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Abstract—Large analog circuit models are very expensive to
evaluate and verify. New techniques are needed to shorten time-
to-market and to reduce the cost of producing a correct analog
integrated circuit. Model order reduction is an approach used
to reduce the computational complexity of the mathematical
model of a dynamical system, while capturing its main features.
This technique can be used to reduce an analog circuit model
while retaining its realistic behavior. In this paper, we present an
approach to model order reduction of nonlinear analog circuits.
We model the circuit using fuzzy differential equations and
use qualitative simulation and K-means clustering to discretion
efficiently its state space. Moreover, we use a conformance
checking approach to refine model order reduction steps and
guarantee simulation acceleration and accuracy. In order to
illustrate the effectiveness of our method, we applied it to a
transmission line with nonlinear diodes and a large nonlinear ring
oscillator circuit. Experimental results show that our reduced
models are more than one order of magnitude faster and accurate
when compared to existing methods.

I. INTRODUCTION

The simulation of today’s analog circuits is essential to ad-

dress the problem of model selection, circuit sizing, parameter

setting and to decrease the cost of producing a correct IC

design. Model simplification and abstraction techniques are

employed to enhance the capacities of circuit simulators at the

cost of accuracy. Model Order Reduction (MOR) is a promis-

ing technique that transforms a large size dynamical model to

a smaller one while preserving its main behavior. The reduced

model can increase the speed of functional and statistical

simulation, control and verification [1]. Most of the research

on MOR of VLSI circuits has elaborated a set of methods

suitable for linear problems [2]. Unfortunately, techniques

that can help with the reduction of nonlinear analog circuits

still require development [3] [4]. Qualitative simulation is

a method used to characterize dynamical systems behavior

using global optimization techniques when parameters and/or

initial conditions are considered as uncertain values or fuzzy

numbers [5] [6].

In this paper, we propose a new approach to MOR of

nonlinear analog circuits using Krylov space projection [7].

We model the circuit using Fuzzy Differential Equations

(FDE) and use qualitative simulation to characterize and

determine over approximated envelopes of its state behav-

ior. Then, we employ the K-means clustering algorithm to

subdivide the circuit state space into discrete regions that

contain its main responses. Moreover, we establish a set of

conformance checking criteria and refine the reduced model to

guarantee simulation acceleration and accuracy. We illustrate

our proposed methodology on the model of a transmission

line with nonlinear diodes considered in [4] [8] and a large

ring oscillator. In Section II, we give an overview of MOR

techniques developed for analog circuits. Then, in Section III,

we briefly explain MOR through projection and Section IV

details our proposed MOR scheme. In Section V, we examine

our experimental results and in Section VI, we present our

conclusions.

II. RELATED WORK

In the electronic industry, a set of MOR algorithms were

proposed for linear circuit models (RLC and RC networks).

The most prevalent among them are based on the Krylov space

projection [7] [2]. Transferring these methods to the case of

nonlinear circuits is not straightforward and only few MOR

methods were recently proposed.

The Proper Orthogonal Decomposition (POD) [9] was used

in [10] to deal with the reduction of integrated circuits. This

method is also a projection technique that finds a subspace

that approximates a set of data in an optimal least squares

sense. Also, a MOR based on quadratic Taylor approximations

and Krylov space projections was proposed in [11] for the

reduction of weakly nonlinear systems such as transmission

lines.

The Trajectory PieceWise Linear (TPWL) method proposed

in [3] for the reduction of nonlinear circuits and micro

machined devices consist of building different linear models

for a finite set of expansion points on the trajectory of

the circuit determined using a training input and weighting

those models on the fly to generate a single model for the

system. The general purpose MOR method proposed in [4] is

similar to the TPWL method but it uses piecewise polynomial

representations rather than linear models. The accuracy and

the simulation acceleration gain of the two previous methods

depend on the training inputs, the number of expansion points

and the weight functions. In fact, a large set of expansion

points may slowdown the reduced model because of the

extra time needed to select the points that will be used to

approximate the actual state and compute their weights. In

addition, the reduced model may fail to reach states that

are distant from the set of expansion points since they were

determined using a specific training input.978-3-9810801-8-6/DATE12/ c©2012 EDAA



III. PRELIMINARIES

A. MOR via Projection

A large set of nonlinear circuits may be described using the

set of Ordinary Differential Equations (ODE) in Equation 1,

through Modified Nodal Analysis [12].

ẋ = f(x) +Bu(t) (1)

y = Ctx

where f : Rn → Rn is a nonlinear vector valued function,

x ∈ Rn is a vector of states, y ∈ Rm is a vector of outputs,

u ∈ Rp is a vector of inputs, and B is an n×p input selection

matrix, and C is an n×m output selection matrix.

The reduction of the full order model in Equation 1 via

projection consists of finding an n×q unitary projection matrix

V, such that (VVt = In) and the vector x̂ = Vz is a good

approximate of the original state vector x, where z is the

reduced state vector of variables. Thus, the behavior of the

full order model can be obtained through backward projection,

using the matrix V, of the behavior of the reduced model given

in Equation 2.

Vż = Vtf(Vz) +VtBu(t) (2)

ŷ = CtVz

For linear models, the Arnoldi’s or Lanczos algorithms [1] are

advanced methods used to compute Krylov space projection

basis [7]. They guarantee moments matching of the reduced

model and the full order model transfer functions, at least up to

the order q. If the nonlinear behavior is viewed as a sequence

of linear models through Taylor Expansions, the Krylov space

projection method may be applicable. However, this means

that the projection matrix should be updated whenever the

Jacobian matrix of f is updated. Unfortunately, this will

increase substantially the time required to evaluate the reduced

model.

B. Fuzzy Differential Equations

We suppose, without loss of generality, that the dynamical

model of nonlinear circuits is modeled, as given in Equation 3.

ẋ = f(x,P) +Bu(t) (3)

y = Ctx

x(0) = x0

where f : Rn × Rnp → Rn is a nonlinear vector valued

function, P ∈ Rnp a vector of np circuit parameters, x ∈ Rn

is a vector of states containing unknown node voltages and

currents, y ∈ Rm is a vector of outputs, u ∈ Rp is a vector

of inputs, B is an n×p input selection matrix, C is an n×m

output selection matrix, and x(0) is the state initial conditions.

It is well known that analog circuits have an infinite

state space because of the continuity of analog quantities,

their nonlinear behavior and their dependence on the inputs,

parameters P as well as the initial conditions x(0). In fact,

a slight deviation of these quantities might affect surprisingly

the possible trajectories of the circuit. For these reasons, we

propose to incorporate uncertainty on the dynamical model of

analog circuits, which leads to Fuzzy Differential Equations

(FDE). FDEs are a formal mean to introduce uncertainty in

deterministic dynamical models [5] [6]. The analog circuit

model given in Equation 3 is transformed to the model of

Equation 4, where the deterministic parameters P , B and

initial conditions x(0) are replaced with the fuzzy numbers

µP, µB and µx(0), respectively.

ẋ = f(x,P) +Bu(t) (4)

y = Ctx

x(0) = µx(0),P = µP,B = µB

The initial conditions µx(0), the parameters µP and the input

selection µB matrix are fuzzy numbers defined using a mem-

bership functions, as given in Figure 1. These fuzzy numbers

form an initial fuzzy region in the state space that evolves in

time according to the dynamics of the analog circuit, defined

by the FDE in Equation 4.
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Fig. 1. Fuzzy number membership function examples

IV. PROPOSED METHODOLOGY

1) Overview: An overview of our proposed methodology

to reduce the state space size of analog circuits, is shown in

Figure 2.

Extraction of ODEs
with state space size=n

Model(n)

Circuit Netlist Description

Conformance Criteria Checking 

Final Reduced Model
with state space size=q<<n 

Refinement of the 
MOR parameters

Acceptance

Rejection

Model Order Reduction 

Model(q)Model(n)

Fig. 2. A method for the MOR of large analog circuits

Given a nonlinear analog circuit description (e.g., a spice

netlist), we extract a set of ODEs describing the analog circuit

Model(n), using Modified Nodal Analysis Formulation. After

that, the full order Model(n) is reduced using the technique

detailed in Subsection IV-2 to obtain the reduced model

Model(q). This technique employs qualitative simulation [6],



k-means clustering and Krylov space projections. After com-

pletion of the MOR step, the full order model Model(n) and

the reduced model Model(q) are input to a Conformance Cri-

teria Checking step that guarantees a minimum speedup of the

simulation as well as a conformance of their transient behavior.

The conformance of the transient behavior is defined as a

minimum relative error between the outputs y and ŷ as well

as the state vectors x and the backward projection of reduced

state vector x̂ = Vz of Model(n) and Model(q), respectively.

If these requirements in terms of accuracy and speedup are not

satisfied, a refinement of the MOR parameters step is started.

During this step the failure of the model is investigated and the

MOR parameters are iteratively adjusted until the requirements

are satisfied which leads to an acceptance of the reduced model

Model(q).

2) MOR Scheme: Figure 3 details our proposed MOR

methodology which consist of four steps:

Generation of FDEs and qualitative 
simulation 

Subdivision of the circuit behavior into
R transient regions and selection of a set 
of ki linearization points using k‐means

Generation of Modeli(q) using Krylov 
space projection

Generation of the reduced model as a 
sequence of weighted sub‐models

Model (n)

Model (q)

Fig. 3. Proposed MOR scheme

Step 1: Generation of FDEs and qualitative simulation: this

step is necessary to explore all the analog circuit possible

behaviors that cannot be determined through traditional sim-

ulation of Model(n). To do so, the deterministic full order

model Model(n) is transformed to an FDE description, as

given in Equation 4, where the initial conditions, the param-

eters and input sources are uncertain and modeled as fuzzy

numbers. Then, the qualitative simulation is used to determine

overapproximated envelopes of the transient behavior of the

analog circuit described in Equation 4.

Fuzzy Differential 
Equations

Fuzzy Numbers 

Global Nonlinear 
Optimizer

Envelope of 
reachable states

)0(,,
xPB

µµµ

Time constraints
Ti, Tf, ∆T

Fig. 4. Qualitative simulation

Figure 4 summarizes the qualitative simulation principle.

In fact, for a set of initial fuzzy numbers that represent the

system uncertainty and a fuzzy dynamical system description,

the qualitative simulation outputs bounded envelopes of the

system behavior for each instant of the transient simulation

time. The qualitative simulation is based on a global nonlinear

optimizer that determines overapproximated envelopes of the

circuit state at each time instant. These overapproximated

envelopes contain but are not equal to the set of all possible

states of the dynamical system [6]. Thus, for the case of analog

circuits a selection procedure of the useful data from of the

qualitative simulation output is necessary.

Step 2: Subdivision of the circuit behavior into R transient

regions and selection of a set of ki linearization points using

k-means: in order to perform Krylov space projections, a set

of linearization points is needed to build the reduced model.

We propose to select a proper set of points from the qualitative

simulation result using k-means clustering [13], as follows:

1. We subdivide the qualitative simulation result into distinct

R regions, on the time axis. The number of R regions

is different for each circuit and is tuned during the MOR

parameters refinement step to meet accuracy requirements. For

example, an oscillator should have at least 2 regions since it

has a start-up phase and a permanent oscillation phase. Other

circuits might require more or less regions of operations.

2. We use k-means clustering to subdivide each of the

R overapproximated reachable state space regions into ki
clusters, which result in k =

∑R

i=1 ki clusters. Then, a single

state vector, that is the centroid of each region, is used as a

linearization point to model locally the behavior of the circuit.

The number ki of clusters in each of the R regions is set to

an initial guess at the first MOR tentative and is updated after

that, during the MOR parameters refinement step, to guarantee

accuracy and speedup criteria.

Step 3: Generation of Modeli(q) using Krylov space pro-

jection: for each region i (i = 1 . . . R), we determine a set

ki of linearization points and a linear model Modelj(n), as

given in Equation 5, where Aj is the Jacobian of f at the

linearization point xj (j = 1 . . . ki).

ẋ = f(xj,P) +Aj(x− xj) +Bu(t) (5)

After that, we compute a Krylov type projection basis Vj

using the Arnoldi process, and then, we determine a unified

projection basis Vi as the Singular Value Decomposition of

the union of these basis Vi = SV D(∪ki

j=1Vj), where SV D

is the singular value decomposition operator [1]. At the end,

we have R projection basis Vi, i = 1 . . . R, that will be used

at different times of the transient behavior according to the

actual state of the circuit.

ż = Vi
tf(xj,P) +Vi

tAjVi(z− zj) +Vi
tBu(t) (6)

The reduced sub models Modeli(q) are given in Equation 6,

where z is the reduced state variable, i is the region index and

j is the linearization point index.

Step 4: Generation of the reduced model Model(q) as a

sequence of weighted sub-models: the reduced sub-models



model Modeli(q) are weighted to form the reduced model

Model(q). The weights are a mean to smooth transitions

between state space regions and allow contributions of closest

models. However, the weights computation should be simple,

otherwise, the simulation time will increase extensively with-

out any gain in terms of accuracy. In our MOR scheme, the

circuit current state z is determined using the set of closest

three linearization points to the current state. The weight

functions at a point z in the reduced state space are computed

as ws = ‖z−zs‖2∑
3

s=1
‖z−zs‖2

, s = 1, 2, 3. The final reduced model

Model(q) is given in Equation 7.

ż =
3∑

s=1

ws(̂f(xs,P) + Âs(z− zs)) + B̂u(t)) (7)

ŷ = Ĉtz

where i is the number of the region where the state z

is located, Âs = Vi
tAsVi, B̂ = Vi

tB, Ĉt = Vi
tC,

f̂(xs,P) = Vi
tf(xs,P) and ŷ is the output of the reduced

model that approximates the full order model output y.

3) Conformance Criteria Checking: The objective of the

conformance criteria checking is to verify that the reduced

model Model(q) mimics the behavior of the full order model

Model(n) in a faster way. We verify, for all transient regions,

that relative error between the outputs y and ŷ and the relative

error between the state vectors x and the backward projection

of reduced state vector x̂ = Vtz are minimum and that the

acceleration of the simulation is above the required minimum

speedup, as given in Equation 8.

‖x̂− x‖2
‖x‖2

≤ ǫ1 (8)

‖ŷ− y‖2
‖y‖2

≤ ǫ2

tsim(Model(n))

tsim(Model(q))
≥ min speedup

where ǫ1 and ǫ2 are the required relative errors and the level of

accuracy of the application that will make use of the reduced

model.

4) MOR Parameters Refinement: The MOR parameters

refinement step consists in tuning several parameters of the

MOR scheme which affect the accuracy and speedup of the

reduced model, based on the conformance criteria checking

result. The region where the model fails is determined and

several steps are performed. In case the speedup criteria is

not met, we increase the number of transient regions R while

decreasing the number of clusters in each region. Otherwise,

we decrease the order q of the reduced model. If the accuracy

of the transient behavior is not satisfied, we check first if the

error is localized. If it is the case, we add extra linearization

points in that area otherwise we increase the number of

regions.

V. APPLICATIONS

In this section, we present the results of the application of

our MOR technique on the example of a transmission line with

nonlinear diodes considered in [3] and a large nonlinear ring

oscillator. All simulations and models descriptions were per-

formed in the MATLAB environment and all simulation times

of Model(n) and Model(q) are in seconds. All simulations

were run on a 64-bit Windows 7 workstation with a 2.8 GHz

processor and 24 GB of memory.

A. Transmission Line with Nonlinear Diodes

Figure 5 shows the transmission line model that is a chain of

connected resistor, capacitor and diode cells. The input current

source is i(t) and all capacitors and resistor values are set

to 1 F and 1 Ω, respectively. The behavior of the diodes is

nonlinear and is given by Id(v) = exp(40v) + v − 1.

cr
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x2 x3 xn

c

xn‐1

Id(x1‐x2) Id(x2‐x3) Id(xn‐1‐xn)

i(t)

Fig. 5. Transmision line with nonlinear diode chain

The full order model of the transmission line is given in

Equation 9, where x1, . . . , xn are the circuit node voltages.

ẋ1 = −Id(x1)− Id(x1 − x2) + b i(t) (9)

ẋi = Id(xi−1 − xi)− Id(xi − xi+1)

ẋn = Id(xn−1 − xn)

y = x1

x(0) = µx(0)

b = µb

0 1 2 3 4
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0.01

0.02

0.03

0.04

0.05

0.06

Time [s]

x1
[V

]

Fig. 6. Qualitative simulation of the nonlinear transmission line

Figure 6 illustrates the qualitative simulation result for the

first node voltage of the transmission line model of Figure 5,

when the input source is i(t) = sin(2πt) and the initial con-

ditions are uncertain and are represented by the fuzzy number

µx(0) = (µx1(0), . . . , µxn(0)) and for i = 1 . . . n, µxi(0) = 1



if xi(0) ∈ [0, 10−2]V and µxi(0) = 0, otherwise. This means

that all initial voltages are possibly in the interval [0, 10−2]V
and any possible behavior of the first node voltage is always

between these two extremum trajectories.

TABLE I
SIMULATION TIMES FOR THE NONLINEAR TRANSMISSION LINE

Input, Speedup Speedup
Problem size TPWL [3] Current Method

i(t) = H(t − 3) 9573.30

80.80
≃ 118 810.39

0.64
≃ 1248

n = 1500, q = 30
i(t) = exp(−t) 11713.10

110.90
≃ 105 1061.32

0.82
≃ 1284

n = 1500, q = 30

i(t) = sin( 2πt

10
) 25.40

2.70
≃ 9 1.84

0.31
≃ 6

n = 100, q = 10

Table I compares the simulation times of the same reduction

problems for the transmission line considered in [3]. Although

these results were conducted using different processors, the

speedup criteria can measure the improvement of our MOR

method in terms of simulation acceleration. In fact, our re-

duced models are ten times faster than the TPWL and one

thousand times faster than the full nonlinear model for the

two first large scale problem sizes.

TABLE II
ACCURACY FOR THE TRANSMISSION LINE CIRCUIT USING k = 20

LINEARIZATION POINTS

Input, ‖x̂−x‖2
‖x‖2

‖ŷ−y‖2
‖y‖2Problem size

i(t) = H(t − 3)
0.45 10−3 0.12 10−2

n = 1500, q = 30
i(t) = exp(−t)

0.12 10−2 0.18 10−2

n = 1500, q = 30

i(t) = sin( 2πt

10
)

0.42 10−2 0.37 10−2

n = 100, q = 10

Table II shows that the reduced model mimics the behavior

of the full order model for the three considered problem sizes

and the different current sources. The accuracy criteria is

satisfied for the different experiments and the relative errors of

the state variables and the output are always less than 10−2,

that is the maximum acceptable error during conformance

checking.
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Fig. 7. Transmission line transient behavior, i(t) = H(t− 3)
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Fig. 8. Transmission line transient behavior, i(t) = exp(−t)
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Fig. 9. Transmission line transient behavior, i(t) = sin( 2πt
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Figures 7, 8 and 9 show the transient behavior of the full

order model and the reduced order model problems of Table II,

for three current source types: a step source i(t) = H(t−3) =
1 if t ≥ 3, 0 otherwise, an exponential source i(t) =
exp(−t) and a sinusoidal source i(t) = sin(2πt10 ), respectively.

B. Ring Oscillator

Figure 10 represents a ring oscillator composed of a large

odd number n of inverters connected in a circular chain.

Each inverter is single ended and is composed of a cascaded

n-channel and p-channel transistors and a capacitance C

connected to their drains. The node voltages xi of each of

the n inverter oscillates between the ground gnd = 0V
and the power vdd = 1.8V . The circuit model is given in

xn

C

xn‐1x1

C

x2

C

Fig. 10. Ring oscillator circuit

Equation 10, where xi, i = 1 . . . n, are the node voltages,

C = 0.164fF and the functions In and Ip model the

nonlinear current generated by the n-channel and p-channel

transistors, respectively, based on their gate, drain and source



voltages. The initial conditions x(0) are represented by the

fuzzy number µx(0).

ẋ1 = −
1

C
(In(xn, x1, gnd) + Ip(xn, x1, vdd)) (10)

ẋi = −
1

C
(In(xi−1, xi, gnd) + Ip(xi−1, xi, vdd))

y = xn

x(0) = µx(0)

When using one transient region for the ring oscillator

model (n = 131, q = 51), it is hard to reproduce the

oscillation behavior of the full order model with the required

speedup constraint. This could be explained by the highly

nonlinear initial startup transient region that needs to be

accurately approximated by the reduced model. This highlights

two key points of our method, namely the need for a further

subdivision of the transient behavior into sub-regions, and

the qualitative simulation that provides better coverage of the

initial region.
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Fig. 11. Ring oscillator internal state transient responses

Our method used ten transient regions to provide a reduced

model that mimics accurately the full order model behavior

as shown in Figure 11, where the state vector of the original

full order model x is represented by the solid line and the

backward projection of the reduced order model x̂ = Vz is

represented by dotted line.

Table III presents the refinement of the MOR for the ring

oscillator model. The requirements are a minimum speedup

of 100,
‖x̂−x‖2

‖x‖2

≤ 10−2 and
‖ŷ−y‖2

‖y‖2

≤ 10−2. The above

requirements were satisfied after refinement of the number of

clusters in each sub-region.

VI. CONCLUSION

In this paper, we have presented a model order reduction

methodology based on Krylov space projections. Our approach

is based on modeling nonlinear behavior and uncertainty of

initial conditions and parameters of analog circuits using fuzzy

differential equations, qualitative simulation and k-means clus-

tering of their transient behavior. The main advantage of

the methodology is that it yields a minimum number of

TABLE III
REFINEMENT OF Model(q) FOR THE RING OSCILLATOR MODEL

Number of
Speedup

‖x̂−x‖2
‖x‖2

‖ŷ−y‖2
‖y‖2

Status
clusters k

10 142.33

0.68
≃ 207 0.99 10−2 2.33 10−2 rejected

14 142.33

0.71
≃ 199 0.55 10−2 1.30 10−2 rejected

18 142.33

0.96
≃ 147 0.43 10−2 1.76 10−2 rejected

19 142.33

1.02
≃ 139 0.40 10−2 0.63 10−2 accepted

linearization points for each transient region, thereby providing

better simulation acceleration and making the reduced model

more accurate and robust for a fuzzy number of inputs,

parameters and initial conditions. Also, the accuracy of the

methodology is enhanced because of the MOR parameters

refinement step. However, a systematic method for picking

the initial guess of the number of clusters k and the criteria

for conformance checking can both help improve the proposed

MOR scheme each of which we are further developing at this

time. The proposed methodology is limited to the transient

time behavior and extensions to the DC characteristics and the

frequency behavior are possible. Moreover, we plan to show

the effectiveness of our method on larger nonlinear models

such as RF communication circuits or high speed digital

communication interfaces which exhibit a highly nonlinear

analog behavior at speeds of up to Gbps [14].
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