
A GPU-Accelerated Envelope-Following Method
for Switching Power Converter Simulation

Xue-Xin Liu∗, Sheldon X.-D. Tan∗, Hai Wang∗, and Hao Yu†

∗Dept. Electrical Engineering, University of California, Riverside, CA 92521
†School of Electrical & Electronic Engineering, Nanyang Technological University

Abstract—In this paper, we propose a new envelope-following
parallel transient analysis method for the general switching
power converters. The new method first exploits the parallelisim
in the envelope-following method and parallelize the Newton
update solving part, which is the most computational expensive,
in GPU platforms to boost the simulation performance. To
further speed up the iterative GMRES solving for Newton update
equation in the envelope-following method, we apply the matrix-
free Krylov basis generation technique, which was previously
used for RF simulation. Last, the new method also applies
more robust Gear-2 integration to compute the sensitivity matrix
instead of traditional integration methods. Experimental results
from several integrated on-chip power converters show that the
proposed GPU envelope-following algorithm leads to about 10×
speedup compared to its CPU counterpart, and 100× faster than
the traditional envelop-following methods while still keeps the
similar accuracy.

I. INTRODUCTION

Over the past decades, power electronics and especially

switching power converters have seen a surge of new trends

and novel applications — from the growing significance of

PWM (pulse-width modulation) rectifiers and multilevel in-

verters to their widespread use in renewable (like solar and

wind) energy systems, smart grids and emerging electric and

hybrid vehicles [1].

This requires more efficient simulation techniques for power

electronics to meet the new application and demanding design

constraints. To facilitate the design of typical power electron-

ics circuits, many special-purpose simulation algorithms and

tools were developed. Among them is the envelope-following

method [2]–[4], which is able to calculate the slowly changing

contour, or envelope, of a carrier waveform with a much higher

switching frequency. This is the case for switching power

converters, which have fast switching currents to convert

powers from one level to another level. In those switching

power converters, it is the envelope, which is the power voltage

delivered, not the fast switching waves in every cycle, that is of

interest to the designers. As shown in Fig. 1(a), the solid line

is the waveform of the output node in a Buck converter [5],

the dots are the simulation points of SPICE, and the appended

dash line is the envelope.

Obviously, traditional SPICE will incur an extraordinarily

high simulation time for this task, since it has to integrate

This research was supported in part by NSF grants under No. CCF-1017090
No. OISE-1051797, and No. OISE-0929699.

the circuit’s differential equation with many time points in

every clock cycle to get the accurate details of the carrier. For

switching power converters, the waveform of the carrier in

consequent cycles does not change much, envelope-following

method is an approximation analysis method, which skips

over several cycles (the dash line in Fig. 1(b)), the so called

envelope step, without simulating them, and then carries out a

correction, which usually contains a sensitivity-based Newton

iteration or shooting until convergence, in order to begin the

next envelope step.

Also, iterative GMRES solver is typically used in the

envelope-following method to compute the solution of Newton

update due to its efficiency compared to direct LU method.

However, as the Jacobian matrix or the sensitivity matrix

in the equation to be solved is dense, explicit computing

of the Jacobian is a very expense process. Recently, the

matrix-free GMRES was proposed [6] for RF shooting based

clock cycle T

jump k periods

envelopetransient
points

t = mT t = (m + k − 1)T t = (m + k)T

(a) Illustration of one envelope skip.

m1T m2T m3T m4T

simulated periods envelope

skipped periods

T

(b) The envelope changes in a slow time scale.

Fig. 1. Transient envelope-following analysis. (Both two figures reflect
backward-Euler style envelope-following.)

978-3-9810801-8-6/DATE12/ c©2012 EDAA



simulation. The new method leads to significant savings due

to its implicit calculation of new basis vectors without the

explicit formulation of the sensitivity matrix.

Modern computer architecture has shifted towards de-

signs that employ so called multi-core processor or chip-

multiprocessors (CMP) [7], [8]. The family of graphic pro-

cessing units (GPU) are among the most powerful many-core

computing systems in mass-market use [9]. For instance, the

state-of-the-art NVIDIA Tesla T10 chip has a peak perfor-

mance of over 1 TFLOPS versus about 80–100 GFLOPS of

Intel i5 series Quad-core CPUs [10]. In addition to the primary

use of GPUs in accelerating graphics rendering operations,

there has been considerable interest in exploiting GPUs for

general purpose computation (GPGPU) [11]. The introduction

of new parallel programming interfaces for general purpose

computation, such as Computer Unified Device Architecture

(CUDA), Stream SDK, and OpenCL [12]–[14], has made

GPUs an attractive choice for developing high-performance

scientific computation tools and solving practical engineering

problems. Hence, the applications with GPGPUs are rapidly

growing in a broad variety of parallel numerical computation

works [15].

In this paper, we propose a new parallel envelope-following

method for the transient analysis of switching power converter

circuits. The main contributions in our work include:

1) Parallelization of the Newton update, which is the most

time consuming step, in the envelop-follow method, in

GPU platforms.

2) Development of the new GMRES solver using matrix-

free Jacobian-vector multiplication and the Gear-2 inte-

gration for sensitivity based Newton update equation.

The remainder of this paper is arranged as follows. After the

basic algorithm of envelope-following is briefly reviewed and

Newton update equation is derived in Section II. In Section III

presents the new parallel envelope method where the CPU par-

allelization, matrix-free GMRES and Gear-2 integration will

be discussed. Numerical examples are shown in Section IV,

and finally, this paper is summarized in Section V.

II. REVIEW OF ENVELOPE FOLLOWING METHOD

In transient analysis, a nonlinear circuit’s behavior can be

represented by a coupled set of nonlinear first-order differential

algebraic equations (DAE) of the form

d

dt
q(x(t)) + f(x(t)) = b(t), (1)

where x(t) ∈ RN is the vector of circuit variables, usually

comprising node voltages and possibly branch currents, f(·)
is a nonlinear function that maps x(t) to a vector of N entries
most of which are sums of resistive currents at a node, q(·)
maps x(t) to a vector of N entries of capacitor charges or

inductor fluxes, and b(t) contains the input source values. For
many power electronics circuits, the input switching signal is

known and is periodic with clock period T .
Assume the time inside one period T has been discretised

intoM time steps, 0 = t0 < t1 < t2 < · · · < tM = T , and the
i-th step length is hi = ti−ti−1. In practice, the discretisation

is nonuniform to control truncation error and convergence.

Then, given an initial condition x(0) at t = 0, numerical
integration is applied to find the time domain solution of circuit

state x(t) at each time step till t = T .

For those circuits whose carrier waveforms vary slowly in a

large number of periods, the envelope-following method only

integrates the DAE in several selected periods and then jumps

over to a new time point. By repeating this “simulate and

skip” action, envelope-following method attains its efficiency

compared to conventional transient analysis, but still can

accurately obtain the slow varying envelope.

For example, if the clock period is T , and the suitable jump
interval for the envelope is k periods, then the envelope step
is kT . Suppose the state at time t = mT is known as x(mT ),
and the envelope-following wants to obtain the state at the next

envelope step, x((m+k)T ). If the envelope step is much larger
than the clock period (k is much bigger than one), envelope-
following will lead to significant saving in simulation time.

To estimate x((m + k)T ), a forward-Euler style jump-
ing relies only on x(mT ) and x((m − 1)T ), i.e., x((m +
k)T ) = x(mT ) + k [x(mT ) − x((m − 1)T )] . However,
this approach is inefficient due to its restriction on enve-

lope step k, since larger k usually causes instability. In-
stead, backward-Euler jumping, x((m + k)T ) − x(mT ) =
k [x((m + k)T ) − x((m + k − 1)T )] , allows larger envelope
steps. Here x((m + k − 1)T ) is the unknown variable to be
solved by Newton iteration, and x((m + k)T ) is dependent
on x((m + k − 1)T ) in each iteration. The Newton update
equation in each iteration is thus expressed as

∆x((m + k − 1)T ) = A−1
[

(k − 1)xj((m + k)T )

−kxj((m + k − 1)T ) + x(mT )
]

, (2)

where the Jacobian matrix A is computed as a combination of
circuit sensitivity matrix and identity matrix, as

A = (k − 1)
dx((m + k)T )

dx((m + k − 1)T )
− kI = (k − 1)J − kI. (3)

In each Newton iteration, x((m + k − 1)T ) is used as
initial condition to calculate x((m + k)T ) by integrating
the DAE in one clock period. Meanwhile, the conductance

matrix Gi = df(x(ti))/dx(ti) and the capacitance matrix
Ci = dq(x(ti))/dx(ti) at each time step are used to derive
the sensitivity matrix J = dx((m+k)T )/dx((m+k−1)T ).

Different integration rules can be applied to the computation

of sensitivity matrix. It can be easily derived that, if the DAE

is integrated with backward-Euler rule, the sensitivity is

J =
dxM

dx0
=

M
∏

i=1

(

1

hi

Ci + Gi

)

−1
1

hi

Ci−1

In summary, the envelope-following method is fundamen-

tally a boosted version of traditional transient analysis, with

certain skips over several periods and a Newton iteration

to update or correct the errors brought by the skips, as is

exhibited by Fig. 2.



save time steps hi,

matrices Ci, and

the LU factors of Ji

t = t + hi

update x((m + k − 1)T )

integrate DAE

for x(t)

set t = (m + k − 1)T

make a guess of x((m + k − 1)T )

select jump size k

circuit state x(mT ) at time t = mT

yes

solve Newton update equation

no

compute sensitivity matrix

converged ?
no

yes

m = m + k

t < (m + k)T ?

Fig. 2. The flow of envelope-following method.

III. NEW PARALLEL ENVELOP-FOLLOWING METHOD

In this section, we explain how to efficiently use matrix-free

GMRES to solve the Newton update problems with implicit

sensitivity calculation, i.e., the steps enclosed by the double

dashed block in Fig. 2. Then implementation issues of GPU

acceleration will be discussed in detail. Finally, the Gear-2

integration is briefly introduced.

A. GMRES Solver for Newton update Equation

Generalized Minimum Residual (GMRES) method is an

iterative method for solving systems of linear equations (Ax =
b) with dense matrix A. The standard GMRES is given in
Algorithm 1. It constructs a Krylov subspace with order m,

Km = span(b, Ab,A2b, . . . , Am−1b),

where the approximate solution xm resides. In practice, an

orthonormal basis Vm that spans the subspace Km can be

generated by the Arnoldi iteration. The goal of GMRES is to

search for an optimal coefficient y such that the linear combi-
nation xm = Vmy will minimize its residual ‖b − Axm‖2.

The Arnoldi iteration also creates a by-product, an upper

Hessenberg matrix H̃m ∈ R(m+1)×m. Thus, the projection

of A on the orthonormal basis Vm is described by the Arnoldi

decomposition AVm = Vm+1H̃m, which is useful to check
the residual at each iteration without forming xm, and to

solve for coefficient y when residual is smaller than a preset
tolerance [16].

Algorithm 1 A standard GMRES

Input: A ∈ R
N×N , b ∈ R

N , and initial guess x0 ∈ R
N

Output: x ∈ R
N : ‖b − Ax‖2 < tol

1: r = b − Ax0

2: h1,0 = ‖r‖2
3: m = 0
4: while m < max iter do
5: m = m + 1
6: vm = r/hm,m−1

7: r = Avm

8: for i = 1 . . . m do
9: hi,m = 〈vi, r〉
10: r = r − hi,mvi

11: end for

12: hm+1,m = ‖r‖2
13: Compute the residual ǫ
14: if ǫ < tol then
15: Solve the problem: minimize ‖b − Axm‖2

16: Return xm = x0 + Vmym

17: end if

18: end while

At a first glance, the cost of using standard GMRES directly

to solve the Newton update equation (2) seems to come

mainly from two parts: the formulation of the sensitivity

matrix J = dxM/dx0 in Eq. (9) in Section III-C, and the

iteration inside the standard GMRES, especially the matrix-

vector multiplication and the orthonormal basis construction

(Line 7 through Line 12 in Algorithm 1). Based on the

observation that only the matrix-vector product is required in

GMRES, the work in [6] introduces an efficient matrix-free

algorithm in the shooting-Newton method, where the equation

solving part also involves with a sensitivity matrix. The matrix-

free method does not take an explicit matrix as input, but

directly passes the saved capacitance matrices Ci and the LU

factorizations of Ji, i = 0, . . . ,M , into the Arnoldi iteration
for Krylov subspace generation. Therefore, it avoids the cost of

forming the dense sensitivity matrix and focuses on subspace

construction. Briefly speaking, Line 7 will be replaced by a

procedure without explict A, and we will talk about the flow
of matrix-free generation of new basis vectors in later sections.

B. Parallelization on GPU platforms

There exist many GPU-friendly computing operations in

GMRES, such as the vector addition (axpy), 2-norm of vector

(nrm2), and sparse matrix-vector multiplication (csrmv),

which have been parallelized in the CUDA Basic Linear

Algebra Subroutine (CUBLAS) Library and the CUDA Sparse

Linear Algebra Library (CUSPARSE) [17].

GPU programming is typically limited by the data transfer

bandwidth as GPU favors computationally intensive algo-

rithms [10]. So how to efficiently transfer the data and wisely

partition the data between CPU memory and GPU memory is

crucial for GPU programming. In the following, we discuss

these two issues in our implementation.

As noted in Section II, the envelope-following method



requires the matrices gathered from all the time steps in a

period in order to solve a Newton update. At each time step,

SPICE has to linearize device models, stamp matrix elements,

and solve circuit equations in its inner Newton iteration. When

convergence is attained, circuit states are saved and then

next time step begins. This is also the time when we store

the needed matrices for the envelope-following computation.

Since these data are involved in the calculation of Gear-2

sensitivity matrix in the generation of Krylov subspace vectors

in Algorithm 2, it is desirable that all of these matrices are

transferred to GPU for its data parallel capability.

To efficient transfer those large data, we explores asyn-

chronous memory copy between host and device in the recent

GPUs (Fermi architecture), so that the copying overlaps with

the host’s computing of the next time step’s circuit state. The

implementation of asynchronous matrices copy includes two

parts: allocating page-locked memory, also known as pinned

memory, where we save matrices for one time step, and using

asynchronous memory transfer to copy these data to GPU

memory. While it is known that page-locked host memory

is a scarce resource and should not be overused, the demand

of memory size of the data generated at one time step can

be generously accommodated by today’s mainstream server

configurations.

memcopy

memcopy

matrix-free MVP

matrix-free MVP

right hand side b

Host side (CPU)

set up parameters for GMRES

initial guess x0

saved Ji, Ci, hi

Device side (GPU)

vm = r/‖r‖2

V = [V |vm]

Arnoldi iteration in GMRES

r = Avm

orthogonalize r w.r.t
triangularize H̃

no
save by-product h

memcopy

vectors in V ,

x0

linear combination of V
to form solution

converged approximate
solution xm

yes

H̃ =













h1,1 h1,2 · · · h1,m

h2,1 h2,2 · · · h2,m

h3,2 · · · h3,m

. . .
...

hm+1,m













r = b − Ax0

max iter, tol, etc.

calculate residual

residual below tol?

Fig. 3. GPU parallel solver for envelope-following update.

The second issue is to decide the location of data between

CPU and GPU memories. Therefore let us first make a rough

sketch of the quantities in the GMRES Algorithm 1. Although

GMRES tends to converge quickly for most circuit examples,

i.e., the iteration number m ≪ N , the space for storing all the
subspace basis Vm of N -by-m, i.e.,m column vectors with N -
length, is still big. In addition, every newly generated matrix-

vector product needs to be orthogonalized with respect to all

its previous basis vectors in the Arnoldi processes. Hence,

keeping all the vectors of Vm in GPU global memory allows

GPU to handle those operations, such as inner-product of basis

vectors (dot) and vector subtraction (axpy), in parallel.

On the other hand, it is better to keep the Hessenberg

matrix H̃ , where intermediate results of the orthogonalization
are stored, at the host side. This comes with the following

reasons. First, its size is (m + 1)-by-m at most, rather small
if compared to circuit matrices and Krylov basis. Besides, it

is also necessary to triangularize H̃ and check the residual

regularly in each iteration so the GMRES can return the

approximate solution as soon as the residual is below a preset

tolerance. Hence, in consideration of the serial nature of the

trianularization, the small size of Hessenberg matrix, and the

frequent inspection of values by host, it is preferable to allocate

H̃ in CPU (host) memory. As shown in Fig. 3, the memory
copy from device to host is called each time when Arnoldi

iteration generates a new vector and the orthogonalization

produces the vector h.

C. Gear-2 based Sensitivity Calculation

The Gear-2 integration method is a backward differentiation

formula (BDF), which approximates the derivative of a func-

tion using information from past few steps. Gear-2 method has

been shown to be more suitable for many practical problems

such as stiff problems where circuit behavior is affected by

different time constants (fast ones with large poles and slow

ones with small poles) [18]. Switching power converters and

RF systems are typically stiff systems as waveforms changing

in two different time scales are involved.

Given the DAE (1), at the i-th time step, Gear-2
approximates the derivative dq(x(t))/dt by a two-

step backward finite difference, dq(x(ti))/dt =
1
hi

[

q(x(ti)) − αi
1q(x(ti−1)) − αi

2q(x(ti−2))
]

, where the

coefficients α’s are chosen to satisfy Gear’s backward
differentiation formula [19]. For uniformly discretised time

steps, the index i in hi, α
i
1 and αi

2 can be omitted.

For the first step t1, only the initial condition at t0 is
available. Therefore backward-Euler is used, i.e.,

1
h1

[q(x1) − q(x0)] + f(x1) = b1. (4)

Since x0 directly affects the solution of x1, the sensitivity

matrix up to now is

dx1

dx0
=

[

1

h1
C1 + G1

]

−1
C0

h1
= J−1

1

C0

h1
. (5)

Let Ji denote (1/hi)Ci+Gi in the remaining part of this paper.

In addition, the LU factorizations of Ji are already calculated

since they are used to solve the circuit state at each time step

before we calculate the sensitivity.

Next, for the solution at t2, with the previous two steps
information available, Gear-2 integration can be applied,

1
h2

[q(x2) − α1q(x1) − α2q(x0)] + f(x2) = b2. (6)

In view of the sensitivity of x2 with respect to the changes of

x0, (6) indicates that x2’s perturbation can be traced back to

x0 along two paths: x2 is directly affected by x0, and x2 is

also affected indirectly by x0 via x1. That is,

dx2

dx0
=

∂x2

∂x1

dx1

dx0
+

∂x2

∂x0
,



where the two partial derivatives are

∂x2

∂x1
= J−1

2

α1

h2
C1,

∂x2

∂x0
= J−1

2

α2

h2
C0,

and dx1/dx0 is calculated previously in (5). Thus, the sensi-

tivity matrix deduced from (6) is

dx2

dx0
= J−1

2

α1

h2
C1 · J

−1
1

C0

h1
+ J−1

2

α2

h2
C0. (7)

Likewise, for the third time step t3, apply the Gear-2
integration formula to DAE (1),

1
h3

[q(x3) − α1q(x2) − α2q(x1)] + f(x3) = b3, (8)

and the chain rule for sensitivity is

dx3

dx0
=

∂x3

∂x2

dx2

dx0
+

∂x3

∂x1

dx1

dx0
=J−1

3

[

α1

h3
C2

dx2

dx0
+

α2

h3
C1

dx1

dx0

]

,

where both dx2/dx0 and dx1/dx0 are ready from the

previous two time steps, i.e., Eqs. (7) and (5). Follow this

chain rule in the aforementioned recursive style, the sensitivity

matrix for Gear-2 integration is computed along the remaining

time steps up to the M -th step,

J =
dxM

dx0
=J−1

M

[

α1

hM

CM−1
dxM−1

dx0
+

α2

hM

CM−2
dxM−2

dx0

]

.

(9)

Note that as the matrix-free GMRES method is applied,

which only requires matrix-vector multiplication and no ex-

plicit J is required, as explained in Algorithm 2.
With matrix-free method, the matrix-vector multiplication

(Line 7 in Algorithm 1) is replaced by the iteration shown in

Algorithm 2, which calculates the multiplication product of

the Gear-2 sensitivity we encounter in envelope-following and

a basis vector in the Krylov subspace. Note that the scaling

and shift of J in A = (k − 1)J − kI , as described in Eq. (3),
is taken into consideration by Line 8.

Algorithm 2 Matrix-free method for Krylov subspace con-

struction

Input: current Krylov subspace basis vector v, time step
lengths hi, saved Ci matrices and LU factors of Ji,

i = 0, . . . ,M
Output: matrix-vector product r, such that r = Av
1: solve J1p2 = h−1

1 C0v for p2

2: solve J2p1 = h−1
2 (α1C1p2 + α2C0v) for p1

3: for i = 3 . . . M do

4: solve Jip0 = α1h
−1
i Ci−1p1 + α2h

−1
i Ci−2p2 for p0

5: p2 = p1

6: p1 = p0

7: end for

8: r = (k − 1)p0 − kv

For the matrix-free generation of new basis vectors, it is

straightforward to apply CUBLAS and CUSPARSE routines,

and some customized GPU kernel functions to implement

Algorithm 2 with the stored LU matrices of Ji and Ci

mentioned earlier. For example in Line 4, as the iteration index

i traverses all the M time points’ matrix information, sparse

matrix-vector multiplication csrmv is first called to calculate

Ci−1p1 and Ci−2p2. And after the two resulted vectors are

combined by axpy of CUBLAS, p0 is solved for by trsv,

since as we noted before, Ji is already in LU factorization

form when transient simulation at step i finished.

IV. EXPERIMENTAL RESULTS

All the experiments in this paper have been carried out

on a server which has an Intel Xeon quad-core CPU with

2.0 GHz clock speed, and 24 GBytes memory. The GPU card

mounted on this server is NVIDIA’s Tesla C2070 (Fermi),

which contains 448 cores (14 MPs × 32 cores per MP) running
at a 1.30 GHz and has 4 GBytes on-chip memory.

The envelope-following method with the proposed Gear-

2 sensitivity matrix computation is added to an open-source

SPICE, implemented in C [20]. Our envelope-following pro-

gram is implemented by following the algorithm mentioned

in [21]. To solve the Newton update equation, different meth-

ods are used to compare the computation time, such as direct

LU, GMRES with explicitly formed matrix, and GMRES with

implicit matrix-vector multiplication (matrix-free). Moreover,

the matrix-free method is also incorporated to the same SPICE

simulator using CUDA C programming interface, as described

in Section III-B.

Cf

Lk

Lm

N : 1

power/ground
mesh

Fig. 4. Diagram of a zero-voltage quasi-resonant flyback converter.

Fig. 5. Illustration of power/ground network model.

We use several integrated on-chip converters as simulation

examples to measure running time and speedup. They include

a Buck converter, a quasi-resonant flyback converter (shown

in Fig. 4), and two boost converters. Each converter is directly

integrated with on-chip power grid networks, since the perfor-

mance of converters should be studied with their loads and

we can easily observe the waveforms at different nodes in a

power grid (see Fig. 5 for a simplified power grid structure).

Fig. 6 shows the waveform at output node of the resonant

flyback converter. Note that on the envelope curve, the darker



0 0.01 0.02 0.03 0.04
0

1

2

3

4

Time (s)

V
o

lt
a

g
e

 (
V

)

 

 

exact SPICE waveform

envelope−following

(a) The whole plot

0.0112 0.0113 0.0114 0.0115

0.0654

0.0655

0.0656

0.0657

0.0658

time (s)

v
o

lt
a

g
e

 (
V

)

 

 

exact SPICE waveform

envelope−following

(b) Detail of one EF simulation period

Fig. 6. Flyback converter solution calculated by envelope-following. The
red curve is traditional SPICE simulation result, and the back curve is the
envelope-following output with simulation points marked.

TABLE I
CPU AND GPU TIME COMPARISONS (IN SECONDS) FOR SOLVING

NEWTON UPDATE EQUATION WITH THE PROPOSED GEAR-2 SENSITIVITY.

Circuit Nodes Direct Explicit Implicit GMRES
LU GMRES CPU GPU X

Buck 910 423.8 420.3 36.8 3.9 9.4×
Flyback 941 462.4 459.6 64.5 7.4 8.7×
Boost-1 976 695.1 687.7 73.2 6.2 11.8×
Boost-2 1093 729.5 720.8 71.0 8.5 9.9×

dots in separated segments indicate the real simulation points

were calculated in those cycles, and the segments without dots

are the envelope jumps where no simulation were done. It

can be verified that the proposed Gear-2 envelope-following

method produces a envelope matching the original waveform

well.

For the comparison of running time spent in solving Newton

update equation, Table I lists the time costed by direct method,

explicit GMRES, matrix-free GMRES, and GPU matrix-free

GMRES. All methods carry out the Gear-2 based envelope-

following method, but they handle the sensitivity and equation

solving in different implementation steps. It is obvious that

as long as the sensitivity matrix is explicitly formed, such

as the cases in direct method and explicitly GMRES, the

cost is much higher than the implicit methods. When matrix-

free technique is applied to generate matrix-vector products

implicitly, the computation cost is greatly reduced. Thus, for

the same example, implicit GMRES would be one order

of magnitude faster than explicit GMRES. Furthermore, our

GPU parallel implementation of implicit GMRES makes this

method even faster, with a further 10× speedup.

V. CONCLUSION

A new envelope-following method for transient analysis

of switching power converters has been introduced. First,

the computationally expensive step, the solving of Newton

update equation, has been parallelized on CUDA-enabled GPU

platforms with iterative GMRES solver to boost performance

of the analysis method. To further speed up the GMRES

solving for Newton update equation, we have employed the

matrix-free Krylov basis generation technique. The proposed

method also applies the more robust Gear-2 integration to

compute the sensitivity matrix. Experimental results from

several integrated on-chip power converters have shown that

the proposed GPU envelope-following algorithm can lead to

about 10× speedup compared to its CPU counterpart, and
100× faster than the traditional envelop-following methods
while still keeps the similar accuracy.

REFERENCES

[1] Andrzej M. Trzynadlowski. Introduction to Modern Power Electronics.
Wiley, second edition, 2010.

[2] K. Kundert et al. An envelope following method for the efficient
transient simulation of switching power and filter circuits. In Proc.
ICCAD, pages 446–449, Oct. 1988.

[3] J. White and S. Leeb. An envelope-following approach to switching
power converter simulation. IEEE Trans. Power Electron., 6(2):303–
307, Apr. 1991.

[4] P. Feldmann and J. Roychowdhury. Computation of circuit waveform
envelopes using an efficient, matrix-decomposed harmonic balance al-
gorithm. In Proc. ICCAD, pages 295–300, Nov. 1996.

[5] P. Krein. Elements of Power Electronics. Oxford University Press, 1997.
[6] R. Telichevesky, K. Kundert, and J. White. Efficient steady-state
analysis based on matrix-free Krylov-subspace methods. In Proc. Design
Automation Conf. (DAC), 1995.

[7] Intel Corporation. Intel multi-core processors, making the move to quad-
core and beyond (White Paper), 2006. http://www.intel.com/multi-core.

[8] AMD Inc. Multi-core processors—the next evolution in computing
(White Paper), 2006. http://multicore.amd.com.

[9] NVIDIA Corporation, 2011. http://www.nvidia.com.
[10] David B. Kirk and Wen-Mei Hwu. Programming Massively Parallel

Processors: A Hands-on Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 2010.

[11] Dominik Göddeke. General-purpose computation using graphics har-
ware. http://www.gpgpu.org/, 2011.

[12] NVIDIA Corporation. CUDA (Compute Unified Device Architecture),
2011. http://www.nvidia.com/object/cuda home.html.

[13] AMD Inc. AMD Steam SDK. http://developer.amd.com/gpu/
ATIStreamSDK, 2011.

[14] Khronos Group. Open Computing Language (OpenCL). http://www.
khronos.org/opencl, 2011.

[15] CUDA community showcase. http://www.nvidia.com/.
[16] G. H. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins

University Press, 3rd edition, 1996.
[17] NVIDIA, 2011. http://developer.nvidia.com/cuda-toolkit-40.
[18] J. Vlach and K. Singhal. Computer Methods for Circuit Analysis and

Design. Van Nostrand Reinhold, New York, NY, 1995.
[19] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential

Equations. Prentice-Hall, Englewood Cliffs, NJ, 1971.
[20] NGSPICE. http://ngspice.sourceforge.net/.
[21] T. Kato et al. Envelope following analysis of an autonomous power

electronic system. In IEEE COMPEL’06, pages 29–33, July 2006.


