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ABSTRACT 
Phase Change RAM (PCM) is a promising candidate of emerging 
memory technology to complement or replace existing DRAM and 
NAND Flash memory. A key drawback of PCMs is limited write 
endurance. To address this problem, several static wear-leveling 
methods that change logical to physical address mapping 
periodically have been proposed. Although these methods have low 
space overhead, they suffer from unnecessary data migrations 
thereby failing to exploit the full lifetime potential of PCMs. This 
paper proposes a new dynamic wear-leveling method that reduces 
unnecessary data migrations by adopting a hot/cold swapping-
based dynamic method. Compared with the conventional hot/cold 
swapping-based dynamic method, the proposed method requires 
only a small amount of space overhead by applying Bloom filters to 
the identification of hot and cold data. We simulate our method 
using SPEC2000 benchmark traces and compare with previous 
methods. Simulation results show that the proposed method reduces 
unnecessary data migrations by 58~92% and extends the memory 
lifetime by 2.18~2.30 times over previous methods with a negligible 
area overhead of 0.3%. 

1. Introduction 
Resistive memory is a new type of memory being developed in 
many laboratories. Unlike most previous capacitive memory 
devices that store data using electrical charge in capacitors, resistive 
memories store data using differences in resistivity brought about 
by material characteristics. Because of this feature, resistive 
memory is nonvolatile. The resistive memory has often better 
scaling capability than the DRAM since it does not suffer from the 
difficulty of keeping electron charge in a smaller capacitor as in the 
DRAM. Phase Change Memory (PCM) is a type of resistive 
memory that uses Ge, Sb, Te and other materials to produce phase 
changes in atomic structures resulting in changes in resistivity [1]. 
Many studies [2, 3] have shown that PCM can give benefits when 
utilized as an additional memory structure in the memory hierarchy 
and storage. 

Like Flash memory, a key drawback of PCMs is that there is a limit 
to the number of times that a memory cell can be written. A PCM 
cell can be written 107-108 times before it wears out and fails [1,4]. 
Although the endurance of a PCM cell is higher than a Flash 
memory cell, wear-leveling technology, which evenly distributes 
writes across cells, is still needed for PCMs to be used as a part of 
the main memory or as a write buffer in the storage. Unlike Flash 
memory, which must erase an entire block before rewriting that 
block with new data, memory cells in PCMs can be modified one 
cell at a time. This leads to fine-grained methods for wear leveling. 

Conventional wear leveling methods can be classified into two 
types, dynamic and static methods, depending on whether the 
hotness of data is utilized or not. In the dynamic methods, hot data 
(frequently written data) are identified by counting the number of 
writes and their physical locations are changed (with the physical 

locations of cold data) when the write counts exceed the given 
threshold. In the static method, the mapping from logical to physical 
addresses is changed periodically without considering hot/cold data 
locations. The dynamic methods give better wear leveling with 
longer lifetime and smaller data migration overhead. However, they 
suffer from high area cost to maintain the write count information. 

In this paper, we propose a low cost solution by applying the Bloom 
filter [5] to the management of write counts. The basic idea is to 
exploit the fact that writes have spatial localities in the entire 
address space. Thus, some regions of address space receive frequent 
writes while the other regions have few write requests. In such a 
case, as will be explained later, the Bloom filter is useful to identify 
hot data addresses with a very small area overhead. We simulate our 
method and previous methods [6, 7] and compare lifetime and 
overhead. 

The remainder of this paper is organized as follows. Section 2 
reviews previous work. Section 3 gives the basic idea. Section 4 
explains the proposed method. Section 5 reports experimental 
results. Section 6 concludes the paper. 

2. Related Work 
There have been presented several studies on static wear leveling 
for PCM. In [8], two rotation-based methods are proposed, fine-
grain one called row shifting & coarse-grain one called segment 
sifting. Row shifting rotates the start address of row by one byte at a 
time for each shift interval based on the number of write count per 
row. Segment shifting is a coarse-grained rotation method using the 
number of write count per segment (i.e., multiple rows) instead of a 
single row. In [6], the start-gap method first randomizes the 
mapping from logical to physical addresses to distribute write 
traffics with high spatial locality (e.g., frequently accessing 
neighbor addresses). Then, by combining a rotation-based wear 
leveling utilizing start and gap registers, logical to physical address 
mapping is changed. In [7], security-refresh performs a two-level 
randomization for logical to physical address mapping to avoid 
PCM wear out due to malicious attacks, e.g., repeat address attacks. 

The static methods have the advantage of small space overhead for 
the write count information. However, as will be shown in our 
experiments, they suffer from unnecessary data swapping thereby 
failing to exploit the full lifetime potential of PCMs.  

Dynamic wear leveling can give longer lifetime than static one. 
Dynamic wear leveling has been actively studied for Flash 
memories [9, 10, 11, 12]. These methods try to achieve uniform 
writes by swapping addresses using write count information at the 
granularity of erase operation, i.e., block (e.g., 256KB=64*4KB). 
Since memory cells in PCMs can be modified one cell at a time, a 
simplistic adoption of dynamic wear leveling methods from Flash 
memories will give prohibitively large area overhead since it would 
require write information per cell.  

In [13], a method called wear rate leveling is proposed where the 
write count information is managed at the granularity of data 



 

 

regions. Periodically, data regions are sorted based on their write 
counts. Then, the most frequently written data regions are mapped 
onto strong (in terms of process variation) PCM cells thereby 
improving PCM lifetime. Like existing dynamic methods for Flash 
memories, this method has also the limitations of large area 
overhead to maintain the write count information. In addition, the 
timing-consuming sorting operation is required during runtime. In 
our method, we reduce the area overhead of write count information 
by utilizing the Bloom filter and the runtime overhead of sorting to 
find the hot addresses by utilizing an efficient hot-cold list 
management. 

3. Preliminary and Basic Idea 

3.1 Bloom Filter 
The Bloom filter is a space-efficient probabilistic data structure [5].  
It is used to query whether an element is in a data set or not.  The 
original Bloom filter is a bit array of m bits. In the initial empty 
state, all entries in this bit array are set to 0. Then, we define k 
different hash functions, each of which maps a data element to one 
of m bit array positions. When a new data element is added to the 
data set, all k hash functions are applied to this data element, and 
each corresponding entry in the bit array is set to 1.  After a large 
number of data elements have been added to the database in this 
manner, a large number of entries in the bit array will be 1;  
however, assuming that the bit array is sufficiently large (m is large), 
the bit array will still have more 0 entries than 1 entries.  To query 
for the existence of a data element in the data set, the user simply 
needs to check the k positions which the k hash functions, when 
applied to this data element, point to. If any of these bits is 0, then 
this data element is not in the data set. If all bits are 1, then there is a 
positive probability that this data element is in the data set. 

Because the Bloom filter (often called binary Bloom filter) uses this 
type of bit array, counting the same data elements is not possible. 
Thus, in our work, we utilize a counting Bloom filter that consists 
of a counter array. Thus, whenever a new entry is added, the 
corresponding counter(s) is incremented.  

 

  

Fig. 1. Hash functions mapping addresses to Bloom filter 
counter arrays. 

 

3.2 Bloom Filter-based Hot Data Identification 
Let us consider a specific example of Bloom filter as shown in Fig 1. 
There are 8 addresses and 4 counters. Note that we reduce the 
number of counters from 8 to 4 by utilizing the Bloom filter while 
the conventional dynamic wear leveling has 8 counters in this case. 
Fig. 1 shows the two hash functions, i.e. two mapping relationships 
between addresses and counters. Fig. 2 shows two example 
scenarios. In Fig. 2 (a), suppose that all addresses are written 5 

times. Then, all counters have the same value of 20 as shown in Fig. 
2 (a). In the second scenario of Fig. 2 (b), suppose that all addresses 
are written 5 times except for address 0, which is written 50 times. 
Then, the values of counters 0 and 1 are both 65, while the others 
are 10. As shown in Fig. 2 (b), in the case that there are hot 
addresses, the Bloom filter can identify them since the 
corresponding counters give higher values than the other counters.   

Note again that the Bloom filter-based hot address identification 
requires less area overhead, i.e., less counters, for write count 
information.  

 

  

Fig. 2. Two example scenarios (uniform writes and one hot 
address). 

 

Fig. 3 illustrates in more detail how to identify hot addresses 
utilizing the counting Bloom filter. To determine whether an 
address is hot or not, whenever a data is written, the corresponding 
entries in the Bloom filter counter array are checked. In Fig. 3, if 
both of the two counters give higher values than a threshold (e.g., 
30 in the figure), the address is classified as a hot address. In such a 
case, we perform wear leveling, i.e., swap the physical locations 
between the hot address and one of cold addresses. Then, we 
manage the information of swapping (i.e., original address and 
swapped address) in a hot-cold list L. 

 

 

Fig. 3. Identifying hot addresses. 

 

The counting Bloom filter can give false positives and false 
negatives. A false (negative) positive is a prediction error that the 
Bloom filter predicts existence (non-existence) in case of non-
existence (existence). For instance, in Fig. 2 (b), the second address 
has 5 writes. However, the Bloom filter can identify it as a hot 
address since the values of its Bloom filter counters both exceed the 
threshold. Note that such errors occur in proportion to the write 
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probability of the second address. Even though the write probability 
of cold addresses is typically very low, the adverse effects of such 
errors need to be evaluated. 

4. Bloom Filter-based Wear Leveling 

4.1 Solution Overview 
Fig. 4 shows an overall picture of the proposed method. When we 
wish to access (read from or write to) a specific address, we first 
check the hot-cold list L (step 1 in Fig.4). If the address is not found 
in L, we access its original location (step 2). If the L includes that 
address, we access the swapped address, i.e., the address directed to 
by the hot-cold list (step 3). Whenever data is written to a specific 
address, the Bloom filter (having two hash functions in our work) is 
updated, i.e., the counters that are indicated by the two hash 
functions for that address are incremented (step 4). 

 

 

Fig. 4. Overview of Bloom filter-based wear-leveling. 

 

In case of writes, after updating the Bloom filter, we check to see if 
a hot/cold swapping is needed. As mentioned in Section 3, if all the 
counters of written data exceed the threshold, then the address of 
write data is identified as a hot address, and is swapped with a 
randomly selected address (step 5 in Fig. 4).  

The hotness of data varies during runtime. In our work, we propose 
a novel idea to improve the performance of Bloom filter-based hot 
address identification by adapting the threshold to dynamically 
changing write behavior (Section 4.2). In addition, in order to 
minimize the adverse effects of false positive (i.e., erroneously 
identifying a cold address as a hot one), we present a method of hot-
cold list management to filter out such addresses from the hot-cold 
list (Section 4.3). 

4.2 Dynamically Changing Threshold 
In this subsection, we propose two policies to change the threshold 
during runtime by adapting to the dynamically changing write 
behavior. Given a program, we perform a design-time evaluation on 
which policy is better for the given application and then, during 
runtime, we apply the best policy to the program. During runtime, 
we dynamically adjust the threshold according to the policy only 
when there is a significant change in the statistics of Bloom filter 
counter values. In our implementation, we applied the policy when 
the standard deviation of Bloom filter counter values is under 10% 
or over 90% of its maximum. 

 

Policy 1. In the case that the write count behavior exhibits a near 
even distribution, if the standard deviation of Bloom filter counter 

values is increasing, the threshold value should increase. If the 
standard deviation is decreasing, the threshold value should 
decrease. 

 

Fig. 5. A near even write count distribution (a) and a 
corresponding distribution of Bloom filter counter values (b) 

 

Policy 1 is effective when the write behavior of the program 
exhibits a near even distribution, i.e., the absolute amount of write 
count difference between hot and cold addresses is small. In such a 
case of originally even write distribution, we need to try to avoid 
unnecessary hot/cold swapping since hot/cold swapping will 
increase PCM writes thereby reducing lifetime without contributing 
to the even-ness of write counts. Thus, if the write behavior changes 
dynamically while still keeping the even-ness, we need to adjust the 
threshold while trying to minimize the swapping overhead. In such 
a case, as stated in Policy 1, even though the standard deviation of 
Bloom filter counters increases, if the even-ness of write 
distribution is still maintained, then we try to reduce hot/cold 
swapping by increasing the threshold.  

Fig. 5 exemplifies an original near even write count distribution 
(Fig. 5 (a)) and a corresponding distribution of Bloom filter counter 
values obtained from trace 183.equake in SPEC2000. The x-axes in 
Fig. 5 (a) and (b) represent the counter of original address and the 
Bloom filter counter, respectively. The y-axes are write counts. 
Note that the distribution of Bloom filter counter values is 
correlated with that of the original write distribution since each 
Bloom filter counter represents the sum of write counts in a sample 
set of the original write counters set. If the statistics of Bloom filter 
counter values is like the one in Fig. 5 (b), we can consider the 
original write distribution will be near even. Thus, we need to try to 
minimize hot/cold swapping by adjusting the threshold according to 
Policy 1. 

 

Policy 2. In the case that there are hot addresses, if the standard 
deviation of Bloom filter counter values is increasing, the threshold 
value should decrease. If the standard deviation is decreasing, the 
threshold value should increase.  

 

Policy 2 is for programs having hot addresses. In such a case, it is 
important to increase the sensitivity of hot address identification in 
order to maximize the effects of hot/cold swapping. Fig. 6 illustrates 
such a case obtained from the same program as in Fig. 5. Fig. 6 (a) 
shows that there are hot addresses which have large number of 
writes (e.g., more than 200) while cold addresses each have only 
0~199 writes. In this case, if the distribution of Bloom filter counter 
values becomes wider, then there will be more and/or stronger hot 
addresses. Thus, it is required to identify hot addresses as soon as 
possible and to perform hot/cold swapping. To do that, as stated in 
Policy 2, in such a case, if the standard deviation of Bloom filter 
counter values increases, we decrease the threshold for a faster 
identification of hot addresses. 

address

(1) Search
hot-cold 

list L

(2) Access the 
original address

present

not present (4) Update 
Bloom filter

counters
(Section 3.1)

(5) Hot data identification 
(Section 3.2) and hot-cold swap 

(Section 4.3)

update
L

(3) Access the 
swapped address

Calculate 
dynamical
Threshold

(Section 4.2)
Updated

Threshold 



 

 

 

Fig. 6. Write count distribution with hot addresses (a) and a 
corresponding distribution of Bloom filter counter values (b) 

 

Note that we find a suitable policy for each program during design 
time and then apply it during runtime. In each policy, we 
periodically calculate the standard deviation of Bloom filter counter 
values and change the threshold value appropriately. 

4.3 Three-Tier Hot-cold List Management 
Due to the false positive problem, non-hot addresses can be judged 
to be hot ones. In such a case, the newly identified hot address (in 
reality, a non-hot address) evicts from the hot-cold list one of 
existing hot addresses, which can adversely affect the effectiveness 
of the proposed method. To address this problem, we suggest a 
three-tier hot-cold list management. Our idea is (1) to double-check 
newly identified hot addresses and (2) to keep in the hot-cold list as 
many real hot addresses as possible. To do that, we divide the entire 
hot-cold list into three smaller lists as shown in Fig. 7. Lists 1 and 2 
contain strong and weak hot addresses, respectively. List 3 has new 
hot addresses selected in step 5 of Fig. 4. 

When a new address is included into the hot-cold list, it is first 
inserted into list 3 whose replacement policy is First-In-First-Out 
(FIFO). If an address in list 3 is accessed, then it is promoted to the 
last position in list 2 (denoted with ‘Entry point’ in Fig. 7). If an 
address in lists 1 and 2 is accessed, it is promoted by one position 
towards the top position of each list. Periodically, the lower part 
(20%) of list 1 and the upper part of group 2 are shuffled as shown 
in Fig. 7.  

 

Fig. 7. Three-tier hot-cold list  

The three-tier list structure can filter out non-hot addresses which 
are selected due to the false positive problem since non-hot 
addresses have little probability of re-reference (for it to promote to 
list 2) until it is evicted from list 3 by the FIFO policy. In this three-
tier structure, we perform hot/cold swapping when an address is 
inserted to list 3. 

5. Experimental Results 

5.1 Simulation Environment 
To simulate our method, we extracted memory access traces based 
on parameters used in actual working systems, as shown in Table 1. 
The event-driven multicore simulator McSim [14] was used to 
obtain write eviction traces from the L1 cache. These traces were 
then used as the write address input to our simulation model of 
PCM-based memory subsystem. Table 2 shows the simulation 
setting. Because cache lines are 64B, we set our address granularity 
of hot/cold swapping to be 64B. 

Table 1 System configuration for simulation 

Component Details 

CPU core In-order x86 core, 450 MHz 

L1 cache 4-way, 16KB/32KB, I/D cache, 64B cache line, 1 
cycle, 450MHz 

PRAM 32b DDR2 interface @ 400MHz, 

 tCL/tRP/tRCD=6/72/25 cycles. 

Table 2 Simulation setting 

Figure Size 

Granularity 64Byte 

PRAM 1G Byte 

2-level Bloom filter 256 x 20 Bit 

1-level Bloom filter 256 x 13 Bit 

Groups 4096 addresses per group 

Hot-cold List 256 x 12 Bit 

 

A management of a single very large Bloom filter is not efficient, 
e.g., in terms of power consumption. In our implementation, we 
built a two-level Bloom filter as shown in Fig. 8. It partitions the 
address space into smaller groups and manages per-group Bloom 
filters and a global Bloom filter. In order to avoid the overflow of 
Bloom filter counters, the counter values are divided by 2 
periodically (per 20000 writes). 

 

Fig. 8. 2-level Bloom filter. 

Based on the simulation settings shown in Table 2, we can calculate 
the required space overhead of the proposed method as follows. 

Space	overhead = Group× (1-level Bloom filters+hot-cold list)
+ (2-level Bloom filter+hot-cold list) 

= 4096 × (256 × 13 + 256 × 12)+ 256 × 20 + 256 × 12 

= 3201KByte = 3.16MByte 
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Fig. 9. Lifetime extention compared with previous methods 

  

Fig. 10. Swapping overhead compared with previous methods 

 

The space overhead is 0.31% of total memory size (1GB) which is 
significantly smaller than that of an ideal case of hot/cold swapping 
(11.4%, 12b per 64B) where each data of swapping granularity (in 
our case, 64B) has its own counter. Note that the sorting overhead 
with such a large number of counters is prohibitively large in the 
ideal case. For the implementation of our method, we assume 
storing the Bloom filters and hot-cold lists in PCM and utilizing a 
caching mechanism similar to TLB (translation look-aside buffer) 
used for virtual-to-physical address translation.  

5.2 Comparison with Previous Methods 
The proposed method was compared with two well-known previous 
methods: start-gap [5] and security-refresh [6]. We simulated 20 
SPEC2000 traces. Fig. 9 shows a comparison of lifetime extension 
ratios, and Fig. 10 shows a comparison of swapping overhead. Fig. 
11 is a summary of Figs. 9 and 10. It also includes the ideal case. To 
obtain the ideal case, we first sorted per-address (64B) write counts 
in the traces. For a given target lifetime (i.e., maximum write count), 
we selected those data whose write counts exceed the maximum 
write count. Then, we calculated the required number of swappings 
in order to meet the write counts of physical locations for those data 
under the maximum write count. In Fig. 11, the distance from the 
origin represents the quality of wear leveling method. Thus, the 
farther a solution is located from the origin, the better quality the 
solution gives.  

The simulation results show that the proposed method reduces 
unnecessary data swapping by 58~92% and extends the memory 
lifetime by 2.18~2.30 times over previous methods with a negligible 
area overhead of 0.3%.  

For a more extensive comparison between solutions, we explored 
the key parameter of each solution and show the obtained results in 
Fig. 11. In the methods of start-gap and security-refresh, we varied 
their swapping periods (in terms of write counts). Thus, as the 
swapping period increases, lifetime extension and swapping 
overhead decrease. In our method, we varied the threshold of 
Bloom filter. Therefore, as the threshold value increases, lifetime 
extension and swapping overhead decrease. 

 

 

Fig. 11. Comparison with previous methods 

 

5.3 Sensitivity Analysis 
We explored the design space of our method by varying three 
parameters as shown in Fig. 12: Bloom filter size (the number of 
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Bloom filter entries), hot-cold list size and threshold value. In the 
first case, we fixed the hot-cold list size at 256, and applied policy 1 
for dynamic threshold. Then, we varied the Bloom filter size from 
128 to 512 entries (the results denoted with ‘counter’ in Fig. 12). 
With the larger Bloom filter, the lifetime extension ratio increases 
and swapping overhead decreases. It is because there are less false 
positives. In the second case, we fixed the Bloom filter counter size 
at 128, applied policy 1 and varied the hot-cold list size from 64 to 
256 (the results denoted with ‘list’ in Fig. 12). The results in this 
case were slightly inferior to the previous cases of changing the 
Bloom filter size. It is because the false positive problem is 
significant in these cases (since the Bloom filter size is small). Thus, 
increasing the hot-cold list size is not so effective as increasing the 
Bloom filter size. Finally, we fixed the Bloom filter size at 256, 
fixed the hot-cold list size at 512 and varied the threshold value 
from 1000 to 8000. At low threshold values (e.g., 1000), both 
lifetime extension ratio and swapping overhead were at their largest 
levels. Lower threshold values result in frequent swappings thereby 
contributing to the flattening of writes. However, it increases 
swapping overhead as shown in Fig. 12.  

 

Fig. 12. Sensitivity analysis  

 

5.4 Hot-Cold List Management Policy 
In order to evaluate the effectiveness of three-tier hot-cold list, we 
compare three management policies: First-in-First-Out (FIFO), 
Least Recently Used (LRU) and the three-tier scheme (Section 4.3). 
We fixed the other parameters of our method at the best-performing 
values in general: the Bloom filter size is 256, the hot-cold list size 
is 256 and both polices 1 and 2 are used. Fig. 13 shows that the 
three-tier scheme increases lifetime extension ratio by 50.3%~87.7% 
and decreases swapping overhead by 73.7~79.3% over the FIFO or 
LRU policies.  

6. Conclusion 
Phase change memory (PCM) is a promising memory technology. 
However, one of the main drawbacks of PCM is the write 
endurance problem. To address this problem, we proposed a new 
wear-leveling method based on Bloom filters in order to reduce the 
space overhead of dynamic wear leveling. The proposed method 
gives 2.18~2.30 times improvement in lifetime while reducing 
swapping overhead by 58%~97% compared with existing methods 
while incurring a small area overhead of 0.3%. 

 

Fig. 13. Comparison of management policies 
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