
978-3-9810801-8-6/DATE12/©2012 EDAA

Bloom Filter-based Dynamic Wear Leveling for Phase-Change RAM

Joosung Yun, Sunggu Lee, Sungjoo Yoo

Department of Electronic and Electrical Engineering

Pohang University of Science and Technology (POSTECH)

{acajuri, slee, sungjoo.yoo}@postech.ac.kr

ABSTRACT
Phase Change RAM (PCM) is a promising candidate of emerging
memory technology to complement or replace existing DRAM and
NAND Flash memory. A key drawback of PCMs is limited write
endurance. To address this problem, several static wear-leveling
methods that change logical to physical address mapping
periodically have been proposed. Although these methods have low
space overhead, they suffer from unnecessary data migrations
thereby failing to exploit the full lifetime potential of PCMs. This
paper proposes a new dynamic wear-leveling method that reduces
unnecessary data migrations by adopting a hot/cold swapping-
based dynamic method. Compared with the conventional hot/cold
swapping-based dynamic method, the proposed method requires
only a small amount of space overhead by applying Bloom filters to
the identification of hot and cold data. We simulate our method
using SPEC2000 benchmark traces and compare with previous
methods. Simulation results show that the proposed method reduces
unnecessary data migrations by 58~92% and extends the memory
lifetime by 2.18~2.30 times over previous methods with a negligible
area overhead of 0.3%.

1. Introduction
Resistive memory is a new type of memory being developed in
many laboratories. Unlike most previous capacitive memory
devices that store data using electrical charge in capacitors, resistive
memories store data using differences in resistivity brought about
by material characteristics. Because of this feature, resistive
memory is nonvolatile. The resistive memory has often better
scaling capability than the DRAM since it does not suffer from the
difficulty of keeping electron charge in a smaller capacitor as in the
DRAM. Phase Change Memory (PCM) is a type of resistive
memory that uses Ge, Sb, Te and other materials to produce phase
changes in atomic structures resulting in changes in resistivity [1].
Many studies [2, 3] have shown that PCM can give benefits when
utilized as an additional memory structure in the memory hierarchy
and storage.

Like Flash memory, a key drawback of PCMs is that there is a limit
to the number of times that a memory cell can be written. A PCM
cell can be written 107-108 times before it wears out and fails [1,4].
Although the endurance of a PCM cell is higher than a Flash
memory cell, wear-leveling technology, which evenly distributes
writes across cells, is still needed for PCMs to be used as a part of
the main memory or as a write buffer in the storage. Unlike Flash
memory, which must erase an entire block before rewriting that
block with new data, memory cells in PCMs can be modified one
cell at a time. This leads to fine-grained methods for wear leveling.

Conventional wear leveling methods can be classified into two
types, dynamic and static methods, depending on whether the
hotness of data is utilized or not. In the dynamic methods, hot data
(frequently written data) are identified by counting the number of
writes and their physical locations are changed (with the physical

locations of cold data) when the write counts exceed the given
threshold. In the static method, the mapping from logical to physical
addresses is changed periodically without considering hot/cold data
locations. The dynamic methods give better wear leveling with
longer lifetime and smaller data migration overhead. However, they
suffer from high area cost to maintain the write count information.

In this paper, we propose a low cost solution by applying the Bloom
filter [5] to the management of write counts. The basic idea is to
exploit the fact that writes have spatial localities in the entire
address space. Thus, some regions of address space receive frequent
writes while the other regions have few write requests. In such a
case, as will be explained later, the Bloom filter is useful to identify
hot data addresses with a very small area overhead. We simulate our
method and previous methods [6, 7] and compare lifetime and
overhead.

The remainder of this paper is organized as follows. Section 2
reviews previous work. Section 3 gives the basic idea. Section 4
explains the proposed method. Section 5 reports experimental
results. Section 6 concludes the paper.

2. Related Work
There have been presented several studies on static wear leveling
for PCM. In [8], two rotation-based methods are proposed, fine-
grain one called row shifting & coarse-grain one called segment
sifting. Row shifting rotates the start address of row by one byte at a
time for each shift interval based on the number of write count per
row. Segment shifting is a coarse-grained rotation method using the
number of write count per segment (i.e., multiple rows) instead of a
single row. In [6], the start-gap method first randomizes the
mapping from logical to physical addresses to distribute write
traffics with high spatial locality (e.g., frequently accessing
neighbor addresses). Then, by combining a rotation-based wear
leveling utilizing start and gap registers, logical to physical address
mapping is changed. In [7], security-refresh performs a two-level
randomization for logical to physical address mapping to avoid
PCM wear out due to malicious attacks, e.g., repeat address attacks.

The static methods have the advantage of small space overhead for
the write count information. However, as will be shown in our
experiments, they suffer from unnecessary data swapping thereby
failing to exploit the full lifetime potential of PCMs.

Dynamic wear leveling can give longer lifetime than static one.
Dynamic wear leveling has been actively studied for Flash
memories [9, 10, 11, 12]. These methods try to achieve uniform
writes by swapping addresses using write count information at the
granularity of erase operation, i.e., block (e.g., 256KB=64*4KB).
Since memory cells in PCMs can be modified one cell at a time, a
simplistic adoption of dynamic wear leveling methods from Flash
memories will give prohibitively large area overhead since it would
require write information per cell.

In [13], a method called wear rate leveling is proposed where the
write count information is managed at the granularity of data

regions. Periodically, data regions are sorted based on their write
counts. Then, the most frequently written data regions are mapped
onto strong (in terms of process variation) PCM cells thereby
improving PCM lifetime. Like existing dynamic methods for Flash
memories, this method has also the limitations of large area
overhead to maintain the write count information. In addition, the
timing-consuming sorting operation is required during runtime. In
our method, we reduce the area overhead of write count information
by utilizing the Bloom filter and the runtime overhead of sorting to
find the hot addresses by utilizing an efficient hot-cold list
management.

3. Preliminary and Basic Idea

3.1 Bloom Filter
The Bloom filter is a space-efficient probabilistic data structure [5].
It is used to query whether an element is in a data set or not. The
original Bloom filter is a bit array of m bits. In the initial empty
state, all entries in this bit array are set to 0. Then, we define k
different hash functions, each of which maps a data element to one
of m bit array positions. When a new data element is added to the
data set, all k hash functions are applied to this data element, and
each corresponding entry in the bit array is set to 1. After a large
number of data elements have been added to the database in this
manner, a large number of entries in the bit array will be 1;
however, assuming that the bit array is sufficiently large (m is large),
the bit array will still have more 0 entries than 1 entries. To query
for the existence of a data element in the data set, the user simply
needs to check the k positions which the k hash functions, when
applied to this data element, point to. If any of these bits is 0, then
this data element is not in the data set. If all bits are 1, then there is a
positive probability that this data element is in the data set.

Because the Bloom filter (often called binary Bloom filter) uses this
type of bit array, counting the same data elements is not possible.
Thus, in our work, we utilize a counting Bloom filter that consists
of a counter array. Thus, whenever a new entry is added, the
corresponding counter(s) is incremented.

Fig. 1. Hash functions mapping addresses to Bloom filter
counter arrays.

3.2 Bloom Filter-based Hot Data Identification
Let us consider a specific example of Bloom filter as shown in Fig 1.
There are 8 addresses and 4 counters. Note that we reduce the
number of counters from 8 to 4 by utilizing the Bloom filter while
the conventional dynamic wear leveling has 8 counters in this case.
Fig. 1 shows the two hash functions, i.e. two mapping relationships
between addresses and counters. Fig. 2 shows two example
scenarios. In Fig. 2 (a), suppose that all addresses are written 5

times. Then, all counters have the same value of 20 as shown in Fig.
2 (a). In the second scenario of Fig. 2 (b), suppose that all addresses
are written 5 times except for address 0, which is written 50 times.
Then, the values of counters 0 and 1 are both 65, while the others
are 10. As shown in Fig. 2 (b), in the case that there are hot
addresses, the Bloom filter can identify them since the
corresponding counters give higher values than the other counters.

Note again that the Bloom filter-based hot address identification
requires less area overhead, i.e., less counters, for write count
information.

Fig. 2. Two example scenarios (uniform writes and one hot
address).

Fig. 3 illustrates in more detail how to identify hot addresses
utilizing the counting Bloom filter. To determine whether an
address is hot or not, whenever a data is written, the corresponding
entries in the Bloom filter counter array are checked. In Fig. 3, if
both of the two counters give higher values than a threshold (e.g.,
30 in the figure), the address is classified as a hot address. In such a
case, we perform wear leveling, i.e., swap the physical locations
between the hot address and one of cold addresses. Then, we
manage the information of swapping (i.e., original address and
swapped address) in a hot-cold list L.

Fig. 3. Identifying hot addresses.

The counting Bloom filter can give false positives and false
negatives. A false (negative) positive is a prediction error that the
Bloom filter predicts existence (non-existence) in case of non-
existence (existence). For instance, in Fig. 2 (b), the second address
has 5 writes. However, the Bloom filter can identify it as a hot
address since the values of its Bloom filter counters both exceed the
threshold. Note that such errors occur in proportion to the write

0

1

2

3

4

5

6

7

0

1

2

3

Address Counter

0

1

2

3

4

5

6

7

0

1

2

3

Address Counter

Hash function 1 Hash function 2

5

5

5

5

5

5

5

5

20

20

20

20

Write count Counter value

50

5

5

5

5

5

5

5

65

65

20

20

Write count Counter value

(a) (b)

address1

Bloom filter

address2

address1

address2

cold address

hot address

=

=

= over threshold = under threshold

probability of the second address. Even though the write probability
of cold addresses is typically very low, the adverse effects of such
errors need to be evaluated.

4. Bloom Filter-based Wear Leveling

4.1 Solution Overview
Fig. 4 shows an overall picture of the proposed method. When we
wish to access (read from or write to) a specific address, we first
check the hot-cold list L (step 1 in Fig.4). If the address is not found
in L, we access its original location (step 2). If the L includes that
address, we access the swapped address, i.e., the address directed to
by the hot-cold list (step 3). Whenever data is written to a specific
address, the Bloom filter (having two hash functions in our work) is
updated, i.e., the counters that are indicated by the two hash
functions for that address are incremented (step 4).

Fig. 4. Overview of Bloom filter-based wear-leveling.

In case of writes, after updating the Bloom filter, we check to see if
a hot/cold swapping is needed. As mentioned in Section 3, if all the
counters of written data exceed the threshold, then the address of
write data is identified as a hot address, and is swapped with a
randomly selected address (step 5 in Fig. 4).

The hotness of data varies during runtime. In our work, we propose
a novel idea to improve the performance of Bloom filter-based hot
address identification by adapting the threshold to dynamically
changing write behavior (Section 4.2). In addition, in order to
minimize the adverse effects of false positive (i.e., erroneously
identifying a cold address as a hot one), we present a method of hot-
cold list management to filter out such addresses from the hot-cold
list (Section 4.3).

4.2 Dynamically Changing Threshold
In this subsection, we propose two policies to change the threshold
during runtime by adapting to the dynamically changing write
behavior. Given a program, we perform a design-time evaluation on
which policy is better for the given application and then, during
runtime, we apply the best policy to the program. During runtime,
we dynamically adjust the threshold according to the policy only
when there is a significant change in the statistics of Bloom filter
counter values. In our implementation, we applied the policy when
the standard deviation of Bloom filter counter values is under 10%
or over 90% of its maximum.

Policy 1. In the case that the write count behavior exhibits a near
even distribution, if the standard deviation of Bloom filter counter

values is increasing, the threshold value should increase. If the
standard deviation is decreasing, the threshold value should
decrease.

Fig. 5. A near even write count distribution (a) and a
corresponding distribution of Bloom filter counter values (b)

Policy 1 is effective when the write behavior of the program
exhibits a near even distribution, i.e., the absolute amount of write
count difference between hot and cold addresses is small. In such a
case of originally even write distribution, we need to try to avoid
unnecessary hot/cold swapping since hot/cold swapping will
increase PCM writes thereby reducing lifetime without contributing
to the even-ness of write counts. Thus, if the write behavior changes
dynamically while still keeping the even-ness, we need to adjust the
threshold while trying to minimize the swapping overhead. In such
a case, as stated in Policy 1, even though the standard deviation of
Bloom filter counters increases, if the even-ness of write
distribution is still maintained, then we try to reduce hot/cold
swapping by increasing the threshold.

Fig. 5 exemplifies an original near even write count distribution
(Fig. 5 (a)) and a corresponding distribution of Bloom filter counter
values obtained from trace 183.equake in SPEC2000. The x-axes in
Fig. 5 (a) and (b) represent the counter of original address and the
Bloom filter counter, respectively. The y-axes are write counts.
Note that the distribution of Bloom filter counter values is
correlated with that of the original write distribution since each
Bloom filter counter represents the sum of write counts in a sample
set of the original write counters set. If the statistics of Bloom filter
counter values is like the one in Fig. 5 (b), we can consider the
original write distribution will be near even. Thus, we need to try to
minimize hot/cold swapping by adjusting the threshold according to
Policy 1.

Policy 2. In the case that there are hot addresses, if the standard
deviation of Bloom filter counter values is increasing, the threshold
value should decrease. If the standard deviation is decreasing, the
threshold value should increase.

Policy 2 is for programs having hot addresses. In such a case, it is
important to increase the sensitivity of hot address identification in
order to maximize the effects of hot/cold swapping. Fig. 6 illustrates
such a case obtained from the same program as in Fig. 5. Fig. 6 (a)
shows that there are hot addresses which have large number of
writes (e.g., more than 200) while cold addresses each have only
0~199 writes. In this case, if the distribution of Bloom filter counter
values becomes wider, then there will be more and/or stronger hot
addresses. Thus, it is required to identify hot addresses as soon as
possible and to perform hot/cold swapping. To do that, as stated in
Policy 2, in such a case, if the standard deviation of Bloom filter
counter values increases, we decrease the threshold for a faster
identification of hot addresses.

address

(1) Search
hot-cold

list L

(2) Access the
original address

present

not present (4) Update
Bloom filter

counters
(Section 3.1)

(5) Hot data identification
(Section 3.2) and hot-cold swap

(Section 4.3)

update
L

(3) Access the
swapped address

Calculate
dynamical
Threshold

(Section 4.2)
Updated

Threshold

Fig. 6. Write count distribution with hot addresses (a) and a
corresponding distribution of Bloom filter counter values (b)

Note that we find a suitable policy for each program during design
time and then apply it during runtime. In each policy, we
periodically calculate the standard deviation of Bloom filter counter
values and change the threshold value appropriately.

4.3 Three-Tier Hot-cold List Management
Due to the false positive problem, non-hot addresses can be judged
to be hot ones. In such a case, the newly identified hot address (in
reality, a non-hot address) evicts from the hot-cold list one of
existing hot addresses, which can adversely affect the effectiveness
of the proposed method. To address this problem, we suggest a
three-tier hot-cold list management. Our idea is (1) to double-check
newly identified hot addresses and (2) to keep in the hot-cold list as
many real hot addresses as possible. To do that, we divide the entire
hot-cold list into three smaller lists as shown in Fig. 7. Lists 1 and 2
contain strong and weak hot addresses, respectively. List 3 has new
hot addresses selected in step 5 of Fig. 4.

When a new address is included into the hot-cold list, it is first
inserted into list 3 whose replacement policy is First-In-First-Out
(FIFO). If an address in list 3 is accessed, then it is promoted to the
last position in list 2 (denoted with ‘Entry point’ in Fig. 7). If an
address in lists 1 and 2 is accessed, it is promoted by one position
towards the top position of each list. Periodically, the lower part
(20%) of list 1 and the upper part of group 2 are shuffled as shown
in Fig. 7.

Fig. 7. Three-tier hot-cold list

The three-tier list structure can filter out non-hot addresses which
are selected due to the false positive problem since non-hot
addresses have little probability of re-reference (for it to promote to
list 2) until it is evicted from list 3 by the FIFO policy. In this three-
tier structure, we perform hot/cold swapping when an address is
inserted to list 3.

5. Experimental Results

5.1 Simulation Environment
To simulate our method, we extracted memory access traces based
on parameters used in actual working systems, as shown in Table 1.
The event-driven multicore simulator McSim [14] was used to
obtain write eviction traces from the L1 cache. These traces were
then used as the write address input to our simulation model of
PCM-based memory subsystem. Table 2 shows the simulation
setting. Because cache lines are 64B, we set our address granularity
of hot/cold swapping to be 64B.

Table 1 System configuration for simulation

Component Details

CPU core In-order x86 core, 450 MHz

L1 cache 4-way, 16KB/32KB, I/D cache, 64B cache line, 1
cycle, 450MHz

PRAM 32b DDR2 interface @ 400MHz,

 tCL/tRP/tRCD=6/72/25 cycles.

Table 2 Simulation setting

Figure Size

Granularity 64Byte

PRAM 1G Byte

2-level Bloom filter 256 x 20 Bit

1-level Bloom filter 256 x 13 Bit

Groups 4096 addresses per group

Hot-cold List 256 x 12 Bit

A management of a single very large Bloom filter is not efficient,
e.g., in terms of power consumption. In our implementation, we
built a two-level Bloom filter as shown in Fig. 8. It partitions the
address space into smaller groups and manages per-group Bloom
filters and a global Bloom filter. In order to avoid the overflow of
Bloom filter counters, the counter values are divided by 2
periodically (per 20000 writes).

Fig. 8. 2-level Bloom filter.

Based on the simulation settings shown in Table 2, we can calculate
the required space overhead of the proposed method as follows.

Space	overhead = Group× (1-level Bloom filters+hot-cold list)
+ (2-level Bloom filter+hot-cold list)

= 4096 × (256 × 13 + 256 × 12)+ 256 × 20 + 256 × 12

= 3201KByte = 3.16MByte

address

address

address

address

address

address

address

address

address

address

address

address

Bloom filter

Bloom filter

Bloom filter

1-level bloom filter

Bloom filter

2-level bloom filter

group

group

group

Fig. 9. Lifetime extention compared with previous methods

Fig. 10. Swapping overhead compared with previous methods

The space overhead is 0.31% of total memory size (1GB) which is
significantly smaller than that of an ideal case of hot/cold swapping
(11.4%, 12b per 64B) where each data of swapping granularity (in
our case, 64B) has its own counter. Note that the sorting overhead
with such a large number of counters is prohibitively large in the
ideal case. For the implementation of our method, we assume
storing the Bloom filters and hot-cold lists in PCM and utilizing a
caching mechanism similar to TLB (translation look-aside buffer)
used for virtual-to-physical address translation.

5.2 Comparison with Previous Methods
The proposed method was compared with two well-known previous
methods: start-gap [5] and security-refresh [6]. We simulated 20
SPEC2000 traces. Fig. 9 shows a comparison of lifetime extension
ratios, and Fig. 10 shows a comparison of swapping overhead. Fig.
11 is a summary of Figs. 9 and 10. It also includes the ideal case. To
obtain the ideal case, we first sorted per-address (64B) write counts
in the traces. For a given target lifetime (i.e., maximum write count),
we selected those data whose write counts exceed the maximum
write count. Then, we calculated the required number of swappings
in order to meet the write counts of physical locations for those data
under the maximum write count. In Fig. 11, the distance from the
origin represents the quality of wear leveling method. Thus, the
farther a solution is located from the origin, the better quality the
solution gives.

The simulation results show that the proposed method reduces
unnecessary data swapping by 58~92% and extends the memory
lifetime by 2.18~2.30 times over previous methods with a negligible
area overhead of 0.3%.

For a more extensive comparison between solutions, we explored
the key parameter of each solution and show the obtained results in
Fig. 11. In the methods of start-gap and security-refresh, we varied
their swapping periods (in terms of write counts). Thus, as the
swapping period increases, lifetime extension and swapping
overhead decrease. In our method, we varied the threshold of
Bloom filter. Therefore, as the threshold value increases, lifetime
extension and swapping overhead decrease.

Fig. 11. Comparison with previous methods

5.3 Sensitivity Analysis
We explored the design space of our method by varying three
parameters as shown in Fig. 12: Bloom filter size (the number of

0

2

4

6

8

10

12

14

Ex
te

in
te

n
 r

at
io

Trace

Lifetime Extension

Proposed(Policy1)

Proposed(Policy2)

Start-gap(64Byte)

Security-refresh(64Byte)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
ve

rh
ea

d
 r

a
ti

o

Trace

Swapping Overhead

Proposed(Policy1)

Proposed(Policy2)

Start-gap(64Byte)

Security-refresh(64Byte)

0.1

1

10

100

1000

10000

0 5 10 15

1
 /

 S
w

ap
p

in
g

O
ve

rh
ea

d

Lifetime Extension

Ideal case

Bloom Filter

Security-refresh

Start-gap

Bloom filter entries), hot-cold list size and threshold value. In the
first case, we fixed the hot-cold list size at 256, and applied policy 1
for dynamic threshold. Then, we varied the Bloom filter size from
128 to 512 entries (the results denoted with ‘counter’ in Fig. 12).
With the larger Bloom filter, the lifetime extension ratio increases
and swapping overhead decreases. It is because there are less false
positives. In the second case, we fixed the Bloom filter counter size
at 128, applied policy 1 and varied the hot-cold list size from 64 to
256 (the results denoted with ‘list’ in Fig. 12). The results in this
case were slightly inferior to the previous cases of changing the
Bloom filter size. It is because the false positive problem is
significant in these cases (since the Bloom filter size is small). Thus,
increasing the hot-cold list size is not so effective as increasing the
Bloom filter size. Finally, we fixed the Bloom filter size at 256,
fixed the hot-cold list size at 512 and varied the threshold value
from 1000 to 8000. At low threshold values (e.g., 1000), both
lifetime extension ratio and swapping overhead were at their largest
levels. Lower threshold values result in frequent swappings thereby
contributing to the flattening of writes. However, it increases
swapping overhead as shown in Fig. 12.

Fig. 12. Sensitivity analysis

5.4 Hot-Cold List Management Policy
In order to evaluate the effectiveness of three-tier hot-cold list, we
compare three management policies: First-in-First-Out (FIFO),
Least Recently Used (LRU) and the three-tier scheme (Section 4.3).
We fixed the other parameters of our method at the best-performing
values in general: the Bloom filter size is 256, the hot-cold list size
is 256 and both polices 1 and 2 are used. Fig. 13 shows that the
three-tier scheme increases lifetime extension ratio by 50.3%~87.7%
and decreases swapping overhead by 73.7~79.3% over the FIFO or
LRU policies.

6. Conclusion
Phase change memory (PCM) is a promising memory technology.
However, one of the main drawbacks of PCM is the write
endurance problem. To address this problem, we proposed a new
wear-leveling method based on Bloom filters in order to reduce the
space overhead of dynamic wear leveling. The proposed method
gives 2.18~2.30 times improvement in lifetime while reducing
swapping overhead by 58%~97% compared with existing methods
while incurring a small area overhead of 0.3%.

Fig. 13. Comparison of management policies

7. Acknowledgements
This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technology, IC Design
Education Center (IDEC) and Postech Information Research
Laboratories (PIRL).

8. References
[1] R. Freitas and W. Wilcke, "Storage-class memory: The next storage
system technology," IBM Journal of R. and D., 52(4/5):439–447, 2008.
[2] M. Qureshi, V. Srinivasan and J. Rivers, "Scalable high performance
main memory system using phase-change memory technology," In
ISCA-36, 2009.
[3] B. Lee et al., "Architecting phase change memory as a scalable
DRAM alternative," In ISCA-36, 2009.
[4] International Technology Roadmap for Semiconductors, ITRS 2007.
[5] B. H. Bloom, "Space/time trade-offs in hash coding with allowable
errors," Tran. Commun. ACM, 13(7):422–426, 1970.
[6] M. K. Qureshi et al., "Enhancing lifetime and security of pcm-based
main memory with start-gap wear leveling,” In MICRO-42, 2009.
[7] N. H. Seong, D. H. Woo, and H.-H. S. Lee, "Security refresh:
prevent malicious wear-out and increase durability for phase-change
memory with dynamically randomized address mapping," In ISCA-37,
2010.
[8] P. Zhou, B. Zhao, J. Yang and Y. Zhang, “A durable and energe
efficient main memory,” In Proceeding of the International Symposium
on Computer Architecture, 2009.
[9] A. Ban and R. Hasharon, “Wear leveling of static areas in flash
memory,” U.S. Patent Number 6,732,221, 2004.
[10] A. Ben-Aroya and S. Toledo, “Competitive analysis of flash-
memory algorithms,” In ESA’06: Proceedings of the 14th conference on
Annual European Symposium, pages 100–111, 2006.
[11] E. Gal and S. Toledo, “Algorithms and data structures for flash
memories,” ACM Comput. Surv., 37(2)138–163, 2005.
[12] T. Kgil, D. Roberts and T. Mudge, “Improving nand flash based
disk caches,” In ISCA ’08: Proceedings of the 35th annual international
symposium on Computer architecture, pages 327–338, 2008.
[13] J. Dong, L. Zhang, Y. Han, Y.Wang, and X. Li, “Wear rate
leveling : lifetime enhancement of PRAM with endurance variation,” In
DAC 2011, pp. 972-977, June 5-10, 2011.
[14] S. Li, et al., “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures,” Proc.
MICRO, 2009.

1

10

100

0 2 4 6 8 10 12

1
 /

 R
e

p
a

lc
e

m
e

n
t

O
ve

rh
e

ad

Lifetime Extension

Counter=128

Counter=256

Counter=512

List=64

List=128

List=256

Threshold=1000

Threshold=4500

Threshold=8000

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5

1
/S

w
ap

p
in

g
O

ve
rh

e
a

d

Litetime Extension

FIFO(Policy 1)

FIFO(Policy 2)

LRU(Policy1)

LRU(Policy2)

Three-tier Scheme (Policy
1)

Three-tier Scheme (Policy
2)

