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Processor architectures with Fine-Grained Reconfigurable Ac-
celerators (FGRAs) allow for a high degree of adaptivity to address
varying application requirements. When processing computation
intensive kernels, multiple FGRAs may be used to execute a
complex function. In order to exploit the adaptivity of a fine-
grained reconfigurable fabric, a runtime system should decide
when and which FGRAs to reconfigure with respect to application
requirements. To enable this adaptivity, a flexible infrastructure
is required that allows combining FGRAs to execute complex
functions.

We propose a mixed-grained reconfigurable architecture com-
posed from a Coarse-Grained Reconfigurable Infrastructure
(CGRI) that connects the FGRAs. At runtime we synthesize CGRI
configurations that depend on decisions of the runtime system, e.g.
which FGRAs shall be reconfigured. Synthesis and place & route
of the FGRAs are done at compile time for performance reasons.
Combined, this results in a partial online synthesis for mixed-
grained reconfigurable architectures, which allows maintaining a
low runtime overhead while exploiting the inherent adaptivity of
the reconfigurable fabric. In this work we focus on the crucial
parts of synthesizing the configurations for the CGRI at runtime,
propose algorithms, and compare their performance/overhead
trade-offs for different application scenarios.

We are the first to exploit the increased adaptivity of FGRAs
that are connected by a CGRI, by using our partial online synthe-
sis. In comparison to a state-of-the-art reconfigurable architecture
that synthesizes the configurations for the CGRI at compile time
we obtain an average speedup of 1.79x.

I. INTRODUCTION & RELATED WORK

Complex embedded applications like H.264 video encoding often
consist of multiple computation intensive kernels. Their computation
requirements can be addressed by employing a reconfigurable fabric
to implement fine-grained reconfigurable accelerators (FGRAs) in
an embedded field-programmable gate array (eFPGA) [1,2]. In the
remainder of this paper we focus on reconfigurable architectures that
comprise a standard (fixed) processor pipeline plus a reconfigurable
fabric (eFPGA) to implement FGRAs.

A characteristic trait of reconfigurable fabrics is their granularity
[3]. Fine-grained reconfiguration is based on lookup tables and is used
to implement arbitrary logic like FGRAs. Architectures using FGRAs
include MOLEN [4] or XiSystem [5]. The main disadvantage of fine-
grained reconfiguration is the considerable amount of time to perform
a reconfiguration that can take up to several milliseconds (0.6-0.7 ms
for the FGRAs on our prototype).

Coarse-grained reconfigurable architectures such as Montium [6],
ADRES [7], or XPP [8] use an array of processing elements (PEs)
connected by a coarse-grained reconfigurable infrastructure (CGRI).
The PEs perform operations (e.g. additions or multiplications) on
(sub-)word level and the CGRI allows to connect several PEs to
implement dataflow graphs (DFGs). The amount of configuration data
to configure PEs and CGRI is rather small (e.g. with 5 bits a PE
can be configured to perform 1 out of 32 different operations) and
thus a new configuration can be established in a very short time (e.g.
in a single cycle for Montium [6]). Unlike FGRA reconfiguration,
switching the CGRI into a new configuration does not require loading
a new bitstream (in fact, the CGRI can be implemented as an

Fig. 1: Architecture of a runtime-reconfigurable processor

ASIC), thus resulting in the short configuration time. However, using
coarse-grained reconfiguration to implement bit/byte operations or
state machines etc. leads to an inefficient use of resources. Bit/byte
operations (e.g. changing the sequence of bits in a word) can be
implemented by using several PEs that perform shift- and logical
operations. A fine-grained reconfigurable fabric can directly implement
such operations in a single FGRA, thereby also providing an improved
performance compared to a coarse-grained implementation, as the
operation can usually be completed in one cycle in an FGRA. As
both granularities have advantages and disadvantages [3], we employ
a mixed-grained reconfigurable architecture, featuring fine-grained and
coarse-grained reconfiguration to exploit their respective advantages.
Figure 1 shows the mixed-grained target architecture of this work,
based on [9]. FGRAs are reconfigured onto so-called containers and
communication between the containers is established by the CGRI
[10]. The CGRI is composed of an array of connectors (one per
container) that are connected by links.

Mixed-grained architectures are also used by the RISPP [11] and
KAHRISMA [12] projects. In addition to the FGRA and CGRI,
KAHRISMA also employs coarse-grained reconfigurable PEs. Both
projects propose runtime systems that perform parts of the reconfigu-
ration decisions [11,13]. Their focus is on high-level runtime decisions
such as the amount of FGRAs that shall be reconfigured and the
sequence in which they shall be reconfigured onto the fabric. Methods
to deal with disadvantages of fine-grained reconfiguration, i.e. long
reconfiguration time, have been investigated in both projects, e.g. in
[11]. This is especially important for applications whose behavior
heavily depends on input data (e.g. an H.264 video encoder has
different computational demands when encoding a slow changing
video frame sequence in comparison to a hectic scene with many
movements). However, they do not address the details of ‘where’
to load FGRAs on the fabric (into which container) and ‘how’ to
connect them, i.e. they do not determine the configuration of the
CGRI. This configuration is required to process complex kernels that
demand more than one FGRA and it cannot be created at compile time
as it depends on runtime decisions (demonstrated in Section II-D).
The already existing high-level runtime systems of both systems are
orthogonal to the low-level fabric configuration decisions addressed in
this work, i.e. this work can be integrated into the runtime systems of
the aforementioned projects.

Approaches on placement of tasks on reconfigurable fabrics have
been explored. [14] presents an offline approach using ILP and [15]
presents an online approach for 2D placement, which however does not
regard communication-induced constraints between placed modules.
An online synthesis approach for a fine-grained reconfigurable fabric is
proposed in [16], where FGRAs are synthesized at runtime. However,
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Fig. 2: (a) Dataflow Graph (DFG) of a Special Instruction (SI) (b) Different combinations
of available FGRAs (i.e. FGRAs that are reconfigured into a container at a certain time)
result in SI variants that differ in their execution latency

the high overhead of synthesizing FGRAs reduces the performance in
case of frequently changing application requirements (e.g. input-data
dependent functions in a video encoder) as they would lead to frequent
re-synthesis. Therefore, we synthesize the FGRAs at compile time
and focus on synthesizing the configuration of the CGRI at runtime.
The authors of [17] target a coarse-grained reconfigurable fabric and
perform online synthesis of the CGRI. However, as they do not use
FGRAs (and thus do not benefit from their performance), they do not
address placement of FGRAs and binding of operations to FGRAs at
runtime (details explained in next section).

The paper organization is as follows: in Section II we provide a
brief overview of how the FGRAs are invoked by an application and
how the CGRI is used to connect them. After that, we explain the
synthesis problem that needs to be solved, state the novel contribution
of our partial online-synthesis, and provide a motivational case study
why it cannot be performed at compile time. The concepts of hazards
and how we address them is explained in Section III before presenting
and discussing our solutions for placement and binding in Sections IV
and V, respectively. Experimental results and overhead analysis are
presented and discussed in Section VI and Section VII concludes the
paper.

II. DEFINITIONS, PROBLEM STATEMENT,
AND NOVEL CONTRIBUTION

A. Special Instructions

Special Instructions (SIs) are extensions to the instruction set
architecture of a standard processor pipeline (see Figure 1). They
serve as the interface between applications and the reconfigurable
fabric and access their inputs and outputs from main memory or the
register file. Computation intensive kernels are common candidates for
acceleration via SIs. The application programmer invokes SIs in the
application (e.g. using inline assembly code) and the runtime system
of the reconfigurable processor controls the reconfigurations of the
FGRAs. The actions taken by the runtime system to create a datapath
of FGRAs on the fabric from an SI invocation, are described in the
remainder of this chapter.

An SI is described by an acyclic data-flow graph (DFG) as shown
in Figure 2a. The DFG consists of |V | operations oi, 0 ≤ i < |V |
of T ≤ |V | different types tk = t(oi), 0 ≤ k < T and directed data
transfers di,j between nodes oi and oj . There shall be |A| FGRAs
am, 0 ≤ m < |A| available to the system. Each operation oi is
implemented by an FGRA am of the same type t(oi) = t(am).
The complexity of an operation exceeds the complexity of a simple
arithmetic or logical function. An FGRA can perform transformation,
coding, or filter operations on its input data. The amount of cycles to
complete an operation oi is annotated in its type t(oi) (e.g. operations
that fetch data from main memory require at least 2 cycles). For
example, to execute a 2D discrete cosine transformation (DCT), a
horizontal as well as a vertical transformation is required. The SI

input data is sent to FGRAs for transformations (performing horizontal
DCT), that output is sent to another type of FGRAs that rearrange
the data (because vertical and horizontal DCT have different access
patterns), and that output is send back to the FGRAs for transformation
(performing vertical DCT) before storing the results.

An SI exists in different SI variants that differ in the number of
FGRAs that are used to implement the DFG. Figure 2b shows an
example for two different SI variants for the DFG in Figure 2a. The
quantity of FGRAs of a certain type tk that are used to implement an
SI variant is denoted as q(tk) ∈ N. It affects the number of control
steps that are required to execute the SI variant (and its execution
latency in cycles) as shown in Figure 2b.

B. Partial Online-Synthesis
In this paper, we focus on synthesizing the configuration data for

the CGRI. Synthesizing the FGRAs and creating the SI DFGs is done
at compile time. The steps that are required to synthesize the DFG
into a CGRI configuration are: Allocation, Scheduling, Placement, and
Binding as described in the following.

The allocation decides the quantity q(tk) of FGRAs of a certain
type that shall be reconfigured onto the fine-grained reconfigurable
fabric. This determines which SI variant is used to implement an
SI (see Figure 2). Both RISPP [11] and KAHRISMA [12] propose
different algorithms for this problem. Our placement and binding
techniques are independent of the allocation scheme, thus in this work
we use the RISPP allocation strategy [11]. The Scheduling of the DFG
for a given allocation assigns operation oi to control step csl = cs(oi)
such that (i) in each control step not more FGRAs are required than
assigned by the allocation (see Eq. 1), (ii) the data dependencies
between the operations are considered (see Eq. 2), and (iii) the number
of control steps (SI execution latency) is minimal. SI Scheduling is
done offline using high-level synthesis scheduling algorithms such as
LIST or Force-directed Scheduling [18].

∀csl ∀tk :

∣∣∣∣
∑

oi,t(oi)=tk,cs(oi)=csl
1

∣∣∣∣ ≤ q(tk) (1)

∀di,j : cs(oi) < cs(oj) (2)
Placement of an FGRA am decides into which container (see

Figure 1) cp = c(am) it shall be reconfigured. This depends on the
allocation and thus needs to be performed at runtime as well. The
placement has to ensure that different FGRAs (potentially of the same
type) are placed in different containers (see Eq. 3).

∀am, an : m �= n ⇒ c(am) �= c(an) (3)
Finally, Binding needs to bind components of the DFG (operations

oi and data transfers di,j) to the hardware (containers and links). As
it depends on the placement it also needs to be performed at runtime.
The binding b(oi) = cp assigns operation oi to a container cp such
that the types match (see Eq. 4) and two operations in the same control
step are not assigned to the same container (see Eq. 5). The connectors
(see Figure 1) provide a small amount of local memory (8 words in
our prototype) for results of operations. An operation oi that executes
on container cp stores its results to the local memory of the connector
that is connected to cp. The binding needs to decide to which address
(in a connector’s memory) a result shall be written without overwriting
results that are still needed in a later control step. Therefore, during
compile-time, a lookup table is created that describes for all operations
oi the control step cs(oi) in which they create a result and after which
control step csl = max{cs(oj) : ∃di,j} it is no longer required. This
table is used for binding operations to containers at runtime to annotate
memory addresses as occupied or as free.

b(oi) = cp = c(am) ⇒ t(oi) = t(am) (4)
∀oi, oj , cs(oi) = cs(oj) : i �= j ⇒ b(oi) �= b(oj) (5)

When executing an operation oj that demands input data from
another operation oi the data transfer di,j is performed in control



step cs(oj) and needs to be bound to a communication segment, i.e.
a connected set of links. The architecture shown in Figure 1 uses
four links l0-l3 between neighbored containers. The communication
segment to establish di,j uses a particular link ls for the interval
[b(oi), b(oj)]. That means that the link ls between the connector at
container b(oi) and b(oi)+1 is occupied (assuming that b(oi) < b(oj))
and ls between b(oi)+ 1 and b(oi)+ 2 is occupied etc. However, the
links ls before b(oi) and after b(oj) are still free. One link ls can be
used to realize multiple data transfers di,j , dx,y, i �= x or j �= y in the
same control step if their intervals do not overlap (see Eq. 6). If they
overlap, then different links lr, ls, r �= s need to be used or di,j and
dx,y need to be performed in different control steps.

[b(oi), b(oj)] ∩ [b(ox), b(oy)] = 	 (6)
After binding operations to containers, the decisions which memory

address shall be used for a result and which links shall be used for a
data transfer is trivial. When multiple memory addresses are free, then
it does not affect the execution latency of the SI variant which one
is used (however, binding of operations to containers has to assure
that sufficient free memory addresses are available). When multiple
links are free between two communicating containers, then it is not
important which one is used (however, if no link is available the system
has to find a solution, as explained in Section III). Therefore, according
to the binding we focus on binding operations to containers in the
following and use First Fit strategies for binding results to memory
and data transfers to links.

After placement and binding are completed for an SI variant, the
detailed information which operation shall execute on which container,
which data transfer shall use which link etc. directly determines a
specific configuration for the CGRI for each cycle of the SI execution.
This configuration is stored in an on-chip configuration memory. In our
prototype, we use 1024-bit configuration data for the CGRI and need
between 40 and 50 KByte per FGRA (due to the size of the FGRA
configurations, they have to be stored in the off-chip DRAM memory).
When an SI is invoked, the CGRI is reconfigured cycle-by-cycle to
control the SI execution.

C. Novel Contribution
The challenges for placement and binding are that their decisions

affect the execution latency of SI variants. In the best case, each control
step is executed in one cycle, but depending on placement and binding,
a control steps might require multiple cycles (details and examples in
Section III), thus delaying the SI variant execution latency. As the SIs
are designed to accelerate computation intensive kernels, delaying their
execution directly affects the application’s performance. Therefore, the
novel contributions of our partial online synthesis address the crucial
details of

1) Placing FGRAs: we propose and evaluate novel Cluster- and
Connectivity placement algorithms.

2) Binding Operations: we propose three different online binding
algorithms and evaluate their performance and overhead in
various scenarios.

D. Motivational Example
The number of FGRAs of a certain type that shall be reconfigured

is decided at runtime to adapt to different application requirements,
as described in Section I. The number of different SI schedules (i.e.
determining which FGRA is used in which cycle) is limited and
thus it is possible to create the schedules offline and store them in
memory for the runtime system. However, the number of different
FGRA placements is huge, as it depends on (i) which FGRAs are
already configured, (ii) which may be replaced, and (iii) which shall
be reconfigured. When n containers are available and an SI demands
m different FGRA types with q(ak) FGRAs per type, then the number
of different placement possibilities (after writing down the binomial

Fig. 3: Examples for Link Saturation Hazard (LSH) and Transfer Delay Hazard (TDH)

coefficients, bringing them into their factorial form and reducing the
terms) is shown in Eq. 7.

n!
m−1∏
k=0

(q(ak)!) ∗
(
n−

m−1∑
k=0

q(ak)

)
!

(7)

To give an example, our prototype has 10 containers and uses
1024 bit per cycle to configure the CGRI. Some SIs use up to
four different FGRA types, e.g. the Sum of Absolute Transformed
Differences (SATD) from an H.264 video encoder. When the quantities
for the four FGRA types are (1,1,1,1), then there are 5,040 different
placements. For (1,1,2,2) and (1,2,2,2) there are already 37,800 and
75,600 different placements, respectively. The SATD execution latency
for these three SI variants are 23, 21, and 19 cycle. Thus, 14.2, 96.9,
and 175.3 MB are required to store the CGRI configuration data
for all placements of the three SI variants. When 12 containers are
available then 33.1, 426.3, and 1157.3 MB are required, respectively.
Additionally, the configuration data for further SI variants and further
SIs needs to be stored. That clearly shows that preparing and storing
all placement combinations at compile time for all SI variants of all
applications that shall execute is practically infeasible and has to be
synthesized at runtime instead.

III. SOLVING SATURATION- AND DELAY HAZARDS

While ideally a data transfer between two FGRAs should be com-
pleted in one cycle, it may take longer depending on placement and
binding. Before presenting our algorithms for placement and binding
that aim at reducing these delays, we explain the Link Saturation
Hazard (LSH) and the Transfer Delays Hazard (TDH) that may cause
these delays and we explain how they are handled in our approach.

An example for an LSH is shown in Figure 3a (only two links per
connector are used for simplicity). It occurs when the binder tries to
reserve a link for d2,4 in control step cs(o4) = cs1 but there is no
free link between b(o2) = c2 and b(o4) = c5, i.e. all links between
these containers are already used for other data transfers in cs1. The
binder resolves this hazard by splitting cs1 into two cycles cs1,0 and
cs1,1 and binding o4 to cs1,1. This method is applied iteratively until
all LSHs have been resolved, i.e. if more LSHs exist in cs1,0, then
the corresponding operations are also bound to cs1,1 and if afterwards
LSHs exist in cs1,1, then another cycle cs1,2 is introduced.

A TDH occurs when for a data transfer di,j the distance of the
containers b(oi) and b(oj) (i.e. |b(oi)− b(oj)|) is too long to be
traversed in one cycle (see Figure 3b). In such a case, the control step
is split into two cycles, as described earlier. The maximum distance
D that can be traversed in one cycle depends on the technology and
operation frequency and we evaluate different values for D in the
results. The required number of cycles to complete a data transfer di,j
is �|b(oi)− b(oj)| /D�.

The occurrences of LSHs and TDHs depend on the placement and
binding decisions. When FGRAs are placed near to each other, then
no TDH occurs when they need to communicate. In the following we



Fig. 4: Example for placement of FGRAs

present our placement and binding algorithms that aim at reducing
these hazards.

IV. PLACING FGRAS

The placement of an FGRA to a container can affect the execution
latency of all SIs that use this FGRA (see Section III). The goal of
our placement algorithm is to minimize the cycle loss due to Transfer
Delay Hazards, i.e. it needs to consider the data transfers between
operations during an SI execution. At runtime, the high-level runtime
system determines the amount of FGRAs that shall be reconfigured to
accelerate a computation intensive kernel (see Section I) and provides
the following information to the placement algorithm: (i) the current
configuration of all containers C, (ii) a set of SI variants S that are
used in that kernel, (iii) an FGRA type tR that is configured but that
is not required in the kernel and thus can be replaced, and (iv) an
FGRA type tP that needs to be reconfigured and shall be placed.

We propose Cluster Placement, which aims at placing all FGRAs
of an SI variant s ∈ S closely together. Let A be the set of
FGRAs that are required to implement an SI variant s. AL shall
denote the leftmost container and AR the rightmost container that
contains an FGRA ∈ A, i.e. AL = min{c(am) : am ∈ A} and
AR = max{c(am) : am ∈ A}. Out of all possible data transfers
that could be performed by s, no one is longer than the distance
between AL and AR, i.e. |AL −AR| which we call the expansiveness
of SI variant s. For example, Figure 4 shows a sequence of FGRAs
that shall be placed to implement an SI variant. AL is c3 and AR

is c9, thus the expansiveness of this SI variant is 6. The Cluster
Placement iterates over all SI variants s and all container candidates
cp that match the replacement type tR or are empty and examines the
expansiveness of s if the FGRA would be placed to cp. The container
candidate that results in the smallest expansiveness is selected. If
multiple candidates result in the same expansiveness, then the first
candidate with that value is selected. The complexity of the Cluster
Placement is O (|containers| ∗ |SI variants|).

The main drawback of Cluster Placement is that it does not consider
how often a data transfer between two containers occurs, e.g. there
might be no data transfer between AL and AR at all in s. For instance,
let us assume that the most frequent data transfer in Figure 4 is between
FGRA type t0 and t2. In this case it is better to place the FGRA with
type t0 to container c0. This leads to a larger expansiveness (thus it
would be avoided by the Cluster Placement), but provides a reduced
SI execution latency, as the delay for the most frequent data transfer
is minimized.

Our proposed Connectivity Placement algorithm is shown in Algo-
rithm 1 and addresses this problem by performing a communication-
aware placement. During compile-time, all SI variants s are annotated
with the connectivity between any two FGRA types tx and ty as shown
in Eq. 8, i.e. the number of data transfers di,j between operations of
these types are enumerated.

s.connectivity[tx, ty] =
∑

di,j ,t(oi)=tx,t(oj)=ty

1 (8)

The Connectivity Placement iterates over all container candidates
cp that match the replacement type tR or are empty and examines

the connectivity for all SI variants s ∈ S that require the FGRA
type tP . The distance between cp and all other containers cq is
weighted with the compile-time prepared connectivity value of s and
summed up. The algorithm selects the container cT with the least total
connectivity score. The complexity of the Connectivity Placement is
O (|containers|2 ∗ |SI variants|).

Algorithm 1 Connectivity Placement
INPUT: Set of containers C with the configured FGRAs am = C[cp],

set of SI variants S, replacement FGRA type tR, new FGRA type
that shall be placed tP

OUTPUT: Target container cT
1: cT := −1, best connectivity := MAX INT
2: for each container cp ∈ C do
3: if C[cp] �= NULL and t(C[cp]) �= tR then continue
4: total connectivity := 0
5: for each SI variant s ∈ S do
6: if not s.requires(tP ) then continue
7: for each container cq ∈ C do
8: if C[cq] = NULL then continue
9: total connectivity := total connectivity +

s.connectivity[tP , t(C[cq])] ∗ distance(cp, cq)
10: end for
11: end for
12: if cT = −1 or total connectivity < best connectivity then
13: cT := cp
14: best connectivity := total connectivity
15: end if
16: end for
17: return cT

V. BINDING OPERATIONS

After the placement of FGRAs is decided, the so-called fabric con-
figuration is known, i.e. the information which container cp contains
which FGRA am, cp = c(am). Before an SI variant can be executed, it
has to be bound to the fabric configuration as explained in Section II-B.
The control steps of an SI variant are bound one after each other.

To bind an operation oj from the control step csl to a container
cp, a list of container candidates is constructed such that (i) the types
match (see Eq. 4), (ii) no other operation is bound to cp in this control
step (see Eq. 5), and (iii) the connector that connects cp with the other
containers has sufficient free local memory to store the results of oj
(see Section II-B). When the fabric configuration contains only one
container with the correct type, then binding is trivial. When multiple
such containers exist, then the binding algorithm has a choice. For
instance, in Figure 3 operation o1 can be bound to containers c5 or
c8, where binding to c8 leads to a Transfer Delay Hazard. We propose
the following operation binding strategies:
First Fit Binding (FFB) scans the containers from left to right and

returns the first valid container candidate that fulfills the con-
straints. The complexity is O (|containers|).

Communication-Aware Binding (CAB) considers the input data
that needs to be transferred from other operations oi to oj .
These operations are already bound to containers as they execute
in earlier control steps. All data transfers di,j are examined
for Link Saturation Hazards and Transfer Delay Hazards. For
all container candidates cp the number of cycles are calcu-
lated that are required to resolve the hazards, i.e. CAB per-
forms a partial communication binding to evaluate the container
candidates. The container that results in the least number of
cycles to resolve the hazards is selected. The complexity is
O (|containers| ∗ |data transfers|).



Fig. 5: Placement evaluation: (a) Performance of an H.264 video encoder (b) Boxplot of
the overhead for placing one FGRA

Communication-Lookahead Binding (CLB) is an extension of
CAB. In addition to the data transfer di,j (input data of oj)
CLB also considers dj,k (output data of oj). However, when
binding oj , then operation ok that reads the results from oj
is not bound yet. CLB assumes that ok will be bound to
container cq, t(cq) = t(ok) that has the smallest distance to
the examined container candidate cp. The container that results
in the least number of cycles to resolve the hazards for input
and output data transfers of oj is selected. The complexity is
O (|containers|2 ∗ |Data Transfers|).

VI. EXPERIMENTS & RESULTS

To evaluate our proposed placement and binding algorithms and
to compare reconfigurable architectures that use our proposed partial
online synthesis with a reconfigurable architecture that synthesizes the
configuration of the CGRI at compile time, we use a SystemC simu-
lator based on our hardware prototype of a processor with a runtime
reconfigurable fabric. The processor is a SPARC V8 LEON 2 [19] with
a 5 stage pipeline, extended for integration with the reconfigurable
fabric. For our prototype we implement both the FGRAs and the
CGRI on a Xilinx Virtex-4 FPGA, using partial reconfiguration [20] to
reconfigure the containers. The time to reconfigure one FGRA is 0.6-
0.7 ms (depending on the complexity of the FGRA), as measured on
our prototype. Comparing this reconfigurable processor to a LEON 2
without a fabric, we have measured a mean speedup of 14.11x
among 126 different fabric configurations when using the H.264 Video
Encoder application.

A. Placing FGRAs

A placement decision does not directly affect the execution latency
of an SI variant (that depends on several placement decisions and the
binding of the SI variant). To evaluate the placement, we compare
the execution time of an H.264 video encoder when using different
placement algorithms. Figure 5a shows the application execution time
for different sizes of the reconfigurable fabric. The Connectivity
Placement is on average 5.4% faster than Cluster Placement (at
most 2.8% slower and 12.0% faster, respectively), as it considers the
communications between the FGRAs during placement.

Placement and binding are software extensions of the runtime
system, thus no additional area overhead is required. To measure the
overhead of the placement algorithms, we implemented them as a
standalone C program and simulated their execution time. Figure 5b
shows a boxplot of the amount of cycles required to place one FGRA.
On average, it takes 574 cycles using our Cluster Placement and 635
cycles using our Connectivity Placement. Compared to the time it
takes to reconfigure one FGRA this overhead is negligible (1 ms
corresponds to 100,000 cycles at 100 MHz), therefore we recommend
the Connectivity Placement algorithm.

Parameter Value

Links 4, 6, 8
Maximum distance D that 2, 6, 10can be traversed in one cycle
Containers 20
Fabric configurations 100
SI variants 453 variants of 29 SIs

Binding Algorithms Random, First Fit (FFB), Comm.-aware
(CAB), Comm.-Lookahead (CLB)

TABLE I: Parameters for binding algorithm evaluation

Fig. 6: Binding evaluation: (a) Amount of times a binding strategy achieved the best result
among all other strategies (b) Average overhead for binding one SI variant

B. Binding Operations

Binding directly affects the execution latency of an SI variant, so we
directly compare the results of the binding instead of the application’s
execution time. We use various system configurations (summarized in
Table I) that reflect different hardware architectures, as for instance
the number of links and the link speed D depends on manufacturing
parameters. On each of these configurations each SI variant from a
set of multimedia SIs is bound to 100 random fabric configurations
(resulting in ≈ 1.6 million bindings in total). Figure 6a shows how
often a particular binding results in the fastest SI execution latency. Our
Communication-Lookahead Binding (CLB) leads to the best results,
followed closely by our Communication-Aware Binding (CAB).

Figure 6b shows the average overhead in cycles for the operation
binding algorithms. While CLB creates the fastest SI variants on
average, it takes over twice as long as CAB and over four times longer
than First Fit Binding (FFB). Whether or not the overhead of CLB is
acceptable depends on how often the SI is executed. For example, one
of the SI variants for the DCT SI is bound by CLB resulting in an
latency of 35 cycles per execution and an overhead of 46,104 cycles.
The same SI variant is bound by FFB to the same fabric configuration
resulting in an execution latency of 37 cycles and an overhead of 7,469
cycles. Therefore, the overhead of CLB amortizes if this SI variant is
executed for 19,318 times on the same fabric configuration. During
our evaluation we have not encountered a situation where an SI was
executed for this amount of times for the same fabric configuration.
Therefore, we recommend to use CAB or FFB as they provide a better
compromise of the obtained result and the overhead.

C. Comparison of our online synthesis vs. offline synthesis

We use a multi-tasking scenario for the comparison of a dynamic
runtime system with partial online synthesis and a runtime system
with offline synthesized CGRI configurations. The applications for
this scenario are an in-house developed H.264 video encoder, and the
two MiBench [21] applications Susan image recognition and JPEG
Decoding. Four tasks (the JPEG application is used twice) are started,
as shown in the Gantt chart at the bottom of Figure 7. Each task
performs a certain work (e.g. decode an 800x600 pixel JPEG image)
and terminates afterwards. After a task is started, it obtains a portion of
the reconfigurable fabric onto that it may reconfigure FGRAs. The size
of that portion depends on the task priority (set at compile time) and



Fig. 7: Comparison of our online synthesis vs an offline synthesis system in a multi-tasking
scenario

changes when the number of running tasks changes. Both systems use
a reconfigurable fabric with 15 containers and all other parameters are
identical as well. The online system uses the Connectivity Placement
and Communication-Aware Binding strategies.

As shown in Section II-D, providing CGRI configurations for
all possible SI variants of an SI is practically infeasible. Thus, the
system with the offline synthesized CGRI configuration can only use
a limited set of SI variants. To ensure a fair comparison, we profiled
the applications for different fabric sizes and identified the most
efficient SI variant, i.e. where the ratio performance/#FGRAs is
highest. For each computational kernel of the application, the offline
synthesized system reconfigures one compile-time determined fabric
configuration and uses the compile-time placed and bound SI variants.

We define the speedup at time t between two systems a and b
as shown in Eq. 9, where instructions executed(i, t) returns the
number of executed instructions for all tasks of system i in the period
[0, t]. Figure 7 shows the speedup of our online synthesis system in
comparison to the offline synthesis system. Between cycles 0-20M,
only Task 1 is running, thus the performance of both systems is
comparable – the online synthesis uses high-performance SI variants
on all 15 containers, while the offline-synthesis system uses smaller
but efficient SI variants, yielding almost the same overall performance.
However, when additional tasks are scheduled, less containers are
available to each task and the offline-synthesis system cannot execute
all SIs in hardware (emulation in software is used instead). Our online
synthesis system uses SIs that have less FGRA requirements and
creates new CGRI configurations for them on demand. This results
in the measured average speedup of 1.79x over the runtime of the
four tasks.

speedup(t) =
instructions executed(a, t)

instructions executed(b, t)
(9)

To compare our approach with common techniques as used in
high-level synthesis, we have assumed an ideal system that produces
bindings instantly (i.e. no overhead) and ignores hazards (i.e. 1 cycle
per control step). These assumptions lead to an optimal binding result.
Our approach is only 6.4% slower than that theoretical upper bound.

VII. CONCLUSION

In this paper, we present a novel partial online-synthesis approach
for mixed-grained reconfigurable fabrics. It combines Fine-Grained
Reconfigurable Accelerators (FGRAs, synthesized at compile time)
with a Coarse-Grained Reconfigurable Infrastructure (CGRI) for which
the configuration is synthesized at runtime. We present all steps of the
online synthesis for the CGRI and focus on the crucial parts of Placing
FGRAs on the reconfigurable fabric and binding operations to them.
We propose and evaluate different binding and placement algorithms
and recommend using the Connectivity Placement algorithm (due to
the highest quality of placements among the evaluated algorithms
while keeping a low overall overhead) and the Communication Aware
Binding algorithm (due to its good performance/overhead ratio). Our
partial online synthesis exploits the inherent available adaptivity of the

reconfigurable fabric. We compare our approach with a state-of-the-art
reconfigurable architecture that synthesizes the configurations for the
CGRI at compile time (and thus is unable to react on runtime varying
application requirements) and we obtain an average speedup of 1.79x.
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