
Agglomerative-Based Flip-Flop Merging with
Signal Wirelength Optimization

Sean Shih-Ying Liu, Chieh-Jui Lee and Hung-Ming Chen
Institute of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan

{sniealu.ee96g,jerrylee.ee92}@g2.nctu.edu.tw, hmchen@mail.nctu.edu.tw

Abstract—In this paper, an optimization methodology using
agglomerative-based clustering for number of flip-flop reduction
and signal wirelength minimization is proposed. Comparing to
previous works on flip-flop reduction, our method can obtain
an optimal tradeoff curve between flip-flop number reduction
and increase in signal wirelength. Our proposed methodology
outperforms [1] and [12] in both reducing number of flip-flops
and minimizing increase in signal wirelength. In comparison with
[9], our methodology obtains a tradeoff of 15.8% reduction in
flip-flop’s signal wirelength with 16.9% additional flip-flops. Due
to the nature of agglomerative clustering, when relocating flip-
flops, our proposed method minimizes total displacement by an
average of 5.9%, 8.0%, 181.4% in comparison with [12], [1] and
[9] respectively.

I. INTRODUCTION

In modern SoC design flow, recent research in industry and
academia discover that flip-flops in advance technology require
less driving power. Less driving power for flip-flops imply that
multiple flip-flops can be driven by a single inverter. Thus, the
possibility of multi-bit flip-flop emerges in nanometer design.
Multi-bit flip-flop has the advantage to share common inverter
to reduce power consumption per bit and more compact flip-
flop’s layout area. In addition, replacing original 1-bit flip-
flops with multi-bit flip-flops can reduce both sink number
and sink capacitance. Fig.1 illustrates the implementation of a
2-bit flip-flop and Fig.2 illustrates how sink reduction affects
the topology of a clock tree. It is experimented in [3] that
integrating multi-bit flip-flop library into current commerical
tool can significantly reduce clock tree power consumption.

According to [7], clock tree power consumption is respon-
sible for 40% of total power consumption. Thus, optimizing
clock tree can effectively reduce total power consumption.
Optimization techniques for clock tree including reduction of
total clock tree wirelength by replacing registers [10][13][8],
optimizing size of buffers [11] or considering activity factor
when synthesizing clock tree [2][4].

Implementation of multi-bit flip-flop can also reduce clock
tree power consumption by reducing sink number. Less sink
number implies shorter clock tree wirelength during clock tree
synthesis. However, multi-bit flip-flop has the drawback of
increasing in flip-flop’s signal wirelength. For signals with
high activity factor, the improvement in power reduction
by greedily merging flip-flop will eventually saturate due to
increase in flip-flop’s signal wirelength.

A. Previous Works

In terms of optimization of flip-flop at post-placement
stage, all three [12][1][9] share same objective by optimizing

This work was supported in part by National Science Council(NSC) of
Taiwan under Grant No. NSC1002220E009045.

978-3-9810801-8-6/DATE12/ c©2012 EDAA

(a) (b)

Fig. 1. Inverter sharing using multi-bit flip-flop. (a) are two 1-bit flip-flops.
(b) is a 2-bit flip-flop

(a) (b)

Fig. 2. Reduction of sinks in clock tree. (a) is an illustration of a clock
signal connecting to eight 1-bit flip-flop. (b) is an illustration using multi-bit
flip-flop.

between flip-flop and signal wirelength reduction. Given a
set of flip-flop library, placement density constraint and slack
constraint, flip-flop reduction is achieved by merging flip-flop
to appropriate higher bit flip-flop. The main difference between
the three works lies on selecting groups of flip-flop to be
merged.

Chang et al. [1] solves the problem by applying progressive
window-based optimization. As window sweeps across given
layout, an intersection graph will be constructed within the
window. The intersection graph is constructed with node
representing flip-flop and edge represents that two flip-flops
can be safely merged without violating slack constraint. After
intersection graph is constructed, maximal independent set of
cliques can be identified.

Similar to [1], Wang et al. [12] also models the given
problem as graph problem. The difference is that [12] applies
minimum clique partition algorithm to identify a set of non-
conflicting cliques. In addition, a clock tree synthesis using
[5] is applied to demonstrate reduction in dynamic power and
clock tree wirelength.

In contrast to [12] and [1], Jiang et al. [9] propose a
linear-size sequence representation to quickly identify optimal
clustering combinations. Based on coordinate transformation,
[9] generate interval graph corresponding to each flip-flop’s
feasible region with both X and Y direction. The X direction
interval graph provides decision points to obtain essential flip-
flops and Y direction interval graph provides maximal clique
for each essential flip-flops. Compared to [12] and [1], [9] can
achieve most flip-flop reduction within fastest runtime.

B. Deficiency in Previous Work on Flip-Flop Merging and
Relocation

In [1], both signal wirelength and flip-flop reduction trails
behind [9] and [12]. The inherent characteristic of window-
based optimization prevents a global view of the entire prob-
lem. In [9], although flip-flop number is greatly reduced, it is
achieved with great expense in increasing signal wirelength.
Moreover, more flip-flop reductions entail higher perturbation
to original layout which add burden to final legalization stage.

C. Our Contributions

In this paper, we propose a post-placement flip-flop based
on agglomerative clustering. In contrast to previous work, we
merge flip-flop in a bottom-up fashion. Flip-flop merging is
performed by choosing pair of flip-flop with least increase
to signal wirelength. Such approach can guarantee that total
increase in signal wirelength is minimized with equivalent
flip-flop number reduction. Unlike [1] and [12], our approach
avoids identifying maximum clique which is unnecessary
when given multi-bit flip-flop library is limited.

The key concept of agglomerative clustering is to regard
each given element as an independent cluster and then pro-
gressively cluster elements to a larger cluster. In flip-flop
merging, the given elements are the location of flip-flops
and each cluster of m flip-flops represents a m-bit multi-bit
flip-flop. We formulate given flip-flop merging problem as a
graph problem then apply agglomerative clustering to optimize
between flip-flop number reduction and increase in flip-flop’s
signal wirelength.

Nearest Neighbor Selection (NNS) and agglomerative clus-
tering shares similar quality for wirelength minimization.
However, NNS restricts one edge for each node which is not
suitable to implement flip-flop merging. In flip-flop merging,
not every pair of sink can be merged due to slack constraint
and limited types of flip-flop in flip-flop library. In addition, to
cope with clock tree synthesis, edge cost is required to update
constantly. Agglomerative clustering in this regard is much
more flexible and its high resemblance to NNS making it an
optimal choice for flip-flop merging.

The organization for rest of the paper is as follows. Section
II will describe the construction of intersection graph using
line sweep method. Section III will introduce the flow of
flip-flop merge by selecting appropriate merging candidate.
Section IV will present the experimental result and Section V
concludes the paper.

II. PROBLEM FORMULATION

The problem of flip-flop merging and relocation for clock
tree optimization can be defined as follows. Given a set of m-
bit flip-flop library and a netlist of flip-flop with corresponding
location, reduce the number of flip-flops by merging flip-flop
with minimum increase in signal wirelength.

Fig. 3. Flow Chart for agglomerative flip-flop merging.

Since flip-flop merge is conducted at post-placement stage,
the location of pins can not be changed. Thus, change in
total signal wirelength will only result in change in distance
between each pin and flip-flop. The given input contains
following information.

• Area and power value for flip-flop library. Generally, a m-
bit flip-flop with larger m value has the benefit of lower
power and area per bit.

• Connection of input and output pins to each flip-flop. A
m-bit flip-flop has 2m pins. For example, a 1-bit flip-flop
has one input and output pin and a 2-bit flip-flop has two
input and output pins.

• Location of every pin and flip-flop.

The constraints for the given problem are described as
follows.

A. Slack Constraint

There is a slack value for each pair of flip-flop and pin.
The final placment of the merged flip-flop must be placed in
a position that does not violate any slack contraint for every
pin it connects to.

B. Placement Density Constraint

The given layout is partitioned into different set of bins,
each bin is given with a placement density constraint and
pre-placed combinational logic. The final placement density
after flip-flop clustering must not violate the placement density
constraint for all bins. The summation of all flip-flop area and
the combinational logic area in one bin can not exceed its
pre-defined placement density constraint.

III. CONSTRUCTION OF INTERSECTION GRAPH

Fig. 3 is a flow chart on flip-flop merging. The flow is
divided into three parts, first part constructs intersection graph
using line sweep method to calculate all the available merging
candidate. Then, second part will merge flip-flop based on
agglomerative clustering. Third part will place flip-flop by
projecting optimal location to valid mergeable zone follow by
breadth-first search to search for a valid location.

The slack value for a flip-flop can be treated as a distance
budget for a flip-flop. The farther away flip-flop moved from
its original location, the less slack value a flip-flop has. In this
regard, the slack value for a flip-flop can be modeled as a form

Y

X

Y= -X+ A1

Y= -X+ A2

Y=
X+

B1

Y=
X+

B2

A1

A2

B1

B2

(a)

Y

X

Y’

X’

(b)

Fig. 4. The rotate coordinate system to describe flip-flop movable zone. (a)
Illustration of the rotated coordinate system by 45 degrees. (b) Coordinates
for rotated rectangle using y-intercept.

Fig. 5. Illustration of movable zone for a flip-flop and mergeable zone for
multiple flip-flop. Movable zone is the overlapping region between slack zone
for input and output pin. Mergeable zone is the overlapping region between
two movable zones for two flip-flops.

of wire delay. The distance in this context refers to Manhattan
distance, thus the region a flip-flop can be relocated without
violating the given slack constraint forms a movable zone.

A mergeable zone for two flip-flops is the overlapping
region of two flip-flop’s movable zone. Fig. 5 is an illustration
of mergeable zone to merge two flip-flops. The mergeable
zone can be regarded as an edge in graph representation. To
merge two flip-flops, the movables zone of the two flip-flops
must overlap such that the merged flip-flop can be placed
inside the overlapping region without violating any of the slack
constraint for both flip-flops. For any pair of flip-flops ffi and
ffj , an edge eij exists if and only if the movable zone of ffi
and ffj overlaps one another.

The naive implementation of agglomerative clustering has
time complexity O(N2) which is to compare every node
with every other node. However, not every node has an edge
connecting to every other node. A more efficient approach is
to sort all the rectangles on X-coordinate and find overlapping
segment in Y-coordinate which can reduce number of compar-
isons. This approach is derived from Line Sweep Method[6].

Algorithm 1 describes the procedure to construct graph
representation for a N number of flip-flops. Each flip-flop ni is
represented by a 45-degree rotated rectangle corresponding to
the movable zone illustrated in Fig. 5. To efficiently represent
the rotated rectangles, B and A corresponding to y-intercept
of the rectangle illustrated in Fig. 4 is used to represent x and
y coordinate respectively.

First, left and right X-coordinates for all rectangles ni are
stored in an array X . The X-coordinates is sorted in non-
decreasing order using heap sort. After the array is sorted,
an imaginary line starts to sweep from the beginning of the
array X. If the x value is the left X-coordinate of a rectangle,
the rectangle is stored into a red-black tree P and compared
with all of the rectangles stored in P to check whether there
exists overlapping region between the two rectangles. Since
all rectangles are already sorted by their X-coordinates, if two

Fig. 6. The sweep line method first sorts the rectangle based on their
X’-coordinate. When the sweep line touches a rectangle, the rectangle will
compare with all the rectangles stored in the RB-Tree. When a sweep line
leaves a rectangle, that rectangle is removed from the RB-Tree.

Algorithm 1 Line Sweep Method to Identify Overlapping
Rectangle

1: for i = 0→ i ≤ N − 1 do
2: X ← X ∪ ni,leftX ∪ ni,rightX

3: end for
4: Sort X in non-decreasing order
5: for x ∈ X do
6: if x is leftX for ni then
7: for nj ∈ P do
8: if Segment-Overlap(ni, nj)=true then
9: Create new edge eij between ni and nj

10: end if
11: end for
12: P ← P ∪ ni

13: else
14: P ← P - ni

15: end if
16: end for

rectangles ni and nj were to be compared, then it implies
ni and nj must be overlapped in X-coordinate. Hence, to
determine whether two rectangles exist overlapping region
only needs to check whether the segments of two rectangle
are overlapped in Y-coordinate. If the x value is the right X-
coordinate of a rectangle, the rectangle is removed from the
red-black tree P. When the sweep line reaches the end of the
array X, all the edges can be generated.

Fig. 6 demonstrates a simple example using Line Sweep
Method. In Fig. 6(a), sweep line first enters rectangle A and
rectangle A is stored in the red-black tree. In Fig. 6(b), sweep
line enters rectangle D. Rectangle D is then compared with
rectangle A and B to check whether if there exist overlapping
region. In Fig. 6(c), sweep line leaves rectangle D which is
removed from the red-black tree. Finally, in Fig. 6(d), the
sweep line leaves rectangle E and rectangle E is removed.

In worst case scenario in which every rectangle overlaps
with every other rectangles, the graph representation of such
circumstance is a complete graph. The time complexity for
Line Sweep Method in a complete graph is O(N2) since

no rectangles will be removed from red-black tree and every
inserted rectangle must compare with every other rectangles
stored in the red-black tree.

IV. FLIP-FLOP MERGING

After intersection graph is constructed, the edge with min-
imum cost will be selected and checked whether if it is
mergeable. To determine the cost between two nodes i and
j, the mean point Mi and Mj to all connected pins for flip-
flop i and j will be first calculated. The cost between node
i and node j is the minimum distance between Mi and Mj .
Let n be the total number of pins connecting to flip-flop i,
Equation 1 describes the mean point for all pin pi connected
to flip-flop i. Equation 2 describes the edge cost connecting
flip-flop i and flip-flop j.

Mi = (Mi,x,Mi,y) = (

∑i≤n−1

i=0
pi,x

n
,

∑i≤n−1

i=0
pi,y

n
) (1)

Costi,j =
2

√

(Mi,x −Mj,x)2 + (Mi,y −Mj,y)2 (2)

For two flip-flops to be mergeable, there must exist corre-
sponding type in given flip-flop library. For example, if FF-A
is 1-bit, FF-B is 2-bit and there is no 3-bit flip-flop available,
FF-A and FF-B can not be merged. In each iteration, each
merge will select two flip-flops with the least edge cost. If two
flip-flops are successfully merged, new node representing the
merged flip-flop will be created and added to the graph with
corresponding edges. Original flip-flops and edges connecting
to two original flip-flops will be removed from the graph and
new edges connecting to merged flip-flop will be added.

The algorithm will terminate until there is no edge left
in the graph. In Fig. 7(a), node A and B are picked to be
merged, edges connected to node A and node B are removed.
In Fig. 7(b), new node MAB is created with two new edges
added to the graph. Fig. 7(c) illustrates the same concept of
merging node MAB and node MCD to a 4-bit node MABCD.
New edge is created between two nodes if and only if all the
nodes including nodes included in merged node forms a clique
in graph. Since there is no edge between MAB and E, no
new edge is created between MABCD and E. The algorithm
terminates in Fig. 7(d) since there is no more edge in the
graph.

A. Placement of Flip-Flop

For a merged flip-flop to be successfully relocated, three
conditions must be satisfied.

• Slack constraint must be met for all flip-flops.
• Placement density for all bins can not be violated.
• The position of merged flip-flop must not overlap with

other merged flip-flops.

The given layout is partitioned into a set of bins with given
placement density constraint. To place a merged flip-flop, the
mean point of all the pins connected to merged flip-flop is first
calculated. Then the location of mean point is projected onto
the boundary of the mergeable zone of merged flip-flop.

The projection point is selected as the relocation point.
Before placing merged flip-flop at the relocation point, it will
first check whether the relocation point is being occupied and
whether the placement density constraint of the corresponding
bin is violated. If violated, a breadth-first search will be
conducted to search for a nearest unoccupied point in which

A

B

C

D

E

F

A

B

C

D

E

F

C

D

E

F

1-bit 2-bit 4-bit

(a) (b)

(c)(d)

MAB

MAB

MCD

E

F
MAB

MCD
MABCD

Fig. 7. Example of agglomerative clustering in flip-flop merging. (a)
Intersection graph. (b) Node A and B are merged to a 2-bit node MAB , new
edges are created between node MAB to C and MAB to D (c). Node C and
D are merged to a 2-bit node MCD , new edge are created between MAB

and MCD (d) Node MAB and MCD are merged to 4-bit node MABCD .

Fig. 8. Placement of Merged Flip-Flop. Blue circle denotes flip-flop and
red square denotes pin. (a) Original Flip-Flop location. (b) Calculate Flip-
Flops movable zone. (c) Mergeable zone to merge two flip-flops. (d) Calculate
mean point for all pins connecting to two flip-flops. (e) Project mean point
to mergeable zone. (f) Placement of merged flip-flop.

both slack and placement density constraint are not violated.
If such point does not exist, the merged flip-flop will split and
return to its original state.

V. EXPERIMENTAL RESULT

TABLE I
BIT, POWER AND AREA FOR EACH FLIP-FLOP TYPE

Name Bit# Power Area Power per bit Area per bit
FF1 1 100 100 100 100
FF2 2 172 192 86 96
FF4 4 299 398 74.75 99.5

In this paper, to make fair comparison with [1], [12] and [9].
We obtained six testcases(C1∼C6) and given flip-flop library
from [1] which are also input benchmarks for [12] and [9]. We
obtained all of the binary executables from [1], [12] and [9].
Executables from [12], [9] and our algorithm are performed
under Intel Xeon CPU 5160 Cent OS workstation running at
3.0 GHz. Executable from [1] is performed under Intel Core
i3 CPU 550 Ubuntu workstation running at 3.2 GHz since it
is compiled with g++ 4.5.4.

TABLE II
COMPARISON ON NUMBER OF FLIP-FLOP REDUCTION USING 1,2 AND 4-BIT MULTI-BIT FLIP-FLOP

Original [9] [12] [1] Our
1/2/4-bit Total Norm. 1/2/4-bit Total Norm. 1/2/4-bit Total Norm. 1/2/4-bit Total Norm. 1/2/4-bit Total Norm.

C1 76,22,0 98 3.063 0,4,28 32 1.000 6,7,25 38 1.188 8,10,23 41 1.281 2,9,25 36 1.125
C2 366,57,0 423 3.440 0,6,117 123 1.000 16,30,101 147 1.195 24,36,96 156 1.268 8,36,100 144 1.171
C3 1464,228,0 1692 3.474 0,14,473 487 1.000 70,125,400 595 1.221 84,146,386 616 1.265 28,142,402 572 1.175
C4 4378,751,0 5128 3.460 2,21,1459 1482 1.000 232,402,1211 1845 1.245 242,469,1175 1886 1.273 80,450,1225 1755 1.179
C5 9150,1425,0 10575 3.504 2,33,2983 3018 1.000 484,806,2476 3766 1.248 480,920,2420 3820 1.266 160,880,2520 3560 1.180
C6 146400,22800,0 169200 3.520 18,113,47939 48070 1.000 7580,13508,39351 60439 1.257 7320,14780,38780 60880 1.266 2440,14020,40380 56840 1.182

Avg. - - 3.410 - - 1.000 - - 1.226 - - 1.270 - - 1.169

TABLE III
COMPARISON ON FLIP-FLOP’S SIGNAL WIRELENGTH AND EXECUTION TIME

Circuit [9] [12] [1] Our
WL(nm) WL(Norm.) sec. WL(nm) WL(Norm.) sec. WL(nm) WL(Norm.) sec. WL(nm) WL(Norm.) sec.

C1 8606500 1.061 0 8215500 1.013 0 8196500 1.010 0.01 8112500 1.000 0
C2 35495000 1.162 0 31017000 1.016 0.06 33032000 1.081 0.03 30534000 1.000 0.02
C3 144232000 1.174 0.04 123585000 1.006 0.29 132321000 1.078 0.07 122790000 1.000 0.13
C4 445319500 1.174 0.11 379692500 1.001 0.79 405594500 1.069 0.2 379287500 1.000 0.5
C5 911912000 1.207 0.25 755695000 1.000 1.95 827580000 1.095 0.49 769890000 1.019 1
C6 14654546000 1.191 3.31 12309247000 1.000 36.45 13245195000 1.076 92.64 12338170000 1.002 21.86

Avg. - 1.162 1 - 1.006 11.012 - 1.068 27.988 - 1.004 6.604

TABLE IV
COMPARISON ON AVERAGE DISPLACEMENT DISTANCE FROM ORIGINAL POSITION TO RELOCATED POSITION OF MERGED FLIP-FLOPS

Circuit [9] [12] [1] Our
Testcase 1-bit(nm) 2-bit(nm) 1-bit(nm) 2-bit(nm) 1-bit(nm) 2-bit(nm) 1-bit(nm) 2-bit(nm)

C1 37658 49309 41875 19500 41426 22333 38270 19477
C2 40208 47922 38999 19760 38827 21350 36989 18907
C3 40717 48353 39820 19761 38399 21121 37222 18907
C4 41044 48129 40006 20361 38363 21098 37433 19041
C5 41027 48662 39429 20155 38159 21090 37362 18907
C6 41021 48898 39810 20395 38047 21103 37430 18907

Avg. 40279 48546 39990 19989 38870 21349 37451 19027
Norm. 1.076 2.551 1.068 1.050 1.038 1.122 1.000 1.000

(a) Original - 1692
Sinks

(b) Chang - 616 Sinks (c) Wang - 595 Sinks (d) Jiang - 487 Sinks (e) Our - 572 Sinks

Fig. 9. Placement of flip-flop for testcase C3 after flip-flop merging. (a) Original (b)Chang et al. [1] (c) Wang et al. [12] (d) Jiang et al. [9] (e) Our Work.

An evaluator is implemented to evaluate the flip-flop’s
power reduction, increase in signal wirelength and displace-
ment of flip-flop before and after flip-flop merging. The eval-
uator also examine whether if the given slack and placement
density constraint is violated. The evaluated results for all
of the obtained executables are verified with corresponding
authors in [1][12][9].

The detail of the given multi-bit flip-flop library is described
in Table I. Higher-bit flip-flop has the advantage of lower
power consumption and lower area per bit.

A. Flip-Flop Number and Signal Wirelength Reduction

Table II presents the result of flip-flop number reduction.
Compared with original benchmark without flip-flop merging,
our algorithm can reduce flip-flop number by 65.7%. In com-
parison with [1] and [12], our proposed algorithm outperforms
by 8.6% and 4.9% respectively. In comparison with [9], our
algorithm trails behind by 16.9%. Fig. 9 illustrates distribution
of sinks after flip-flop merging. Fig. 10 illustrates the flip-flop’s
signal path corresponding to Fig. 9.

In Table III, regarding to increase in signal wirelength con-
necting to each flip-flop, [9] increases most signal wirelength

in all 6 testcases. In contrast, although our algorithm trails
behind [9] by 16.9% in flip-flop reduction but outperforms [9]
by 16.2% in flip-flop’s signal wirelength reduction. Additional
increase in signal wirelength in [9] implies that flip-flop’s
power reduction will be counteracted by increase in dynamic
power consumption in signal wirelength if switching activity
factor is high. Regarding power saved due to flip-flop number
reduction, power consumption of flip-flop can be calculated
using Table I.

B. Average Displacement Distance for Merged Flip-Flop

In addition to analyzing flip-flop’s power and signal wire-
length, we also analyze average displacement of each merged
flip-flop. Minimizing displacement of flip-flops will try to cre-
ate least perturbation to original placement. Table IV presents
the result of average displacement of merged flip-flops for
all of the obtained executables. For each merged flip-flop, we
can identify which of the original flip-flops it consists. Then
displacement between flip-flop’s original location and its final
relocation position can then be calculated. In all 6 testcases,
original flip-flop is given in 1-bit or 2-bit, we perform analysis
on all of the testcases for each executable and present the result

(a) Chang - 132321000 nm (b) Wang - 123585000 nm

(c) Jiang - 144232000 nm (d) Our - 122790000 nm

Fig. 10. Signal wirelength after flip-flop merging for testcase c3.(a) Chang
et al. [1](b) Wang et al. [12] (c) Jiang et al. [9] (d) Our Work.

Fig. 11. Tradeoff curve of sink number and signal wirelength. By limiting
maximum displacement of flip-flops, our proposed method can obtain a
smooth tradeoff between signal wirelength reduction and flip-flop reduction.

by taking the average displacement for 1-bit and 2-bit flip-flop.
Based on observation, the benefit of merging nearest neigh-

bor flip-flops is two-fold, it increases least signal wirelength
and creates least perturbation to original layout. The nature
of agglomerative clustering which orients to merge nearest
flip-flop that will increase least signal net wirelength. In
contrast, clique based approach [1][12] greedily merges flip-
flop to maximize sink number reductions. Regarding Table IV,
our algorithm has the least displacement with better flip-flop
reduction comparing to [1] and [12]. In comparison with [9],
since it has the most flip-flop reduction, it also creates most
perturbation to original placement.

Agglomerative-based approach offers flexibility in optimiz-
ing between signal wirelength and flip-flop number reduction.
An upper bounds on flip-flop displacement can be established
to limit displacement of flip-flops. Fig. 11 is a tradeoff curve
between signal wirelength and flip-flop number reduction by

altering the upper bound for flip-flip displacement for testcase
c3, it can be observed that our proposed method obtains a near
pareto front curve. Points on upper right of the curve [12][1]
are obvious less optimal points. [9] is positioned at top left
corner by achieving maximum flip-flop reduction, however, is
less flexible when signal wirelength is primary concern.

VI. CONCLUSIONS

In this paper, we proposed an agglomerative based flip-flop
merging algorithm. According to observation, agglomerative
clustering can achieve a smooth tradeoff curve between sink
number reduction and increase in signal wirelength. Our
proposed algorithm outperforms all previous published flip-
flop merging algorithms in terms of increase in total signal
wirelength with least perturbation to original placement.

VII. ACKNOWLEDGMENT

The authors would like to thank Yao-Tsung Chang and
Prof. Mark Po-Hung Lin From National Chung Chen Uni-
versity on providing binary executable for [1], Shao-Huan
Wang and Prof. Wai-Kei Mak from National Tsing Hua
University on providing binary executable for [12] and Chih-
Long Chang and Prof. Iris Hui-Ru Jiang from National Chiao
Tung University on providing binary executable for [9]. Many
thanks to anonymous reviewers for their tremendous effort on
identifying most detailed errors to improve this paper. Your
comments are greatly appreciated.

REFERENCES

[1] Y.-T. Chang, C.-C. Hsu, M. P.-H. Lin, Y.-W. Tsai, and S.-F. Chen. Post-
placement power optimization with multi-bit flip-flops. In Proceedings
of the International Conference on Computer Aided Design, pages 218–
223, 2010.

[2] C. Chen, C. Kang, and M. Sarrafzadeh. Activity-sensitive clock
tree construction for low power. In Proceedings of the International
Symposium on Low Power Electronics and Design, pages 279–282,
2002.

[3] L. Chen, A. Hung, H.-M. Chen, E. Tsai, S.-H. Chen, M.-H. Ku,
and C.-C. Chen. Using multi-bit flip-flop for clock power saving by
designcompiler. In Proceeding Synopsys User Group, 2010.

[4] Y. Cheon, P.-H. Ho, A. Kahng, S. Reda, and Q. Wang. Power-aware
placement. In Proceedings of the Design Automation Conference, pages
795–800, June 2005.

[5] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao. Bounded-skew
clock and steiner routing. Transaction Design Automation Electronic
System, 3:341–388, 1998.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2001.

[7] M. Donno, E. Macii, and L. Mazzoni. Power-aware clock tree planning.
In Proceedings of the International Symposium on Physical Design,
pages 138–147, 2004.

[8] W. Hou, D. Liu, and P.-H. Ho. Automatic register banking for low-
power clock trees. In Proceedings of the International Symposium on
Quality of Electronic Design, pages 647–652, 2009.

[9] I. H.-R. Jiang, C.-L. Chang, Y.-M. Yang, E. Y.-W. Tsai, and L. S.-F.
Chen. INTEGRA: fast multi-bit flip-flop clustering for clock power
saving based on interval graphs. In Proceedings of the International
Symposium on Physical Design, pages 115–122, 2011.

[10] D.-J. Lee and I. L. Markov. Obstacle-aware clock-tree shaping during
placement. In Proceedings of the International Symposium on Physical
Design, pages 123–130, 2011.

[11] R. S. Shelar. An efficent clustering algorithm for low power clock tree
synthesis. In Proceedings of the International Symposium on Physical
Design, pages 181–188, 2007.

[12] S.-H. Wang, Y.-Y. Liang, T.-Y. Kuo, and W.-K. Mak. Power-driven
flip-flop merging and relocation. In Proceedings of the International
Symposium on Physical Design, pages 107–114, 2011.

[13] Y. Wang, Q. Zhou, X. Hong, and Y. Cai. Clock-tree aware placement
based on dynamic clock-tree building. In Proceedings of the Inter-
national Symposium on Circuits and Systems, pages 2040–2043, May
2007.

