
1

A Compression-based Area-efficient Recovery Architecture for
Nonvolatile Processors

Yiqun Wang ∗ Yongpan Liu∗ Yumeng Liu∗ Daming Zhang ∗ Shuangchen Li∗
Baiko Sai† Mei-Fang Chiang† Huazhong Yang∗

{ypliu,yanghz}@tsinghua.edu.cn {baiko.sai,meifang.chiang}@dsn.rohm.co.jp
∗ TNList, EE Dept.,Tsinghua University † LSI Development Headquarters, Rohm Co., Ltd.

Beijing, 100084, China Yokohama, 222-8575, Japan

Abstract—Nonvolatile processor has become an emerging topic in
recent years due to its zero standby power, resilience to power failures and
instant on feature. This paper first demonstrated a fabricated nonvolatile
8051-compatible processor design, which indicates the ferroelectric non-
volatile version leads to over 90% area overhead compared with the
volatile design. Therefore, we proposed a compare and compress recovery
architecture, consisting of a parallel run-length codec (PRLC) and a
state table logic, to reduce the area of nonvolatile registers. Experimental
results demonstrate that it can reduce the number of nonvolatile registers
by 4 times with less than 1% overflow possibility, which leads to 43%
overall processor area savings. Furthermore, we implemented the novel
PRLC and defined the method to optimize the optimal parallel degree
to accelerate the compressions. Finally, we proposed a reconfigurable
state table architecture, which supports the reference vector selecting for
different applications. With our heuristic vector selecting algorithm, the
optimal vector can provide over 42% better register number reduction
than other vector selecting approaches. Our method is also applicable to
designs with other nonvolatile materials based registers.

I. INTRODUCTION

With the emerging memory technologies, nonvolatile proces-
sors [1]–[4] are receiving more and more attentions. Compared with
the volatile ones, the nonvolatile processors are manufactured with
nonvolatile registers and have the following advantages: I) zero-
standby power: the processor can retain its state when not powered,
while the traditional ones suffer from the increasing leakage power
to keep data; II) instant on and off: the processor can resume its work
within several cycles from the stalled point, while the traditional one
needs millions of initializing cycles; III) high resilience to power
failures: the processor can work reliably under the environments with
frequency power interrupts, such as energy harvesting and wireless
powered applications [2]; IV) fine-grained power management sup-
ported [1]: the processor can be shut down whenever possible due
to the ultra-low energy and fast recovering characteristics. Therefore,
research on nonvolatile processors are interesting.

In order to implement nonvolatile processor, plenty of work has
been done on the nonvolatile memory cells [5]. In the realm of
random access memory (RAM), Flash is a mature high-density
solution. However, it suffers from low endurance and slow writing
speed as a register. Phase Change Random Access Memory (PRAM)
has the highest potential in density and can be used in a hybrid
cache with static RAMs [6], however a longevity around 109 cycles
also hinders its further application as registers for processor [5]. By
contrast nearly unlimited operation cycle and ultra short access time
render both Ferroelectric RAM and Magnetic RAM emerge as the
most promising candidates. Sakimura et.al. [7] designed a Magnetic

This work was supported in part by the NSFC under grant 60976032,
National Science and Technology Major Project under contract 2010ZX03006-
003-01, International Cooperation from ROHM Inc. and High-Tech Research
and Development (863) Program under contract 2009AA01Z130.

DATE’12, March 12-16, 2012, Dresden, Germany.
Copyright 978-3-9810801-8-6/DATE12/©2012 EDAA

Flip-flop for systems-on-chip with measured results. Zhao et.al. [8]
applied (Magnetic Tunnel Junction) MTJ-based flip-flops in FPGAs.
Rohm [9] developed a nonvolatile register by adding a ferroelectric
capacitor to a standard register. However, none of them considers the
impact of deploying nonvolatile registers in real processors.

Recently, several nonvolatile digital designs are reported using
nonvolatile registers. In [10], people observed a over 40% larger chip
area in a low-pass digital filter by replacing traditional registers with
Magnetic ones. According to [11], the ferroelectric capacitor based
register is over 4 times larger than a normal one and greatly increase
the area of a nonvolatile processor. In [2], a nonvolatile controller is
evaluated based on the floating-gate transistors. The results indicate
over 20% chip area and 40% memory area overheads. Guo et.al [12]
had proposed a STT-MRAM based processor with promising area and
energy, however the results are not supported by real chips. Generally,
the replacement of nonvolatile registers increases the chip area and
costs significantly. It is necessary to investigate techniques to realize
area-efficient nonvolatile processors.

Surprisingly, previous nonvolatile designs assume a conservative
policy: replacing all volatile registers with nonvolatile ones is nec-
essary to store the system state. This assumption would lead to a
significant area increase. However, this paper demonstrates that it
is possible to store the system state with much fewer nonvolatile
registers with the proposed compression-based recovery architecture.
Our contributions are listed as the followings:

1) We validated the necessity of area-aware designs by a real non-
volatile processor in Section III and proposed a compression-
based state recovery architecture to reduce the number of the
nonvolatile registers, and thus the area of the processor. The
architecture adopts a compare and compress strategy to improve
the compressing ratio. It consists of a compressing codec and
a state table logic.

2) In order to shorten the compressing time, we design a parallel
run-length codec (PRLC) in Section IV. It can achieve over 5
times speedup in average over the conventional serial RLC.

3) We also provide a reconfigurable architecture to construct the
state table, which can be tuned to fit different applications.
To maximize the number of zeros after the comparison, we
formulate the optimal vector selection problem and develop a
heuristic algorithm to solve it.

4) We evaluate the proposed technique in a nonvolatile 8051 pro-
cessor. Several real programs are used to verify the efficiency
of the recovery architecture. The area reduction is up to 43%,
while the overall codec time is less than 50μs under a 10 MHz
clock frequency in Section V.

II. MOTIVATION

This section first describes the area challenges from the replace-
ment of nonvolatile registers. After that, an interesting observation is



2

Fig. 1. The Schematic of nonvolatile flip-flop

given out, which motivates the area-efficient recovery architecture.

A. Hybrid Nonvolatile Flip-flop

Fig. 1 shows the schematic of a hybrid nonvolatile flip-flop which
consists of a standard master-slave DFF and a backup segment
containing nonvolatile components. In the normal mode, the switches
M1 and M2 are open and the backup segment is isolated. The flip-flop
works as a standard CMOS DFF. The back-up segment is activated
only when the DFF state needs to be stored. In those cases, M1 and
M2 are short and clock is gated, thus signals PL and Pch control
the data storage/recall operations. This nonvolatile flip-flop structure
induces no deterioration in normal performance but prolongs the
longevity of nonvolatile components.

B. Area Challenges of Nonvolatile Register

Generally, a nonvolatile register should contain new components,
such as ferroelectric capacitors, magnetic tunnel junctions or floating-
gate transistors. It makes the area of a nonvolatile register much larger
than the volatile CMOS register. We define that a nonvolatile register
is α times larger than the original one. Assuming the register and
memory blocks occupy β(0 < β < 1) of total chip area, the chip
area becomes Sovh = β× (α− 1) larger after replacing all memory
units with nonvolatile registers. In the realized 8051 processor, β
equals to 20% and α is near to 5, thus Sovh = 80%. Obviously, this
area overhead Sovh is unacceptable and we need a method to reduce
the area of nonvolatile registers.

C. Compare and Compress Strategy

We define the system state as the state vector V =
(v1, v2, ..., vn), vi = 0/1, where each bit represents the current value
of a flip-flop in a processor. In the 8051 processor, n equals to 1607.
As replacing all memory units with nonvolatile register would lead
to prohibitive area overheads, is it possible to memorize the system
state with fewer nonvolatile registers? In the experiments, we observe
an interesting phenomenon on the system state of the nonvolatile
processor. Over 80% registers are not altered from the reset state
Vreset in the real applications. Thus, only a small portion of registers
are different from its reset state. Suppose we need to store the system
state at the ith breakpoint Vi, we can just store the differential vector
Vdiff = Vi − Vreset, which contains lots of consecutive zeros or
ones. Compressing algorithms, such as RLE, would provide rather
large compressing ratio on Vdiff . Knowing Vdiff and Vreset, we
can recover Vi easily. Therefore, the compression-based recovery
architecture allows us to memorize the system state with much fewer
nonvolatile register, which means less silicon area.

III. DESIGN FLOW OF NONVOLATILE PROCESSORS

In this section, we present a general flow to transform a volatile
processor into a nonvolatile one. Via the presented flow we evaluate
the area and performance of a fabricated nonvolatile 8051 processor
hereafter.

TABLE I
NORMALIZED AREA UTILIZATION BEFORE AND AFTER

NVFF REPLACEMENT

Module Name Before Replacement After Replacement
Size In Sum Size In Sum

MCU

MCU Controller 85.8

183.3

234.3

704.6
ALU 16.0 16.0

UART 13.9 13.9
Timer/Counter 7.4 21.2

RAM 59.4 419.0

SPI/I2C Controller SPI Controller 6.9 23.0 6.9 23.0I2C Controller 16.1 16.1
NVFF Controller 0 0 9.5 9.5

SRAM 381.0 381.0 381.0 381.0
JTAG 4.3 4.3 4.3 4.3

I/O Pad 1 1 1 1
Total Chip 597.0 1122.8

A. Nonvolatile Design Flow

Given a volatile circuit, the nonvolatile design flow is shown in
Figure 2. The first step is to determine the memory units in the circuit
to be replaced by nonvolatile registers. Strictly speaking, all registers
and RAMs should be replaced with nonvolatile components to store
the system state completely, however the users may decide if any
state can be omitted to save chip area. In the third step, we replace
the memory units in the nonvolatile domain with nonvolatile registers.
The replacement is deployed in the gate level. It can be executed in
three steps: I) The RTL specification is synthesized into a gate netlist
with Synopsys Design Compiler; II) As the nonvolatile registers are
constructed from nonvolatile flip-flops (NVFF), we use an in house
script to replace all volatile flip-flops with NVFFs; III) To make all
NVFFs work in a proper sequence during the recovery process, a
NVFF controller is integrated to instruct the behavior. Finally, we
evaluate the nonvolatile design and decide if it meets the requirement.
If not, we need more iterations from the beginning. Due to the page
limit, we leave the details of the NVFF and controller design to our
technical report [13].

B. Nonvolatile 8051 Processor with Full Replacement

According to the above design flow, we have taped out a 8051
nonvolatile processor based on a 0.13um ferroelectric process [13].
In order to retain the entire system state, all registers and 128 byte
internal RAM are replaced with NVFFs. The total number of NVFFs
reaches 1607. The SRAM is not replaced because SRAM don’t
memorize system state in target applications. To evaluate the area
utilization, we give out the normalized area of each component in
Table I. As we can see, the full replacement strategy increases the
chip area by nearly 90%. To meet the area efficient design metric,
we propose the compression-based recovery architecture instead of
the full replacement solution in Section IV.

Fig. 2. Design Flow from a Volatile Processor to a Nonvolatile One



3

Fig. 3. Conventional Architecture vs PRLC Architecture

Fig. 4. Encoded and Copied Segment Structure

IV. AREA EFFICIENT RECOVERY ARCHITECTURE

This section proposes a parallel run-length codec (PRLC) archi-
tecture to reduce the number of nonvolatile registers. It consists
of an improved PRLC algorithm and the corresponding hardware
implementation. Furthermore, we present a state table selection
solution which strongly influences the PRLC’s compression ratio.

A. PRLC Architecture

We compare the conventional nonvolatile processor with the
proposed PRLC architecture in Figure 3. The PRLC architecture
compresses the state vector V = (v1, v2, ..., vn), vi = 0/1 and stores
the compressed data in the nonvolatile registers, while the traditional
processor stores V directly. In PRLC, the encoding procedure is listed
as followings:

• Fetch the state vector Vorg from the processor,
• Select a reference vector Vref from the state table,
• XOR Vorg and Vref and get the differential vector Vdiff ,
• Compress Vdiff and get the compressed vector Vcomp.

The decoding procedure works in the opposite direction. Therefore,
the reduced NVFF number NV FFrd is determined by equation 1:

NV FFrd = |Vdiff | − |Vcomp| (1)

Obviously, NV FFrd is correlated with the RLC algorithm and the
distribution of zeros and ones in Vdiff . Thus, the PRLC design and
the vector selection of the state table are critical. We will discuss
those two points in the following.

B. Threshold Based RLC Algorithm

To achieve good compression ratio, we threshold based algorithm
to record the length of consecutive 0 and 1. A threshold is selected
to deal with short zeros and ones sequences. The threshold based
variable run-length encoding (RLE) algorithm is described in Al-
gorithm 1; The input of the algorithm is the system state vector
Vdiff and specified threshold m, the output is the compressed vector
Vcomp. Line 1 checks if the encoding is complete or not by comparing
vector current index k with the vector bound n. Line 2 determines
if a transition (0 ⇒ 1 or 1 ⇒ 0 ) happens in the sequence. If
the number of the consecutive zeros or ones are smaller than m,
Process ShortSEQ is called to copy the segment into Vcomp.

Fig. 5. Conventional and PRLE Encoding Flow

Otherwise, we call Process LongSEQ to encode the segment into
Vcomp. The encoded segments and copied segments are regularly

Algorithm 1 Threshold Based Variable RLE Algorithm
Input: Vdiff ,m
Output: Vcomp
1: while k < n do
2: if ak �= ak+1 then
3: if counter ≤ m then
4: Process ShortSEQ();
5: end if
6: if counter > m then
7: Process LongSEQ();
8: end if
9: end if

10: end while

constructed according to Figure 4. As shown in Figure 4, the first
bit (flag bit) indicates the segment’s category. The following 4 bit
(length part) indicates the length of body part. The body part records
the length of consecutive 0/1 for the encoded segments or the copied
segments. The implementation of the decoder is straightforward. To
achieve optimal compression ratio, the threshold value m should be
properly chosen. In real applications, we found the optimal m varies
quite small for different input vectors. The value of m is set to balance
the length of the encoded segments and the copied segments. In our
experiments, m = 8 for consecutive 0 and m = 7 for consecutive 1.

C. PRLC Implementation

Traditional serial RLE processes input vectors bit by bit. It
deteriorates the data store and restore performance greatly. Trein
et.al. [14] proposed a run-length encoding architecture with parallel
inputs. However, their structure targeted at the image applications
and considered the encoder only. In this paper, we develop an
area-efficient PRLC architecture to accelerate the vector codec. The
Parallelism means we can process consecutive 0 or 1 in one cycle.
Figure 5 shows an ideal case to process a (3k + 9)-bit vector.
The proposed method only needs 12 cycles to encode the vector.
What’s more, the larger the k becomes, the better speedup the method
receives.

1) System Diagram: Figure 6 shows the system diagram. It con-
sists of three parts: the parallel input, the PRLC block, and the parallel
output. The parallel input contains a m-bit volatile register array and a
i-bit barrel shift network. Similarly, the output block contains a n-bit
nonvolatile register array and j-bit barrel shift network. The PRLC
block realized the encoding in Figure 5 and the decoding process.
For the input block, the user can configure the barrel shift network
to transfer i-bit or less data between the register array and the PRLC
buffer in parallel. The encoding flow of architecture is described as
follows:

• Compare Vorg with Vref in parallel and write back Vdiff to
the m-bit register array,

• PRLC block judges if the current k-bit(k ≤ i) inputs are all
zeroes and controls the i-bit barrel shift network to move k bits
or 1 bit, and



4

Fig. 6. The Proposed PRLC System Diagram

5 10 15 20 25 30 35 40 45 50
200

250

300

350

400

450

500

550

Parallel Degree k

Ru
n−

ti
me

(C
lo

ck
 C

yc
le

s)

vector1

vector2

vector3

vector4

Fig. 7. Encoding Run-time under Different Parallel Degree

• After k cycles or 1 cycle, the PRLC generates one segment and
controls the j-bit barrel shift network to write the segment into
the compressed register vector.

The decoding process are listed as below:
• The PRLC reads in one segment,
• The PRLC shifts out the decoded vector q-bit by q-bit to the

m-bit register array(q ≤ i), and
• Compare the decoded vector Vdiff with Vref and write back

to the m-bit register array.
In this architecture, a proper k (q) affects the system performance
significantly. Figure 7 shows the encoding clock cycle number under
different parallel degree k with different input vectors. There is a k to
achieve the smallest number of clock cycles. It is because a higher k
may lead to more cycle reduction but may also lower the possibility
of encountering consecutive zeros. Our experimental results show that
though the optimal k may vary under different vectors. However, it
usually locates in a fixed range 10 − 15. Furthermore, our barrel
shifting architecture also supports dynamical tuning k by software.
Similarly, we can find a proper value for q in the decoding process.
The proper q is i for the encoded segment. In other cases, it equals
to the length of the copied segment.

2) Area and Performance Model: We give the area and perfor-
mance models of the PRLC in this section. The PRLC architecture
includes two barrel shift networks, a state table, a PRLC codec and
an XOR array. We denoted the area of these modules in Table II.
The area of the barrel shift network and the XOR array can be
calculated by multiplying the number of cells with its unit area. A
x-bit barrel shift network contains xlog2(x) multiplexers [15]. The
area of a multiplex or a XOR gate can be obtained from the gate level
estimation. The PRLC codec module is synthesized under Synopsys

TABLE II
AREA DENOTATION FOR CRITICAL CELLS

Standard Cell NV DFF CMOS DFF 2-input XOR 1to2MUX PRLE codec
Area Denotation Anvff Aff Axor Amux Aprlc

Design Compiler. The state table consists of several MOS switches
which can be ignored. Thus, the total area reduction Ard using the
PRLC architecture can be expressed as:

Ard = (m− n)×Anvff −m×Aff (2)

−(ilog2(i) + jlog2(j))×Amux

−m×Axor −Aprlc

The running cycles in the encoding and decoding process can be
expressed as follows( k,q is defined as above):

NEncodingCycle =
E∑

e=1

�Le

k
� × (k − 1) +

C∑

c=1

Lc (3)

NDecodingCycle =
E∑

e=1

�Le

q
�+ C (4)

where E and C denote the number of the encoded and copied
segments. Le and Lc represent the length of each encoded and copied
segment.

D. State Table Optimization

We first discuss the architecture of the state table and then propose
an algorithm to obtain a vector Vref to maximize the compression
ratio.

Fig. 8. Two Proposed State-Table Structure

1) State Table Architecture: The compression ratio strongly de-
pends on the reference vector Vref because it impacts the consecutive
zeroes in the differential vector Vdiff . In different applications, the
optimal Vref are geratly different. Therefore we develop a nonvolatile
reconfigurable state table architecture containing multiple reference
vectors to support different applications. Figure 8 shows the state
table, consisting of a table with multiple reference vectors and a
selecting multiplexer. Each Vref is optimized for one application
or similar applications, which will be executed in an embedded
system(e.g. wireless sensor networks). The state table can be imple-
mented with a few MOS switches and interconnects with ignorable
area. It is fixed and nonvolatile. Furthermore, we need also record the
selection of the reference vector to restore the original system state.
We proposed two reconfigurable solutions as below: One method
adopts external inputs from nonvolatile mechanical switches or other
control chips. The other uses several-bit NVFFs (e.g.2-4 bits) to
memorize the selection. We may also use a hybrid strategy to combine
these two methods.

2) Reference Vector Selecting Algorithm: In this part we present an
algorithm to find optimal vectors to maximize the compression ratio
under a specific application. We formulate the problem as below:
Assuming β system state vectors {V1,V2, ...,Vβ} should be stored,
we need determine an optimal reference vector Vopt to minimize the
length LVcomp of the compressed vector under the worst case:

LVcomp(V) =
β

max
i=1

P (Vi ⊕ V) → min (5)



5

TABLE III
NORMALIZED AREA OF STANDARD CELLS IN A

TYPICAL MANUFACTURING PROCESS

StandardCell NV DFF CMOS DFF 2-input XOR 1to2MUX
Area 28.56 5.53 1.00 1.47

,where Vi ⊕ V represents XOR two vectors bit-by-bit; Function P
calculates the length of the vector after compressing V by PRLC.
The exploring space is 2|V|, which is a NP problem. Therefore,
we develop a heuristic method to find a solution. Intuitively, we
synthesize a suboptimal reference vector Vsub, which should have
the least difference from other vectors. We set the ith bit of Vsub as
follows:

Vsub(i) = M({j ∈ 1, 2, ..., β|Vj(i)}) (6)

M(S) equals to the majority element in the set S. This method can
achieve quite good compression ratio in most cases, however it may
lead to poor results for some special vectors. We will discuss those
situations in the next section.

3) Discussion on Worst Cases: If the value of LVcomp is larger
than the number of real nonvolatile register array, we call that an
overflow occurs. In that case, the system state can not be stored
correctly. However, it is both expensive and unnecessary to enumerate
all possible lengths of Vcomp in various applications, so as to
ensure no overflows happen. Alternatively, we adopted a length of
nonvolatile resgisters to keep the possibility of the overflow under a
threshold. Moreover, we also design an error-discarding mechanism
to handle the worst case. If an overflow occurs, we keep the previous
state system untouched. Therefore, the processor will roll back to
its previous state instead of the current state. Although it causes
performance loss, it is acceptable when overflows rarely happen. We
demonstrate the effectiveness of this approach in Section V.

V. EVALUATION

We first explain the experimental configurations. After that, we
compare the traditional fully-replaced architecture with the PRLC
by area and performance. Furthermore, we analyze the possibility
and distribution of the overflows. Finally, we evaluate the state table
selecting algorithm under different benchmarks. The data used in
evaluation is based on our taped-out nonvolatile processor.

A. Experimental Configuration

In the experiments, we evaluate the PRLC architecture in a 8051-
compatible processor. We use Cadence NCVerilog to obtain the
system state vector. We estimate the area of the original nonvolatile
process with Synopsys Design Compiler under Rohm’s 0.13μm
ferroelectric process. The normalized area of the standard cell is
shown in Table III. To achieve a better performance, we set i = 16
and j = 21. The benchmarks used in the experiments are listed as
below:

• FFT:8-bit fast fourier transformation,
• AES:a symmetric key encrypt algorithm,
• Bubble Sort:a popular sorting algorithm,
• KMP Searching:a string matching algorithm,
• Matrix Multiply:8x8 matrix multiplying operation,and
• ZigBee Protocol:ZigBee MAC protocol implementation.

B. PRLC Evaluation

We first evaluate the area efficiency of the PRLC architecture
under different benchmarks. We randomly pick up 50 original vectors
in each benchmark and calculate the reference vector Vsub based
on Equation 6. According to Equation 5, we adopt the largest
length of the compressed vectors in the samples as the number of

TABLE IV
EVALUATION OF AREA EFFICIENCY OF PRLE

ARCHITECTURE

Benchmark Compression# of NV Area Reduction Ratio Overflow
Ratio registersMCU onlyMCU+8KB SRAMPossibility

FFT 22.7% 365 40.0% 26.5% 0.6%
AES 18.5% 298 43.2% 28.6% 0.8%

Bubble sort 22.9% 369 40.0% 26.4% 0.9%
KMP Searching 26.8% 430 36.9% 24.5% 0.9%
Matrix Multiply 26.1% 420 37.4% 24.8% 1.5%
MAC protocol 28.2% 453 35.8% 23.7% 0.5%

Conventional NV Processor Compression based NV Processor 

Fig. 9. Normalized Area allocation in Conventional NV-Processor and PRLE
Solution under Different Benchmarks

the nonvolatile register array. We get the area efficiency results in
Table IV. Given a fixed reference vector Vsub, the system state
under different applications may lead to compressed vectors with
different length. Obviously, the area savings are variable for different
benchmarks. We achieve up to 43.2% savings for the MCU only case
and 28.6%(the best case) for the MCU with 8 KB SRAM with the
average rating range from 25% to 38%. The number the nonvolatile
register is reduced from 1607 to 453(the worst case). The possibility
of the overflow is under 1.5%.

We show the normalized area breakdown of the traditional non-
volatile processor and the proposed one in Figure 9. The nonvolatile
registers contribute to more than 50% percent without the PRLC
architecture, while the percent of NVFFs is reduced to less than 20%
in the proposed architecture. Furthermore, the PRLC occupies less
than 4% percent silicon area, which is is trivial compared with the
large savings in the nonvolatile registers. What’s more, the saving
ratio could be further increased with smaller SRAMs.

Table V shows the clock cycles of encoding and decoding under
different benchmarks. For each benchmark, we first decide the
optimal parallel degree k by simulations and then calculate the clock
cycles. Our results show that the optimal k ranges from 10 to 16 under
different applications. It enables us to use a universal k-bit barrel shift
network to support the dynamic tuning of the parallel degree. The
encoding process need extra 200−300 cycles to compress one vector,
while the decoding one costs approximate 120 cycles. The total
processing time is less than 50μs with a 10 MHz clock frequency.
Considering the estimated back-up time in conventional NV-processor
is 80μs, the back-up time for PRLC based NV-processor is less than
130μs, which is compatible to the instant on feature. Though the
PRLC architecture leads to extra delays during the backup stage, it

TABLE V
EVALUATION OF RUN-TIME OF PRLE CODEC

Benchmark Optimal k
Clock Cycles Process Time

Encode Decode on Average (μs)
Avg Var Avg Var Encode Decode

FFT 14 189.6 27.1 115.4 5.6 19.0 11.5
AES 13 199.1 33.1 114.4 4.8 19.9 11.4

Bubble sort 15 245.3 39.7 114.2 7.3 24.5 11.4
KMP Searching 16 211.4 48.7 116.2 5.6 21.1 11.6
Matrix Multiply 13 211.3 25.0 116.4 4.2 21.1 11.6
MAC protocol 13 265.2 32.5 113.7 8.43 26.5 11.3

1 Assuming the processor runs at 10MHz clock frequency



6

100 150 200 250 300 350 400
0

0.5

1

1.5

Compressed Vector Length

Po
ss

ib
ili

ty
 D

es
ity

 
of

 L
en

gt
h 

(%
)

100 150 200 250 300 350 400
0

5

10

15

20

Compressed vector Length

O
ve

rf
lo

w
 P

os
si

bi
lit

y 
(%

)

1% line

368

Fig. 10. Possibility Distribution and Compression Overflow Ratio of
Different Length

Fig. 11. State-table Impact on the Compressed Length of NVFF

is inactive and can be power gated in the normal mode. Thus, it
doesn’t cause extra power consumption and performance loss.

C. Overflow Analysis

We analyze the overflow possibility under different lengths of the
nonvolatile register array. We samples the system state V in every
clock cycle and calculate their length using PRLC. Figure 10 shows
the possibility distribution of the compressed vector length |Vcomp|
with the Bubble Sort benchmark. (We observe similar phenomenons
in other benchmarks.) It obeys a normal distribution and shows that
the occurrence of a length above a certain threshold is quite rare.
For this benchmark, we adopt a 368-bit nonvolatile register array to
make the overflow possibility below 1%. It should be noted that this
overflow possibility will happen if we store the system state cycle by
cycle. In real applications, we usually store the system state in more
coarse-grained granularity, which makes the possibility much lower.

D. Reference Vector Selection

We evaluate the compressed vector length |Vcomp| under four
vector selecting methods: all-zero reset vector, random vector, op-
timized vector by Equation 6, a system state vector from FFT .
Figure 11 shows the results under different benchmarks. It is shown
that different reference vectors can cause up to 42% variation of the
compressed length. Choosing a system state vector from FFT works
well for the FFT application, but it is not good for other applications.
It implies that a application specific reconfigurable state table may
work quite well. Furthermore, the proposed optimal vector works
quite good under all benchmarks compared with the random and all-
zero approach. It demonstrates that a universal reference vector can
be selected for lots of applications, though it is not so good as the
application specific vectors in some cases.

E. Discussion

Among existed mature nonvolatile processes, the hybrid structure
in Figure 1 should be used due to the lifetime concern of nonvolatile
components. In that case, nonvolatile register is always larger than the
CMOS DFF symbolized as SNV FF > SDFF . Our techniques can
reduce the chip area if SNV FF > SDFF . Therefore, it is applicable
to most existed nonvolatile processes. However, it is unclear whether
a nonvolatile register with smaller area than DFF can be mass
produced in future.

VI. CONCLUSIONS

Nonvolatile processors, based on the emerging materials, open
up a new domain for the power savings and attractive applications.
However, the traditional fully-replaced design flow causes prohibitive
area overheads and increases the manufacture costs. This paper
proposes a state table based compression method to reduce the NVFF
number. A novel PRLC architecture and a reconfigurable state table
are implemented, and corresponding algorithms are developed to find
the optimal parallel degree and the reference vector. Experimental
results show that we achieve over 4 times NVFF reductions and up
to 43% overall processor area savings. Meanwhile, only 50μs time
overhead adapt it to both abrupt and planned power down.

Although we evaluate this method on a fabricated ferroelectric
process based processor, it is also applicable to other designs with
other nonvolatile materials based registers. Our future work aims
at the integration of the PRLC architecture with our taped-out
nonvolatile processor and evaluates the performance and area for
more novel applications.

REFERENCES

[1] Rohm Co., Ltd., “Rohm Demonstrates Nonvolatile CPU,” Website:
http://techon.nikkeibp.co.jp/english/NEWS EN/20071004/140206/.

[2] W. Yu, S. Rajwade, S. Wang, B. Lian, G. Suh, and E. Kan, “a
non-volatile microcontroller with integrated floating-gate transistors,” in
Proceedings of the 5th Workshop on Dependable and Secure Nanocom-
puting. ACM Press, 2011, pp. 1–4.

[3] C. Holland, “First MRAM-based FPGA taped-out,” Website: http://www.
eetimes.com/General/DisplayPrintViewContent?contentItemId
=4200035.

[4] W. Zhao, E. Belhaire, V. Javerliac, C. Chappert, and B. Dieny, “Evalu-
ation of a non-volatile fpga based on mram technology,” in Integrated
Circuit Design and Technology, 2006. ICICDT’06. 2006 IEEE Interna-
tional Conference on. IEEE, 2006, pp. 1–4.

[5] ITRS, “Roadmap for Nonvolatile Memory,” Website: http://www.itrs.net/.
[6] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Design

exploration of hybrid caches with disparate memory technologies,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 7,
no. 3, p. 15, 2010.

[7] N. Sakimura, T. Sugibayashi, R. Nebashi, and N. Kasai, “Nonvolatile
magnetic flip-flop for standby-power-free socs,” in Custom Integrated
Circuits Conference, 2008. CICC 2008. IEEE. IEEE, pp. 355–358.

[8] W. Zhao, E. Belhaire, V. Javerliac, C. Chappert, and B. Dieny, “A non-
volatile flip-flop in magnetic fpga chip,” in Design and Test of Integrated
Systems in Nanoscale Technology, 2006. DTIS 2006. International
Conference on. IEEE, 2006, pp. 323–326.

[9] Nikkei Electronics Asia, “Rohm Develops Non-Volatile Register;
Slashes Dissipation,” Website: http://techon.nikkeibp.co.jp/article /HON-
SHI/20080729/155646/.

[10] N. Sakimura, T. Sugibayashi, R. Nebashi, and N. Kasai, “Nonvolatile
magnetic flip-flop for standby-power-free socs,” Solid-State Circuits,
IEEE Journal of, vol. 44, no. 8, pp. 2244–2250, 2009.

[11] J. Wang, Y. Liu, H. Yang, and H. Wang, “A compare-and-write fer-
roelectric nonvolatile flip-flop for energy-harvesting applications,” in
Green Circuits and Systems (ICGCS), 2010 International Conference
on. IEEE, pp. 646–650.

[12] X. Guo, E. Ipek, and T. Soyata, “Resistive computation: avoiding the
power wall with low-leakage, stt-mram based computing,” in 2010
Proceedings of the 37th annual international symposium on Computer
architecture. ACM Press, 2010.

[13] anonymous, “Technical report,” 2011.
[14] J. Trein, A. Schwarzbacher, B. Hoppe, and K. Noff, “A hardware

implementation of a run length encoding compression algorithm with
parallel inputs,” in Signals and Systems Conference, 2008.(ISSC 2008).
IET Irish. IET, pp. 337–342.

[15] P. Khandekar and S. Subbaraman, “Low power 2:1 mux for barrel
shifter,” in Emerging Trends in Engineering and Technology, 2008.
ICETET ’08. First International Conference on, july 2008, pp. 404 –
407.


