
3D-FlashMap: A Physical-Location-Aware Block

Mapping Strategy for 3D NAND Flash Memory

Yi Wang1, Luis Angel D. Bathen2, Zili Shao1, and Nikil D. Dutt2

1Department of Computing

The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong

{csywang, cszlshao}@comp.polyu.edu.hk

2Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697, USA

{lbathen, dutt}@uci.edu

Abstract—Three-dimensional (3D) flash memory is emerging
to fulfil the ever-increasing demands of storage capacity. In 3D
NAND flash memory, multiple layers are stacked to increase
bit density and reduce bit cost of flash memory. However, the
physical architecture of 3D flash memory leads to a higher
probability of disturbance to adjacent physical pages and greatly
increases bit error rates. This paper presents 3D-FlashMap, a
novel physical-location-aware block mapping strategy for three-
dimensional NAND flash memory. 3D-FlashMap permutes the
physical mapping of blocks and maximizes the distance between
consecutively logical blocks, which can significantly reduce the
disturbance to adjacent physical pages and effectively enhance
the reliability. We apply 3D-FlashMap to a representative flash
storage system. Experimental results show that the proposed
scheme can reduce uncorrectable page errors by 85% with less
than 2% space overhead in comparison with the baseline scheme.

I. INTRODUCTION

NAND flash memory is facing fundamental scaling lim-

itations beyond 20nm, and conventional cost-reduction ap-

proaches will be unable to maintain the current trend of

increasing bit density and reducing flash memory bit cost [1].

To maintain the current pace of cost reduction, major NAND

flash chip manufacturers are investigating three-dimensional

flash memory to stack memory cells on a single wafer [2].

However, the increasing density of 3D flash causes severe

reliability problems [3]. Previous studies have shown that most

multi-level-cell (MLC) flash chips experience high bit error

rates due to program disturb and read disturb [4]. A program

or read operation can cause the disturbance of adjacent pages

and change the state of the cell. This reliability problem is

expected to worsen for three-dimensional flash memory.

Figure 1 illustrates Bit Cost Scalable (BiCS), a typical three-

dimensional NAND flash architecture proposed by TOSHIBA

[2]. In BiCS, vertical NAND strings punch through multiple

stacks (plates) of the gate electrode. A stair-like interconnec-

tion, control gates, and bit lines form three-dimensional flash

memory to select NAND cells. For the sake of illustration, in

Figure 1(b), we extract three adjacent stacks of BiCS, and each

stack consists of three adjacent physical pages. A program

operation to a physical page (e.g., Page C) will not only

influence adjacent pages in the same physical block (Page A

and Page E), but also influence adjacent pages within the same

control gate stack (Page B and Page D). This phenomena

poses a threat to the integrity of data stored in 3D flash

memory. To avoid and reduce the effect of disturbance, we

978-3-9810801-8-6/DATE12/ c©2012 EDAA

Bit Lines

Control

Gate

Memory array

(a)

Page A

X

Y

Z

Page B
Page C
Page D

Page E

stack

(b)

Fig. 1: (a) The architecture of BiCS [2] three-dimensional NAND
flash memory. (b) The program disturb will not only influence the
adjacent physical pages in the same physical block, but also influence
the adjacent physical pages within the same control gate stack.

propose a physical-location-aware strategy to provide a more

reliable NAND flash memory storage system.

There have been approaches to provide reliable two-

dimensional flash memory storage systems. Reliability can

be enhanced through the modification of different compo-

nents in NAND flash architecture, i.e., file system [5], [6],

hardware implementation of NAND flash memory chip, or

an intermediate software module called flash translation layer

(FTL) [7], [8]. These approaches can provide good solutions to

enhance the reliability of flash memory. Nevertheless, they are

based on two-dimensional NAND flash memory, which could

not be directly applied to three-dimensional flash memory.

Our technique is a good supplement for these approaches by

helping them effectively reduce bit errors caused by program

disturb and read disturb to further improve the reliability of

three-dimensional flash memory.

Recently, several 3D architectures for flash memory have

been proposed, including BiCS [2], P-BiCS (Pipe-shaped Bit

Cost Scalable) [9], TCAT (Terabit Cell Array Transistor) [10],

VSAT (Vertical Stacked Array Transistor) [11], and VG (Ver-

tical Gate) [12]. These 3D NAND flash memory architectures

can provide the scalable bit cost by fabricating more and more

vertical strings in the Z-axis direction (as shown in Figure 1).

Therefore, they can provide ultra low cost flash chips com-

pared with conventional designs for two-dimensional NAND

flash. Although recent literature has focused primarily on

the system structure and hardware implementation of three-

dimensional flash, they make no specific attempt to cope with

the reliability problem caused by the disturbance to adjacent

NAND Flash Memory

Operating System

3D-FlashMap

Flash Translation Layer (FTL)

Conventional File Systems

(e.g., NTFS, FAT32, ext3)

Application 1

NAND Flash Memory

Operating System

Application 2 Application n

3D-FlashMap

Native Flash File Systems

Yet Another

Flash File System

(YAFFS2)

Journalling Flash

File System

(JFFS2)

(a)

Application 1 Application 2 Application n

(b)

Memory Technology Device Layer Memory Technology Device Layer

Fig. 2: (a) FTL-based NAND flash memory storage system. (b)
Flash-file-system-based NAND flash memory storage system.

physical pages in three-dimensional flash.

This paper presents 3D-FlashMap, a physical-location-

aware block allocation strategy for three-dimensional NAND

flash memory. 3D-FlashMap creates a physical block map

to minimize the effect of program disturb and read disturb

to adjacent physical locations. 3D-FlashMap transparently

handles the requests from the Memory Technology Device

(MTD) layer, and it is a general strategy that can be applied

to both FTL-based (Figure 2(a)) and flash-file-system-based

(Figure 2(b)) flash memory storage system to enhance the

reliability of three-dimensional flash. To the best of our knowl-

edge, this is the first work that adopts a physical-location-

aware strategy to enhance the reliability of three-dimensional

flash memory.

We implement 3D-FlashMap in the Linux kernel and eval-

uate 3D-FlashMap using a variety of I/O traces. We apply

3D-FlashMap to a representative FTL design MNFTL [13]

for MLC flash memory. We use the number of uncorrectable

page errors as a performance metric to evaluate the reliability

of 3D-FlashMap. Experimental results show that our approach

can reduce the number of uncorrectable page errors by 85%

compared with the baseline scheme. In terms of the space

overhead for the total number of block erase counts, our

approach introduces less than 2% space overhead.

The rest of this paper is organized as follows. Section II

discusses the background and presents the motivation of the

paper. Section III presents our proposed 3D-FlashMap in de-

tail. Section IV presents experimental results on the reliability

enhancement and space overheads. Finally, in Section V, we

conclude the paper and describe future work.

II. BACKGROUND AND MOTIVATION

Unlike DRAM or SRAM, where every memory cell is

addressed individually through intersecting row and column

select lines (word lines and bit lines, respectively), NAND

flash memory uses a “daisy chain” organization (Figure 3(a)),

where 64 memory cells are connected to a source line and a

bit line via select transistors on each end. To access a memory

cell in the chain, all 64 cells in the chain have to be turned

“On”, resulting in the current flowing through all 64 cells into

the bit line.

Source

WL 0

WL 1

WL 2

WL 61

WL 62

WL 63

select

Bit line
select

Source line

B
it
 l
in

e

WL 0

WL 1

WL 2

WL 61

WL 62

WL 63

Source line

B
L
 0

B
L
 1

B
L

5
1

1

B
L

5
1
2

Page Register

select

select
10V

10V

10V

10V

20V

10V

Page 62

Page 61

Page 63

Top Gate (TG)

Floating Gate (FG)

10V

N
+

N
+

Source Drain

Disturbance

- - - - -

20V

11

D
is

tr
ib

u
ti
o

n
 o

f
C

e
lls

10 01 00

Reference Voltages

1.5V 3.5V 4.0V 5.5V 6.5V
Vt

(a) (b)

(c) (d)

Fig. 3: (a) The “daisy chain” organization of NAND flash memory
cells. (b) The program operation of a page (Page 62) and the program
disturb to adjacent pages. (c) The disturbance of adjacent memory
cells to let the loss of charge of the floating gate. (d) MLC flash uses
reference points to determine the state of the cell.

A NAND flash memory chip consists of multiple blocks,

and each block is composed of a fixed number of pages. A

block is the basic unit for erase operations, while a page is

the minimum unit for read/program operations. The memory

cells connected to the same word line (WL) form a page or

subpage. A physical block is shown in Figure 3(b), and this

block contains 64 pages. The number of bit lines connected

to a word line is 512 or 1024. In Figure 3(b), 512 bit lines

are connected to a word line.

Both program operation and read operation to a physical

page of flash memory will cause the disturbance to adjacent

pages. Figure 3(b) illustrates the program operation of a

physical page (Page 62). The program operation will pull up

electrons from the gates through tunnel oxide into the floating

gate, thereby altering the threshold voltage. This is achieved

by applying a high voltage (20V) to the selected word line

(WL 62). In order to allow for current flow from the source

line to the bit line, all other word lines within the block need

to be applied a bias voltage (10V).

Due to different voltage levels applied to adjacent pages

(Page 61 and Page 63), the program operation to Page 62

can cause disturbance or the effect called Stress-Induced

Leakage Current (SILC). Figure 3(c) illustrates a memory

cell in adjacent pages (Page 61 and Page 63). The top gate

of the memory cell is applied 10V, which makes a voltage

difference between Page 62 and the adjacent pages. As shown

in Figure 3(c), the disturbance will incur the loss of charge of

the floating gate through the oxide layer to the substrate. Since

the electrical charge of the floating gate defines the threshold

voltage, any loss of charge can cause bit errors.

Current MLC flash stores two bits of information per cell.

The values can be interpreted as four distinct states: 00,

01, 10, or 11. As shown in Figure 3(d), these four states

are determined by reference voltages. The voltage can be

manipulated by the amount of charge put on the floating

gate of the flash cell. Since the delta between each state has

decreased, more rigidly controlled programming is needed to

manipulate a more precise amount of charge stored on the

floating gate. Program disturb will significantly influence the

number of electrons stored in the floating gate and negatively

impact the data integrity of flash.

The reliability problem caused by program disturb and read

disturb becomes even worse for three-dimensional flash mem-

ory [3]. Three-dimensional NAND flash memory vertically

stacks several conventional two-dimensional flash memory

blocks to achieve higher density. The program disturb and

read disturb will not only influence the adjacent physical pages

within the same physical block, but also influence the adjacent

physical pages that have the same control gate stack.

Flash file systems usually append updated data in continu-

ous physical space of flash memory. The conventional physical

block mapping strategy will consecutively allocate physical

blocks, thereby causing the disturbance to previous physical

blocks. Physical blocks can be classified as odd blocks and

even blocks based on the physical block number. If write

requests are first written to even blocks and skipping odd

blocks, the program disturb will not disturb even blocks that

contain the data. When all even blocks become used, the write

requests then could be written to odd blocks. Since three-

dimensional flash memory can provide ultra high capacity, it

may not cause extra page errors. That is because, the adjacent

physical blocks of each odd block may become invalid. These

observations motivate us to propose a physical-location-aware

physical block mapping strategy to enhance the reliability of

three-dimensional NAND flash memory.

III. 3D-FLASHMAP: PHYSICAL-LOCATION-AWARE

MAPPING

A. Structure of 3D-FlashMap

This section presents 3D-FlashMap, a novel physical-

location-aware block mapping to reduce the effect of distur-

bance in three-dimensional flash memory. In conventional flash

memory storage systems, spatial locality is normally adopted,

and consecutive logical blocks (e.g., a file) will be allocated to

consecutive physical blocks. Then, the logically neighboring

blocks are also physically neighboring blocks. However, when

disturbance effects are considered, the spatial locality results

in severe disturbance to adjacent physical blocks in three-

dimensional flash memory. 3D-FlashMap creates a physical

distance between neighboring logical blocks in order to min-

imize program and read disturbances.

In 3D-FlashMap, several features are adopted to enhance

the reliability of three-dimensional flash memory. First, 3D-

FlashMap maintains a physical block mapping to track the

physical location of each block. Second, 3D-FlashMap handles

each read or write request from the MTD layer and reports

the physical location of the corresponding physical block to

the MTD layer. Third, 3D-FlashMap provides two reliability

enhancement strategies with different levels of granularity to

protect the integrity of data.

Data blocks Metadata blocks Reserved blocks

D(n+1)m-1

Dnm+m/2+1
Dnm+1

Dnm+m/2
Dnm

..
...
.

Chunk n

D2m-1

Dm+m/2+1
Dm+1

Dm+m/2
Dm

..
...
.

Chunk 1

Dm-1

Dm/2+1
D1

Dm/2
D0

..
...
.

Chunk 0

..
.

R3
R2

R1
R0

D7
D6

D5
D4

D3
D2

D1
D0

M3
M2

M1
M0

(a) (c)

M1
R1

M3
R3

D7
D3

D6
D2

D5
D1

D4
D0

R2
M2

R0
M0

(b)

A1

A2

A3

Fig. 4: (a) Physical block allocation for conventional scheme. (b)
Physical block allocation for 3D-FlashMap. (c) Even-odd block
differentiation strategy for data blocks.

In a flash memory storage system, physical blocks are

normally classified into data blocks, metadata blocks, and

reserved blocks. Data blocks usually contain the normal data.

Metadata blocks are used to store the metadata (e.g., block

mapping table, file system metadata, and bad block informa-

tion). Reserved blocks are used to replace bad blocks due to

wear-out. For a flash memory chip with Nblk physical blocks,

assuming that there are Nmeta metadata blocks, Nreserved

reserved blocks, and Ndata data blocks. The number of

metadata blocks Nmeta is normally less than or equal to the

number of reserved blocks Nreserved, and data blocks take

up the majority of physical blocks. Traditionally, these blocks

are arranged sequentially (M0-M3, D0-D7, and R0-R3 as

shown in Figure 4(a)). The sequential allocation for physical

blocks may work properly for traditional two-dimensional

flash memory. However, for three-dimensional flash memory,

the sequential allocation for physical blocks may cause more

disturbance to adjacent physical pages.

B. Reliability Strategies of 3D-FlashMap

To reduce the effect of disturbance and ensure the data

integrity for three-dimensional flash memory, 3D-FlashMap

adopts two reliability enhancement strategies, even-odd block

differentiation and dynamic page skipping. Even-odd block

differentiation is a coarse-grained strategy that determines the

physical location of each physical block. Dynamic page skip-

ping is a fine-grained strategy that handles the next available

physical page for each metadata block.

1) Even-Odd Block Differentiation: In 3D-FlashMap, phys-

ical blocks are divided into three physical areas based on the

location: area one A1 (physical blocks 0 to 1

2
× (Nmeta +

Nreserved)− 1); area two A2 (physical blocks 1

2
× (Nmeta +

Nreserved) to Nblk −
1

2
× (Nmeta + Nreserved)− 1); and area

three A3 (physical blocks Nblk −
1

2
× (Nmeta + Nreserved) to

Nblk − 1). Metadata blocks and reserved blocks are allocated

at the first physical area A1 and the third physical area A3 of

physical blocks, while the second physical area A2 is used for

data blocks.

3D-FlashMap utilizes the even-odd block differentiation

strategy and creates a physical location map for physical

blocks. Physical blocks in the first and the third physical areas

(A1 and A3) alternate between metadata blocks and reserved

blocks. The physical location for each metadata block Mi

and that for each reserved block Ri can be obtained from

Equation 1 and Equation 2, respectively.

Figure 4(b) illustrates the block mapping for metadata

blocks and reserved blocks. For the sake of illustration, there

are 4 metadata blocks (M0 to M3) and 4 reserved blocks

(R0 to R3). Based on Equations 1 and 2, in the first physical

area A1, the physical location of blocks is (M0, R0, M2, R2).
There exists one reserved block (e.g., R0) between every two

metadata blocks (M0 and M2). Similarly, the physical block

allocation in the third physical area A3 can be obtained from

Equations 1 and 2.

Mi =
n

i, i = 2k,
Nblk − i, i = 2k + 1, ∀k ∈ Z

+
0, k ≤

1

2
(Nmeta − 1)

(1)

Ri =

8

>

>

>

<

>

>

>

:

i + 1, i = 2k; i ≤ Nmeta,
Nblk − i − 1, i = 2k + 1; i ≤ Nmeta − 1,
1

2
(i + Nmeta), i = 2k; i > Nmeta,

Nblk − 1

2
(i + Nmeta + 1), i = 2k + 1; i > Nmeta − 1,

∀k ∈ Z
+
0, k ≤ 1

2
(Nreserved − 1)

(2)

Data blocks also adopt the even-odd block differentiation

strategy. Figure 4(c) illustrates the physical block allocation

for data blocks. Data blocks are logically partitioned into a

set of data chunks, and each data chunk consists of several

data blocks. Assuming that there are Nchunk data chunks and

each data chunk contains m data blocks. Then Ndata = m ×
Nchunk. Blocks in a data chunk are further categorized into

even blocks and odd blocks based on the actual physical block

number. The physical block allocation of a data block Di can

be generated from Equation 3.

Di=

8

>

<

>

:

Nmeta+Nreserved

2
−⌊ i

m
⌋·m+2i, i−⌊ i

m
⌋·m< m

2
,

Nmeta+Nreserved

2
−(⌊ i

m
⌋ + 1)·m+2i +1, i−⌊ i

m
⌋·m≥ m

2
,

∀i ∈ Z
+
0, i ≤ Ndata − 1

(3)

The number of physical blocks in a data chunk, m, is a con-

figurable parameter. For example, assuming that a sequential

write operation will consume N data blocks, then the number

of physical blocks in a data chunk can be configured to contain

2N data blocks. Therefore, the original data will be written

to even blocks, and it will not disturb physical blocks that

contain valid data. The updated data will be written to odd

blocks, which will only disturb physical blocks (even blocks)

with invalid data. Chip designers can specify the parameter m

according to the specific application. System users can also

utilize this parameter and combine it with other reliability

enhancement schemes to further improve the reliability of 3D

flash memory.

2) Dynamic Page Skipping: Dynamic page skipping is the

second strategy adopted in 3D-FlashMap, and it is applied to

metadata blocks. Metadata blocks store file system metadata

and other critical data that will directly influence the func-

tionality of flash. If a flash memory page contains metadata,

the data corruption of the page is very serious, as it may

cause an unintended change in functionality of the entire flash.

Therefore, to guarantee the functionality of the flash system,

it is imperative to protect metadata and its storage blocks.

Page 0

Page 4

Page 8

Page 12

Page 16

Page 20

Page 252

Page 1

Page 5

Page 9

Page 13

Page 17

Page 21

Page 253

Page 2

Page 6

Page 10

Page 14

Page 18

Page 22

Page 254

Page 3

Page 7

Page 11

Page 15

Page 19

Page 23

Page 255

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 63

Free Page Valid Page Invalid Page

(a) (b)

Fig. 5: Dynamic page skipping strategy for metadata blocks. (a) A
metadata block with 64 pages, and each word line connects to one
physical page. (b) A metadata block with 256 pages, and each word
line connects to four physical pages.

Dynamic page skipping is a fine-grained strategy that pro-

vides page-level protection. Assuming that there are Npage

pages in a physical block. Before issuing a program operation

to a physical page Pi, 1 ≤ i < Npage − 1, it will check

the status of the previous physical page Pi−1. If the physical

page Pi−1 is an invalid page or a free page, the dynamic page

skipping strategy will directly write to page Pi. Otherwise, it

will skip page Pi and write to page Pi+1.

Figure 5(a) illustrates the dynamic page skipping strategy

for a metadata block with 64 pages. In this metadata block,

each word line connects to one physical page. The dynamic

page skipping strategy will first issue program operation to

Page 0 and then write to Page 2. As a result, between two

valid pages (Page 0 and Page 2), it will “skip” one free page

(Page 1) to avoid program disturb. When Page 4 becomes

invalid, the next program request will directly write the data

to Page 5.

The dynamic page skipping strategy can also be applied

to the metadata block, in which each word line connects to

multiple physical pages. Figure 5(b) shows an example. In

Figure 5(b), each location for valid page (e.g., Page 5) is

surrounded with free pages (Page 1, Page 4, Page 6, and Page

9). The program operation to Page 5 will not disturb any

valid pages. Therefore, the dynamic page skipping strategy

can effectively reduce the disturbance to adjacent pages.

C. Overhead Analysis

3D-FlashMap adopts two reliability strategies, even-odd

block differentiation and dynamic page skipping, to enhance

the reliability of three-dimensional flash memory. The even-

odd block differentiation strategy provides the physical map-

ping for each request, and it aims to permute the physical

distance between the logically consecutive blocks to minimize

the effect of disturbance. Since this strategy is at the block-

level, it does not incur extra space overhead. The dynamic page

skipping strategy skips one free page between two valid pages.

Therefore, the dynamic page skipping strategy necessarily al-

locates more storage space to protect the integrity of metadata

pages. Since metadata comprises a very small percentage of

the total file system capacity, this strategy for metadata pages

will cause very low overhead. The experimental results also

demonstrate that 3D-FlashMap can significantly improve the

reliability of three-dimensional flash memory with less than

2% space overhead.

Furthermore, 3D-FlashMap can be implemented either as

a hardware component or as a software component in a

flash memory storage system. It can be integrated into the

flash memory chip as a part of control logic circuit. 3D-

FlashMap can also be incorporated into flash file system or

the intermediate module called FTL to become a new level

of mapping, which may provide more flexible configurations

for specific applications. 3D-FlashMap provides the physical

block map using linear functions to track physical locations,

while requiring zero modifications to the hardware of flash

chip or file system. Therefore, 3D-FlashMap can be imple-

mented with low overhead.

IV. EVALUATION

A. Experimental Setup

The proposed 3D-FlashMap was implemented on Fedora 7

(Linux kernel 2.6.21). The primitive read, write, and erase

operations over raw flash memory are provided by Mem-

ory Technology Device (MTD) [14]. We modify the built-

in NAND flash simulator (NANDsim) in Linux kernel. A

representative scheme MNFTL [13] is selected as the baseline

FTL scheme because of its relatively good performance in

terms of wear-leveling and endurance for MLC flash memory.

The trace of data request was collected from desktop

running DiskMon [15]. To eliminate the effects of operating

system’s internal operations, a 1TB external hard drive en-

closure is used to collect disk access characteristics. The I/O

traces reflect the real workload of the system in accessing

the hard disk with daily-used applications. Table I lists the

characteristics of traces.

TABLE I: Characteristics of traces.

Trace
of write
operations

of read
operations

% of
write

% of
read

chatOnline 559,085 472,907 54.18 45.82
p2p 3,695,873 2,101,474 63.75 36.25

replaceFiles 3,145,994 2,128 99.93 0.07
zipFiles 2,588,585 2,614,055 49.76 50.24

In our experiments, a 64GB NAND flash memory is config-

ured based on the specifications of a typical 3D flash memory

structure BiCS [2] from TOSHIBA . The page size, the number

of pages in a block, the block size, the size of spare area

of a page, the number of metadata blocks, the number of

reserved blocks, and the number of data blocks in a chunk are

set as 4KBytes, 64, 256KBytes, 12Bytes, 512, 512, and 256,

respectively. Each word line is configured to connect with one

physical page. Each page can provide 8-bit error correction.

We simulate a set of errors caused by program disturb and

read disturb. The distribution and the probability of errors are

obtained from Grupp et al. [4].

B. Results and Discussion

1) Uncorrectable Page Errors: Program disturb and read

disturb will lead to the corruption of data that could not be

corrected by ECC (Error Correcting Codes). To be specific,

we define uncorrectable page errors as follows: when data d1

is written in a flash memory address (i.e., a page) and then

data d2 is read from that address, there is an uncorrectable

page error if d1 6= d2.

Figure 6 presents the number of uncorrectable page errors.

Not surprisingly, 3D-FlashMap can significantly reduce the

number of errors. That is because, an uncorrectable page error

can be caused as program disturb or read disturb to adjacent

pages in data blocks, or can be as the result of disturbance

to adjacent pages in metadata blocks. Metadata blocks store

the metadata (e.g., mapping table) that will be frequently

accessed, so they are prone to have more page errors compared

with data blocks. 3D-FlashMap utilizes the dynamic page

skipping strategy to enhance the reliability of metadata blocks.

Therefore, it can significantly reduce the page errors due to

the disturbance to metadata blocks. As shown in Figure 6, 3D-

FlashMap can achieve an 85% reduction on average compared

with the baseline scheme.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
MNFTL 3D-FlashMap MNFTL 3D-FlashMap MNFTL 3D-FlashMap MNFTL 3D-FlashMap

chatOnline p2p replaceFiles zipFiles

N
o
rm

a
liz

e
d
 u

n
c
o

rr
e

c
ta

b
le

 p
a

g
e
 e

rr
o

rs

Data blocks

Metadata blocks

Fig. 6: The number of uncorrectable page errors for the baseline
scheme and 3D-FlashMap.

2) Block Erase Counts: 3D-FlashMap adopts the dynamic

page skipping strategy for metadata blocks, which will skip

several free pages and cause more erase operations. This

overhead is quantified, and the results are shown in Figure 7.

We observe that 3D-FlashMap causes very low extra erase

operations (up to 1.78%) in comparison with the baseline

scheme. For traces chatOnline and p2p, they contain many

update operations with randomly accessed logical addresses.

The extra block erase counts are due to the adoption of the

dynamic page skipping strategy, which may use several extra

metadata blocks to save metadata (e.g., mapping information).

For traces replaceFiles and zipFiles, the requests are allocated

to sequential logical addresses, and these requests do not

contain many update operations. For these traces, they may

slightly increase the block erase counts for data blocks. This is

because, program disturb and read disturb may cause the data

corruption along the path of address mappings from a logical

page number to a physical page number. Then several data

blocks will become untrackable blocks due to data corruption

of metadata blocks. The updated operation for these kinds of

untrackable blocks will incur an uncorrectable page error, and

1.0

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0.90
MNFTL 3D-FlashMap MNFTL 3D-FlashMap MNFTL 3D-FlashMap MNFTL 3D-FlashMap

chatOnline p2p replaceFiles zipFiles

N
o
rm

a
liz

e
d

 b
lo

c
k
 e

ra
s
e

 c
o

u
n

ts
Data blocks

Metadata blocks

Fig. 7: The total number of block erase counts for the baseline
scheme and 3D-FlashMap.

the baseline scheme will not issue erase operations as it is

supposed to do.

3) Endurance: The endurance of NAND flash is one of

the most important factors in analyzing the reliability of flash

memory. The endurance of NAND flash is mainly affected by

the worst case erase count of a physical block in the flash.

Figure 8 presents the results. We observe that 3D-FlashMap

can achieve similar or even better results in comparison with

the baseline scheme. Since 3D-FlashMap adopts the block-

level strategy with even-odd block differentiation to enhance

the reliability of three-dimensional flash, it will specify the

physical location of each physical block. 3D-FlashMap will

not change the logical address to physical address mapping in-

formation, which is handled by file system or the intermediate

module called flash translation layer. Therefore, 3D-FlashMap

will not influence the endurance and the wear-leveling of flash.

MNFTL 3D-FlashMap MNFTL 3D-FlashMap MNFTL 3D-FlashMap MNFTL 3D-FlashMap

chatOnline p2p replaceFiles zipFiles

Data blocks

Metadata blocks

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

N
o

rm
a
liz

e
d

 b
lo

c
k
 e

ra
s
e

 c
o
u

n
ts

Fig. 8: The maximum number of block erase count for the baseline
scheme and 3D-FlashMap.

For traces chatOnline and p2p, we observe that 3D-

FlashMap can achieve better performance compared with the

baseline scheme in terms of the number of the worst case

erase count. That is because, untrackable blocks caused by the

data corruption of metadata blocks may contain valid pages.

These untrackable blocks may not be erased and reclaimed

for further usage until there are no free blocks left in flash.

These kinds of blocks will occupy flash memory space, which

will reduce the available physical spaces in flash memory and

negatively impact the endurance. Although 3D-FlashMap may

introduce low overhead in terms of the total number of block

erase counts, it can achieve similar or even better worst case

erase count by distributing erase operations across different

blocks.

V. CONCLUSION

In this paper, we presented 3D-FlashMap, the first reliability

enhancement scheme for three-dimensional NAND flash mem-

ory. By providing physical distance between the logically con-

secutive blocks in flash memory, 3D-FlashMap permutes the

physical distance between two consecutively accessed blocks,

thereby reducing the effect of read disturb and program disturb.

3D-FlashMap also introduces a fine-grained strategy to ensure

the data integrity for metadata blocks. Experimental results

show that our 3D-FlashMap scheme reduces the number of

uncorrectable errors by 85%, achieves the similar or better

endurance of flash in comparison with the baseline scheme,

while incurring up to 1.78% space overhead. In the future, we

plan to investigate the reliability issue of three-dimensional

flash memory with the support of the file system.

ACKNOWLEDGMENT

The work described in this paper is partially supported

by the grants from the Innovation and Technology Support

Programme of Innovation and Technology Fund of the Hong

Kong Special Administrative Region, China (ITS/082/10).

REFERENCES

[1] E.-S. Choi, H.-S. Yoo, H.-S. Joo, G.-S. Cho, S.-K. Park, and S.-K. Lee,
“A novel 3D cell array architecture for terra-bit NAND flash memory,”
in 3rd IEEE International Memory Workshop, 2011, pp. 1 –4.

[2] H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito,
Y. Fukuzumi, M. Sato, Y. Nagata, Y. Matsuoka, Y. Iwata, H. Aochi, and
A. Nitayama, “Bit cost scalable technology with punch and plug process
for ultra high density flash memory,” in VLSIT ’07, 2007, pp. 14 –15.

[3] J. Kim, A. Hong, S. Kim, K.-S. Shin, E. Song, Y. Hwang, F. Xiu,
K. Galatsis, C. Chui, R. Candler, S. Choi, J.-T. Moon, and K. Wang, “A
stacked memory device on logic 3D technology for ultra-high-density
data storage,” Nanotechnology, vol. 22, no. 25, pp. 332–343, 2011.

[4] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf, “Characterizing flash memory: anomalies,
observations, and applications,” in MICRO ’09, 2009, pp. 24–33.

[5] Y. Kang and E. L. Miller, “Adding aggressive error correction to a high-
performance compressing flash file system,” in EMSOFT ’09, 2009, pp.
305–314.

[6] P.-H. Hsu, Y.-H. Chang, P.-C. Huang, T.-W. Kuo, and D. H.-C. Du, “A
version-based strategy for reliability enhancement of flash file systems,”
in DAC ’11, 2011, pp. 29–34.

[7] T.-W. Kuo, Y.-H. Chang, P.-C. Huang, and C.-W. Chang, “Special issues
in flash,” in ICCAD ’08, 2008, pp. 821–826.

[8] Y. Wang, D. Liu, Z. Qin, and Z. Shao, “An endurance-enhanced flash
translation layer via reuse for NAND flash memory storage systems,”
in DATE ’11, 2011, pp. 14–20.

[9] R. Katsumata, M. Kito, Y. Fukuzumi, M. Kido, H. Tanaka, Y. Komori,
M. Ishiduki, J. Matsunami, T. Fujiwara, Y. Nagata, L. Zhang, Y. Iwata,
R. Kirisawa, H. Aochi, and A. Nitayama, “Pipe-shaped BiCS flash
memory with 16 stacked layers and multi-level-cell operation for ultra
high density storage devices,” in VLSIT ’09, 2009, pp. 136 –137.

[10] J. Jang, H.-S. Kim, W. Cho, H. Cho, J. Kim, S. I. Shim, Y. Jang, J.-
H. Jeong, B.-K. Son, D. W. Kim, Kihyun, J.-J. Shim, J. S. Lim, K.-H.
Kim, S. Y. Yi, J.-Y. Lim, D. Chung, H.-C. Moon, S. Hwang, J.-W. Lee,
Y.-H. Son, U.-I. Chung, and W.-S. Lee, “Vertical cell array using TCAT
(Terabit Cell Array Transistor) technology for ultra high density NAND
flash memory,” in VLSIT ’09, 2009, pp. 192 –193.

[11] J. Kim, A. Hong, S. M. Kim, E. Song, J. H. Park, J. Han, S. Choi,
D. Jang, J. T. Moon, and K. Wang, “Novel Vertical-Stacked-Array-
Transistor (VSAT) for ultra-high-density and cost-effective NAND flash
memory devices and SSD (Solid State Drive),” in VLSIT ’09, 2009, pp.
186 –187.

[12] W. Kim, S. Choi, J. Sung, T. Lee, C. Park, H. Ko, J. Jung, I. Yoo, and
Y. Park, “Multi-layered vertical gate NAND flash overcoming stacking
limit for terabit density storage,” in VLSIT ’09, 2009, pp. 188 –189.

[13] Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan, “MNFTL: An efficient
flash translation layer for MLC NAND flash memory storage systems,”
in DAC ’11, 2011, pp. 17 –22.

[14] “Memory Technology Device (MTD) Subsystem for Linux,”
http://www.linux-mtd.infradead.org/, 2011.

[15] “DiskMon for Windows,” http://technet.microsoft.com/en-
us/sysinternals/ bb896646.aspx.

