, interpolation [7] is used to solve the logic
rectification problem. First, prior works [17, 26] utilize satis-
fiability (SAT) solver and interpolation to synthesize single-
fix rectification function. This approach, however, is only
adequate to the rectification problem containing single er-
ror. Handling multi-error cases relies on heuristic techniques
which may not be effective. Second, the work in [23] uses
interpolation to generate partial-fix rectification function.
This method performs multiple passes of partial rectifica-
tions to fix multiple errors in the design. Although this
approach can handle the problem efficiently, it does not con-
sider the correlations between multiple errors in the design.
That is, each error in the design is considered independently.
Therefore, this approach cannot effectively handle certain
difficult cases.

This paper proposes a new algorithm to produce multi-fix
rectification functions by interpolation. In contrast to prior
work [23], our method considers multiple design errors si-
multaneously. When there are several differences between
the old and new circuits, our approach is especially advan-
tageous. Moreover, our method does not depend on any
fault model or structural similarity. The main contributions
of this paper include: 1) It derives the necessary and suffi-
cient conditions for the existence of the multi-fix rectification
functions. 2) It solves the multiple error rectifiability prob-
lem by SAT solver with cofactor reduction. 3) It generates
multi-fix rectification functions by interpolation with cofac-
tor reduction. Experimental results demonstrate that our
method is effective in multi-error logic rectification. Com-
pared to [23], the quality of our results substantially outper-
forms [23], and total patch size improvement can be up to
89%. Moreover, our algorithm is applicable to the circuits
synthesized from industrial RTL designs.

The rest of this paper is organized as follows. Section 2
introduces terminologies and backgrounds. The proposed
algorithm is presented in Section 3, and the experimental
results are demonstrated in Section 4. Finally, Section 5
concludes our paper.



2. PRELIMINARIES
In this paper, we use the notation ~v = (v1, . . . , vm) to

denote a vector. The cardinality of a vector ~v is denoted by
|~v|. For simplicity, we define two vector operators as follows.
The interval operator [·, ·] of a vector ~v is defined by

~v[i,j] = (vi, vi+1, . . . , vj).

The concatenation operator [· ‖ ·] of two vectors ~u and
~v is defined by

[~u ‖ ~v] = (u1, . . . , u|~u|, v1, . . . , v|~v|).

For the logic rectification problem, we use multiple-output
functions F (~x) = 〈f1(~x), . . . , fn(~x)〉 and G(~x) = 〈g1(~x), . . . ,
gn(~x)〉 to denote the functions of the old and new circuits,
respectively. Moreover, we use ~r to denote a vector of signals
with |~r| = m.

Let F (~x, ~r) be the function expressed in terms of inputs
~x and internal signals ~r. Given functions F and G with
internal signals ~r, we define the rectification miter as

RM(~x, ~r)
∆
= F (~x, ~r) 6≡ G(~x).

We use the term rectifying vector to denote a truth as-
signment ~v to signals ~r. Lastly, we define the rectifying
cofactor of RM with respect to ~v as RM(~x, ~r = ~v).

2.1 Rectification Functions
In this subsection, we first review the definitions of single-

fix and multi-fix rectification functions in terms of the nota-
tions defined above.

Definition 1. Given old and new functions F (~x) and
G(~x), we say that F (~x) is single-rectifiable with respect to
G(~x) if there exists a Boolean function s, called the single-
fix rectification function, such that F (~x, r = s(~x)) ≡
G(~x), where variable r is an internal signal in the function
F .

Definition 2. Given old and new functions F (~x) and
G(~x), we say that F (~x) is multi-rectifiable with respect to
G(~x) if there exists a set of Boolean functions {p1, . . . , pm},
called the multi-fix rectification functions, such that
F (~x, r1 = p1(~x), . . . , rm = pm(~x)) ≡ G(~x), where variables
ri’s are internal signals in the function F .

From the definitions, we can see that the single-fix rec-
tification function is a special case of the multi-fix rectifi-
cation functions when m = 1. While the necessary and
sufficient conditions for the existence of the single-fix rectifi-
cation function was given in [15, 18], in this paper, we derive
the necessary and sufficient conditions for the existence of
the multi-fix rectification functions in Section 3. Moreover,
we use interpolation and cofactor reduction techniques to
produce them.

2.2 Interpolation and Rectification Functions
To introduce the interpolation technique behind our method,

we review the following theorem.

Theorem 1 (Craig Interpolation Theorem). [7]
Given two Boolean formulae A and B, with A ∧ B unsatis-
fiable, there exists a Boolean formula I such that 1) A⇒ I,
2) I ∧B is unsatisfiable, and 3) I refers only to the common
variables of A and B.

The Boolean formula I is called the interpolant of A and
B. Given a refutation proof of A and B, the interpolant

can be derived in linear time [19, 20]. In this paper, we use
ITP (A,B) to denote the interpolation procedure proposed
in [19].

In the literature, there are two types of rectification func-
tions which can be constructed by interpolation. First, prior
works [17, 26] use interpolation to produce a single-fix rec-
tification function. Second, the work in [23] utilizes multi-
ple passes of partial rectifications to fix multiple errors in
the old circuit. However, these works generate one recti-
fication function in one iteration without considering the
rectification functions in other iterations. Therefore, these
approaches can lead to unnecessarily large patches because
the correlations between the rectification functions in differ-
ent iterations are not considered. In this paper, we resolve
the above shortcomings and propose an algorithm to pro-
duce multi-fix rectification functions.

3. CONSTRUCTING MULTI-FIX RECTIFI-
CATION FUNCTIONS

3.1 Multiple Error Rectifiability Problem
Given old and new functions F (~x) and G(~x) with inter-

nal signals ~r in F , the multiple error rectifiability problem
is to determine whether F (~x) is multi-rectifiable at signals
~r. Intuitively, F (~x) is multi-rectifiable if for each minterm
~x, there exists a truth assignment to signals ~r such that
F (~x, ~r) ≡ G(~x). Formally, we have the following proposi-
tion.

Proposition 1. For multiple-output functions F = 〈f1,
. . . , fn〉 and G = 〈g1, . . . , gn〉, function F (~x) is multi-rectifiable
at internal signals ~r with respect to G(~x) if and only if

∀~x.∃~r.F (~x, ~r) ≡ G(~x) (1)

is evaluated to true.

The above single alternation ∀∃-formula is a 2QBF for-
mula. Solving this specific 2QBF formula is a ΠP

2 -complete
problem [25]. In the following subsections, we will demon-
strate how we can effectively reduce this problem to a SAT
problem, and use interpolation techniques to generate recti-
fication functions as by-products. This is achieved by first
conducting a translation to reduce 2QBF to SAT, and then
perform a cofactor reduction technique for rectification func-
tion generation.

3.2 Solving Rectifiability Problem by Satisfia-
bility with Cofactor Reduction

According to Proposition 1, the multiple error rectifiabil-
ity problem can be solved by QBF solver. However, since
Formula (1) is a special 2QBF formula, we can simply trans-
late it to a SAT formula. More importantly, by utilizing the
unsatisfiability proof of a SAT solver, we can generate multi-
ple interpolants which are the desired rectification functions.
The following lemma reduces the multiple error rectifiability
problem to a SAT problem.

Lemma 1. For multiple-output functions F = 〈f1, . . . , fn〉
and G = 〈g1, . . . , gn〉, function F (~x) is multi-rectifiable at
internal signals ~r with respect to G(~x) if and only if∧

~v∈B|~r|

RM(~x, ~r = ~v) (2)

is unsatisfiable.



Proof. By taking the negation of Formula (1), we obtain

∃~x.∀~r.F (~x, ~r) 6≡ G(~x)

is evaluated to false, which is equivalent to the unsatisfiabil-
ity of Formula (2).

The intuitive meaning of Lemma 1 can be explained as
follows. If Formula (2) is unsatisfiable, then each input
minterm ~x can make certain rectifying cofactor RM(~x, ~r =
~v) unsatisfiable. That is, each minterm ~x can be rectified
by the corresponding rectifying vector ~v. Therefore, we can
conclude that the old function F can be rectified at the in-
ternal signals ~r.

However, evaluating Formula (2) in Lemma 1 involves a
satisfiability solving of an exponential number of RM(~x, ~r =
~v) terms. To simplify the computation, we propose a cofac-
tor reduction technique in Algorithm 1 which can alleviate
the computational cost for most practical cases.

Algorithm 1 CofactorReduction(F (~x), G(~x), ~r)

1: rv-set← {(0, 0, . . . , 0)}
2: rc-set(~x)← RM(~x, ~r = (0, 0, . . . , 0))
3: loop
4: result← SatSolve(rc-set(~x))
5: if result == UNSAT then
6: return UNSAT
7: else {with SAT assignment ~x∗}
8: result← SatSolve(¬RM(~x = ~x∗, ~r))
9: if result == UNSAT then

10: return SAT
11: else {with SAT assignment ~v∗}
12: rv-set← rv-set ∪ ~v∗
13: rc-set(~x)← rc-set(~x) ∧RM(~x, ~r = ~v∗)
14: end if
15: end if
16: end loop

Algorithm CofactorReduction above presents an implemen-
tation of the satisfiability check for Formula (2) in an iter-
ative manner. Let rv-set and rc-set be sets of rectifying
vectors and cofactors, respectively. These two sets will grow
synchronously in the algorithm. Initially, rc-set(~x) equals
RM(~x, ~r = (0, 0, . . . , 0)). After starting the loop, rc-set(~x)
will be iteratively conjuncted with other rectifying cofac-
tors. In the loop body of the algorithm, the satisfiability
of rc-set(~x) is firstly determined. If the result is unsatisfi-
able, it means that each input minterm can make at least
one rectifying cofactor in rc-set unsatisfiable. Therefore, the
current rv-set can rectify all input minterms. The algorithm
then returns UNSAT and terminates. On the other hand,
if the result is satisfiable, we can obtain a satisfying assign-
ment ~x∗ that satisfies all rectifying cofactors in rc-set and
conclude that the current rectifying vectors in rv-set can-
not rectify the input minterm ~x∗. Then, a SAT solver is
invoked on formula ¬RM(~x = ~x∗, ~r). The purpose of this
SAT solving is to check whether there exists another rec-
tifying vector which can rectify the input minterm ~x∗. If
the SAT solver returns UNSAT, it means that every rectify-
ing vector cannot rectify the input minterm ~x∗. Hence, the
algorithm returns SAT. Otherwise, the SAT solver returns
SAT with a satisfying assignment ~v∗ which can rectify the
input minterm ~x∗. Therefore, rc-set(~x) is conjuncted with
a new rectifying cofactor RM(~x, ~r = ~v∗), and ~v∗ is added to
rv-set. The algorithm then goes to line 3 and iterates.

Proposition 2. Algorithm CofactorReduction decides the
satisfiability of Formula (2).

With the cofactor reduction technique, evaluating For-
mula (2) only needs to consider the set rc-set of rectifying
cofactors instead of expanding all rectifying cofactors. The
following lemma utilizes the set rv-set of rectifying vectors
recorded in Algorithm CofactorReduction to solve the multi-
ple error rectifiability problem.

Lemma 2. For multiple-output functions F = 〈f1, . . . , fn〉
and G = 〈g1, . . . , gn〉, function F (~x) is multi-rectifiable at
internal signals ~r with respect to G(~x) if and only if∧

~v∈rv-set
RM(~x, ~r = ~v) (3)

is unsatisfiable.

Proof. This lemma can be proved by Lemma 1 and Propo-
sition 2.

3.3 Generating Rectification Functions by In-
terpolation with Cofactor Reduction

To perform the rectification function construction with
cofactor reduction, we first define rv-set0(i) and rv-set1(i)
for the i-th value of a given rv-set of rectifying vectors as
follows.

rv-set0(i) = {~v[i,m] | ~v ∈ rv-set and vi = 0}
rv-set1(i) = {~v[i,m] | ~v ∈ rv-set and vi = 1}

Example 1. Let rv-set = {(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)}.
Then rv-set0(1) = {(0, 0, 0), (0, 1, 1)}, rv-set1(1) = {(1, 0, 0),
(1, 1, 1)}, rv-set0(2) = {(0, 0)}, rv-set1(2) = {(1, 1)}, rv-set0(3)
= {0}, and rv-set1(3) = {1}.

Next we show that given old and new functions F and
G with internal signals ~r in F and the set rv-set, when
Formula (3) is unsatisfiable, we can derive a set of multi-
fix rectification functions ~p at signals ~r. These rectification
functions pi’s can be obtained through the following iterative
derivation.

pon1 (~x) =
∧

~v∈rv-set0(1)

RM(~x, ~r = ~v)

poff1 (~x) =
∧

~v∈rv-set1(1)

RM(~x, ~r = ~v)

p1(~x) = ITP (pon1 (~x), poff1 (~x))

...

poni (~x) =
∧

~v∈rv-set0(i)

RM(~x, ~r = [~p[1,i−1] ‖ ~v])

poffi (~x) =
∧

~v∈rv-set1(i)

RM(~x, ~r = [~p[1,i−1] ‖ ~v])

pi(~x) = ITP (poni (~x), poffi (~x))

...

ponm (~x) = RM(~x, ~r = [~p[1,m−1] ‖ 0])

poffm (~x) = RM(~x, ~r = [~p[1,m−1] ‖ 1])

pm(~x) = ITP (ponm (~x), poffm (~x))



Lemma 3. Given a function F which is multi-rectifiable
at internal signals ~r with respect to G, then

poni ∧ poffi

is unsatisfiable, where i = 1, . . . ,m.

Proof. This lemma can be proved by induction on i.
Due to the space limitation, we omit the proof here.

Since poni ∧poffi is unsatisfiable, the interpolant of poni and

poffi , i.e., the function pi, is guaranteed to exist. In addi-
tion to the existence of functions pi’s, the following theorem
shows that these functions indeed constitute a set of multi-
fix rectification functions which can correct the old function
F (~x).

Theorem 2. Given a function F which is multi-rectifiable
at internal signals ~r with respect to G, we have F (~x, r1 =
p1(~x), . . . , rm = pm(~x)) ≡ G(~x) for rectification functions
pi’s obtained by the above derivation.

Proof. By Lemma 3 and interpolation theorem, function
pm is guaranteed to exist. Thus, the equation

ponm (~x) ≤ pm(~x) ≤ ¬poffm (~x) (4)

holds. Consider a minterm ~x∗ which makes pm(~x∗) = 0. By
definition and Equation (4), we have

F (~x∗, r1 = p1(~x∗), . . . , rm = pm(~x∗)) 6≡ G(~x∗)

= F (~x∗, r1 = p1(~x∗), . . . , rm = 0) 6≡ G(~x∗)

= RM(~x∗, ~r = [~p[1,m−1] ‖ 0])

= ponm (~x∗)

≤ pm(~x∗)

= 0

Similarly, for a minterm ~x∗ which makes pm(~x∗) = 1, we
can also derive the same result. Therefore, after attaching
all rectification functions pi’s to signal ri’s, there is no error
minterm between F and G.

Example 2. Continue Example 1. With cofactor reduc-
tion, we need to consider the following rectifying cofactors
during the construction.

pon1 (~x) = RM(~x, ~r = (0, 0, 0)) ∧RM(~x, ~r = (0, 1, 1))

poff1 (~x) = RM(~x, ~r = (1, 0, 0)) ∧RM(~x, ~r = (1, 1, 1))

pon2 (~x) = RM(~x, ~r = [p1 ‖ (0, 0)])

poff2 (~x) = RM(~x, ~r = [p1 ‖ (1, 1)])

pon3 (~x) = RM(~x, ~r = [~p[1,2] ‖ 0])

poff3 (~x) = RM(~x, ~r = [~p[1,2] ‖ 1])

The number of RM terms for constructing the rectification
functions pi’s is 8. Without cofactor reduction, rv-set will
include all rectifying vectors. Therefore, we need to consider
the following rectifying cofactors.

pon1 (~x) = RM(~x, ~r = (0, 0, 0)) ∧RM(~x, ~r = (0, 0, 1))∧
RM(~x, ~r = (0, 1, 0)) ∧RM(~x, ~r = (0, 1, 1))

poff1 (~x) = RM(~x, ~r = (1, 0, 0)) ∧RM(~x, ~r = (1, 0, 1))∧
RM(~x, ~r = (1, 1, 0)) ∧RM(~x, ~r = (1, 1, 1))

pon2 (~x) = RM(~x, ~r = [p1 ‖ (0, 0)]) ∧RM(~x, ~r = [p1 ‖ (0, 1)])

poff2 (~x) = RM(~x, ~r = [p1 ‖ (1, 0)]) ∧RM(~x, ~r = [p1 ‖ (1, 1)])

pon3 (~x) = RM(~x, ~r = [~p[1,2] ‖ 0])

poff3 (~x) = RM(~x, ~r = [~p[1,2] ‖ 1])

In this case, we need 14 rectifying cofactors.

Old circuit

New circuit

Counter-examples 

generation

Backward 

propagation

SAT-based 

diagnosis

Multi-fix rectification 

function generation
Success?

Yes

No

Done

Figure 1: The integrated logic rectification flow.

3.4 Integrated Logic Rectification Flow
In this section, we introduce the main flow of our algo-

rithm. Given old and new circuits, our flow iteratively diag-
noses a set of error locations. Based on these error locations,
multi-fix rectification functions are generated by interpola-
tion to rectify the old circuit. Once the rectification proce-
dure succeeds, the process terminates. As shown in Figure
1, our flow includes counter-example generation, backward
propagation, SAT-based diagnosis, and multi-fix rectifica-
tion function generation.

To facilitate the diagnosis process, a set of counter-examples
which are the nonequivalent assignments of F (~x) and G(~x)
is generated by combinational equivalence checker. Then,
backward propagation [13] is performed for each counter-
example to mark the signals that, when the value of any one
of them is changed, the erroneous output response can be
rectified. Intuitively, these marked signals can be treated
as error location candidates, which will be later used for
inserting multiplexers at the SAT-based diagnosis stage.

The SAT-based diagnosis technique used in our flow is
based on the work by Smith et al. [22]. Given old and new
circuits with a set of counter-examples, and a set of correct
output responses, we first insert multiplexers at the error lo-
cation candidates. Then, the diagnosis procedure will return
a set of error locations with predetermined size. The prede-
termined size can be enforced by cardinality constraints [22],
which can be dynamically adjusted. If the diagnosis proce-
dure fails to find the error locations, we can enlarge the
predetermined size by adjusting the cardinality constraints.
Note that we adopted Smith’s technique [22] due to its scal-
ability. Any other efficient diagnosis method can be used as
well.

After finding a set of error locations, the flow proceeds to
generate multi-fix rectification functions by interpolation. If
the rectification process fails, the main procedure goes to
the diagnosis step and iterates.

4. EXPERIMENTAL RESULTS
Our algorithm was implemented in C language in ABC [2]

using MiniSAT [8] as the SAT solver. We conducted exper-
iments for both benchmark circuits and industrial designs
on a Linux machine with Intel Xeon 2GHz CPU and 16GB
memory. The correctness of the experiments was verified by
the ABC command cec.

The first set of our experiments are on the circuits in IS-
CAS89 and ITC99 benchmarks. Sequential circuits are con-
verted to combinational by cutting off sequential elements
and treating their inputs and outputs as primary outputs
and inputs, respectively. The old and new circuits in the
benchmark suites are created for the experiments as follows.
The old circuit is changed from the original one by cube
modifications. To perform the modification, we implement
a program to change cubes randomly from the functions of
selected gates. Then the modified and original circuits are



optimized and mapped by ABC with command map using
cadence.genlib technology library to produce old and new
circuits, respectively. After that, the old and new circuits
are both structurally and functionally different.

We compare our results with [23], a most recent work in
the literature which uses interpolation to generate partial-fix
rectification functions. Table 1 and Table 2 summarize the
first set of experimental results. For each circuit, we con-
ducted experiments with three settings including one cube
modification (1C), two cube modifications (2C), and three
cube modifications (3C) on the old circuit. For each circuit
and for each setting, we randomly ran the experiments three
times and the result was averaged over these three individ-
ual experiments. Table 1 shows the number of cells on the
old and new circuits in each setting. For Table 2, Columns
2 to 4 are the patch sizes of our method and Columns 5
to 7 are the patch sizes of [23]. The corresponding runtime
of our method and [23] are shown in Columns 9 to 11 and
Columns 12 to 14, respectively. Column 8 and Column 15
are the average values of the ratios which are defined below:

Ratiop =

C2
C5

+ C3
C6

+ C4
C7

3
, and

Ratiot =

C9
C12

+ C10
C13

+ C11
C14

3
,

where Ci represents the value of Column i. Among all of
these testcases, our method can consistently produce much
better results and the total average ratio of patch size is
about 11%. This means we can use only one tenth of gate
counts in [23] to fix the old circuit. For the cases of s15850,
s15850.1, and s38417, the patch sizes in our approach are
less than 5% of the patch size in [23]. Although there are
some testcases which spend more time in our method, the
overheads are acceptable with the benefit of much smaller
patch sizes.

Furthermore, another set of experiments are designed to
demonstrate the applicability of our approach. Table 3 shows
the experimental results for RTL designs. SDRAM implements
the finite state machine in a SDRAM controller. I2C is a
two-wire and bidirectional serial bus that provides a sim-
ple and efficient method of data exchange between devices.
VGA_PGEN_M represents the OpenCores VGA/LCD controller
core. This set of experiments are conducted as follows. We
perform two types of modifications to alter the RTL designs -
replacing the logic operations (logic), and changing the wire
connections (rewire). After being converted from RTL into
the blif format by using our internally developed synthesis
tool, the old and new circuits are optimized and mapped by
the same way as the first set of our experiments. The results
show the patch sizes in our approach are much smaller than
the patch sizes in [23], so our approach is also applicable for
RTL designs.

Finally, we conduct another set of experiments to demon-
strate the effectiveness of the cofactor reduction technique.
The results are plotted in Figure 2. Both x-axis and y-axis
units are in log scale. If a point is above the dotted line,
it indicates that our approach with cofactor reduction out-
performs the one without cofactor reduction. According to
Figure 2, we can see that for different sizes of circuits, the
cofactor reduction technique helps in reducing the runtime
in most of the cases.

5. CONCLUSIONS
We have presented a novel logic rectification algorithm by

Table 1: Profile of ISCAS89 and ITC99 benchmarks.
Old #Cells New #Cells

Circuits 1C 2C 3C

s3271 705 704 705 705
s3384 671 674 669 672
s6669 1468 1468 1467 1468
s9234.1 1188 1206 1205 1205
s13207 1781 1789 1789 1789
s15850 2011 2008 2008 2012

s15850.1 2014 2020 2017 2019
s35932 4645 4644 4647 4646

s38584.1 6650 6651 6647 6651
s38417 5286 5286 5287 5286
b14 3478 3479 3480 3477
b15 4924 4928 4923 4929
b17 15237 15255 15269 15237
b20 7063 7066 7061 7064
b21 7226 7219 7217 7217
b22 10819 10821 10818 10817

interpolation. By deriving the necessary and sufficient con-
ditions for the existence of multi-fix rectification functions,
our method generates these functions to fix the erroneous
gate-level implementation. In addition, we propose a cofac-
tor reduction technique to alleviate the computational cost.
Experimental results demonstrate that our integrated logic
rectification algorithm is efficient and effective, and the gen-
erated patches can be maintained in a small size. Moreover,
the results show that our algorithm is applicable to the cir-
cuits synthesized from real RTL designs.
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Figure 2: Effects of cofactor reduction.
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