
Timing Analysis of Cyber-Physical Applications for Hybrid Communication Protocols
Alejandro Masrur∗, Dip Goswami∗, Samarjit Chakraborty∗

Jian-Jia Chen†, Anuradha Annaswamy‡ and Ansuman Banerjee§
∗TU Munich, Germany; †Karlsruhe Institute of Technology, Germany

‡Massachusetts Institute of Technology, USA; §Indian Statistical Institute, Kolkata, India

Abstract—Many cyber-physical systems consist of a collection
of control loops implemented on multiple electronic control units
(ECUs) communicating via buses such as FlexRay. Such buses
support hybrid communication protocols consisting of a mix of
time- and event-triggered slots. The time-triggered slots may
be perfectly synchronized to the ECUs and hence result in
zero communication delay, while the event-triggered slots are
arbitrated using a priority-based policy and hence messages
mapped onto them can suffer non-negligible delays. In this
paper, we study a switching scheme where control messages
are dynamically scheduled between the time-triggered and the
event-triggered slots. This allows more efficient use of time-
triggered slots which are often scarce and therefore should be
used sparingly. Our focus is to perform a schedulability analysis
for this setup, i.e., in the event of an external disturbance, can a
message be switched from an event-triggered to a time-triggered
slot within a specified deadline? We show that this analysis can
check whether desired control performance objectives may be
satisfied, with a limited number of time-triggered slots being
used.

I. INTRODUCTION

In this paper we are concerned with distributed cyber-
physical architectures where multiple control applications
are mapped into spatially distributed electronic control units
(ECUs) communicating via a hybrid communication protocol
such as FlexRay [1]. We address the semantic gap arising from
the communication delay experienced by the control messages
while being transmitted over time- (TT) or event-triggered
(ET) segments of the bus. A zero/negligible communication
delay may be achieved when all the control messages are
mapped onto the static TT segment of the bus with perfectly
synchronized TT slots and ECUs. Clearly, the controller based
on such zero communication delay leads to a good con-
trol performance. However, such TT implementations might
be overly expensive because of their high communication
bandwidth requirements. On the other hand, priority-driven
ET implementations suffer from the usual temporal non-
determinism, i.e., the communication delay varies with the
priority and the current scheduling situation on the bus. In
such ET scheme, a controller is designed based on the worst-
case delay and might results in a poor control performance.

In this paper we investigate an intermediate possibility
where the aim is to achieve control performance close to a
purely TT implementation, but using fewer TT slots than
what would be necessary for purely TT communication.
Towards this, we exploit the fact that the time required by
a control application to reject an external disturbance (or
response time) is considerably lesser with the controller
based on TT communication compared to the one based
on ET communication. To meet a specified response time
requirement of a control application, we appropriately switch
between the TT and ET modes as originally proposed in [2].
A schedulability analysis is necessary, since the number of
allocated TT slots is less than what is required for all control
messages to be accommodated. Hence, in the event of a

Fig. 1. Relation between tdw,i and twait,i

disturbance, an application might have to wait (depending
on whether its associated TT slot is occupied or not) before
it may switch from an ET to a TT mode. Designing and
analyzing such a control performance-oriented scheduling is
the topic of this paper.

Our contributions and related work: There are two broad
classes of schedulability analysis techniques within the real-
time systems literature – response time analysis [3] and the
demand-bound criteria [4]. In this paper, we lift the classical
response time analysis technique to a control-theoretic setting.
In particular, we propose a switching scheme between the TT
mode (zero-delay controller and TT communication) and ET
mode (worst-case delay controller and ET communication). In
this switching scheme, multiple control applications share the
same TT slot and they request to move to TT mode whenever
an external disturbance arrives. When multiple applications
experience disturbance simultaneously, a control application
Ci might have to wait twait,i time units (as its associated
TT slot is occupied) before it moves to the TT mode. Once
a control application is in TT mode, it requires tdw,i time
units to spend in that mode for complete disturbance rejection.
While Ci is waiting in the ET mode – during twait,i, a
fraction of disturbance already gets rejected and hence the
controller needs lesser time in the TT mode. That is, tdw,i gets
shorter with increase in twait,i (see Fig. 1 – parameters are
explained later). Such waiting time leads to the higher response
time and hence, the higher possibility of violating the desired
response time requirements. In this paper, we present a formal
schedulability analysis to compute the necessary number of
static TT slots such that the response time requirements of a
given set of control applications are met.

While there has been previous work on timing analysis
of both TT [5] and a mix of TT and ET systems [6], the
questions addressed were typically the following. (i) How to
compute upper bounds on communication delays? (ii) How
to synthesize TT schedules (see also [7] for TT schedule
synthesis for FlexRay)? There has also been some work on
partitioning system functionality into TT and ET activities.
However, the schedulability analysis problem arising from
dynamically switching messages between TT and ET modes,
and in particular, analysis with control performance objectives
has not been sufficiently addressed so far. Notable exceptions
to this are [8] and [9]. The work presented in [8] studied how
the performance of multiple control loops may be optimized978-3-9810801-8-6/DATE12/ c© 2012 EDAA

Ts,i Tc,i Ta,i

sensori

ECU1 ECU3

actuatori

Ts,j Tc,j

sensorj

ECU2

Ta,j

ECU4

actuatorj

Hybrid Communication Bus

Fig. 2. The distributed cyber-physical architecture in this paper

while still ensuring schedulability in CAN networks. Similarly,
the schedulability region that guarantees control performance
has been computed in [9]. Controller-scheduling co-synthesis
has also been studied in [10], [11]. Our approach follows this
line of work and specifically computes the necessary number
of TT slots, while maintaining the desired response times for
control applications (which requires a schedulability analysis).

Schedulability analysis in the context of hybrid TT and ET
protocols like FlexRay have also been addressed in the past
using techniques like model checking [12], [13]. This requires
a state-based model of the system under analysis along with
explicit specification of deadlines as properties in real-time
fragments of temporal logic. A recent research [12] reports
the use of the SPIN model checker for jointly optimizing
the static task and bus access schedule for TT systems. It is
theoretically possible to cast our problem also as a model
checking exercise. However, the underlying model checker
has to explore a significantly large state space arising out of
the inter-leavings possible in the underlying system due to
the switching activity. This is aggravated by the fact that a
precise schedulability analysis has to consider all possible
patterns for disturbance arrival and possible job migration
between the TT and ET slots. In this paper we therefore,
pursue a classical algebraic, rather than a model checking
approach.

Organization: The rest of this paper is organized as follows.
We formally formulate the schedulability problem in Section
III. Subsequently, Section II provides the formal characteriza-
tion of the control applications in the context of the presented
schedulability analysis. This is followed by the discussion
on the proposed scheduling algorithm in Section IV. We
illustrate the applicability of our algorithm with a case study
in Section V.

II. PROBLEM FORMULATION

We consider a set of multiple control applications Ci with
sampling period pi (i ∈ {1, 2 . . . n}) that run on a distributed
architecture of the form shown in Fig. 2. The control applica-
tions are represented by:

x[k + 1] = Aix[k] +Biu[k], (1)

where x[k] is the plant state, u[k] is the control input and
Ai, Bi are the system matrices of Ci. Each Ci is composed
of three tasks Ts,i (measures x[k]), Tc,i (computes u[k]) and
Ta,i (applies u[k] to the actuator/plant)—see (1). Such tasks
are then mapped onto spatially distributed ECUs which are
connected via a hybrid communication bus as shown in Fig. 3.

Each communication cycle on the bus is divided into
time-triggered (or static) and event-triggered (or dynamic)
segments. On the TT segment, the tasks are given access to
the bus (or allowed to send messages) only at their predefined
slots. On the other hand, the tasks are assigned priorities in

order to arbitrate for the access to the ET segment. Further,
we consider a distributed setup with the following properties:

• The tasks Ts,i and Tc,i are mapped onto the same ECU
which is attached to the corresponding sensors. Ts,i

triggers Tc,i after measuring the states x[k]. Our analysis
can also be extended to other task mappings as well.

• The tasks Ts,i and Ta,i that belong to a particular con-
trol application are triggered periodically with the same
period (which is dictated by the sampling time pi). The
triggering of Ts,i and Ta,i is synchronized with a given
slot on the static segment of the bus.

• The execution times of Ts,i, Tc,i and Ta,i (in the order of
a few μs) are negligible compared to the sampling period
pi (in the order of tens of ms).

• Every controller task Tc,i can send messages (to Ta,i)
either over the static or the dynamic segment of the bus.
The transmission rate in FlexRay is usually 10 Mbit/s.
As a result, the transmission time of messages over the
bus are generally in the order of μs which is negligible
compared to the sampling periods of common control
applications which are in the order of ms. We further
assume that the slot length on the static segment has been
chosen such that every possible message fits (entirely)
into one slot. Therefore, we can consider that the trans-
mission time of messages is zero (i.e., negligible with
respect to the sampling period). On the dynamic segment,
Tc,i’s messages experience a maximum communication
delay τi. This is due to the contention among messages
with different priorities [14]. We assume that the priority
assigned to every Tc,i on the dynamic segment guarantees
that 0 < τi ≤ pi holds for the corresponding Ci.

A controller u[k] aims to achieve asymptotic stability (or
stable regulation), i.e., x[k] → reference as k → ∞. Without
loss of generality, we assume that the reference is zero. In a
steady-state, the values of every element of the vector x[k]
are close to zero (or reference) and hence, x[k]′x[k] is small.
In the context of stability of a control application, x[k]′x[k]
often acts as a measure of the system state or energy level.
The deviation of x[k]′x[k] from the reference that is tolerated
by the designer in steady-state is Eth. In this work, anything
that causes x[k]′x[k] > Eth is referred to as a disturbance.
The control goal is to bring back the system to steady-state
(by making x[k]′x[k] ≤ Eth) within a finite amount of time
from the point at which the disturbance occurred. The amount
of time required by a control application to achieve a steady-
state from the point at which a disturbance has occurred, is
referred as response time ξi.

We consider a state-feedback controller with communica-
tion delay in the feedback signals, i.e., u[k] = Kx[k − Δ],
where K is the state-feedback gain [15] and Δ is the com-
munication (feedback) delay measured in number of samples.
Δ = 0 implies the ideal case with zero communication delay
while Δ = 1 indicates communication delay of one sampling
interval. For Δ = 0, it is possible to adapt well-known optimal
control approaches such as Linear Quadratic Regulator (LQR)
[16] to derive the optimal feedback gain K = Kopt. In the
case of Δ = 1, the design of K relies on non-optimal pole
placement technique [16] (i.e., K = K1) as u[k] has an older
state x[k − 1] in feedback rather than the current state x[k].

A controller implemented over a purely ET communication
is essentially based on the worst-case delay, i.e., u[k] =
K1x[k − 1]. Such a controller is often quite pessimistic

… …

Time-Triggered Event-Triggered Communication Cycle

Slots

1 2 3 1 2 3

Fig. 3. Hybrid communication protocol: time- and event-triggered segments

Response time of Response time of Desired
response time

Maximum allowable

Fig. 4. Relation among ξTTi , ξETi , ξi, ξ
d
i , tdw,i and twait,i

(illustrated in Section III). On the other hand, we normally
have a limited number of TT slots which makes a zero-delay
controller, i.e., u[k] = Koptx[k], be expensive. By switching
between the zero- and worst-case delay controllers, we can
countervail some of the pessimism incurred in a worst-case
delay design and, at the same time, economize TT slots. The
proposed switching scheme is described next:

• A control application Ci can either apply a zero-delay
(i.e., u[k] = Koptx[k]) or a worst-case delay controller
(i.e., u[k] = K1x[k − 1]). In both cases, the asymptotic
stability is guaranteed, i.e., x[k] → reference as k → ∞.
However, the response time ξi is lower in the case of
using Koptx[k] and higher with K1x[k − 1].

• Every control application is associated with a desired
response time or deadline ξdi . That is, after the occurrence
of any disturbance, the control application must get back
to steady-state within ξdi .

• To meet the response time requirement ξdi in the presence
of disturbances, the control application Ci needs to apply
u[k] = Koptx[k] for tdw,i time. That is, Ci requires to

send
tdw,i

pi
messages with zero delay. The application of

only u[k] = K1x[k−1] causes a violation of the response
time requirement ξdi —see Fig. 4.

• The value of tdw,i (i.e., the number of necessary zero-
delay messages to meet ξdi) depends on the time twait,i.
This accounts for the time that Ci spends using u[k] =
K1x[k − 1] after a disturbance and, hence, sending
delayed messages. In general, the zero-delay and the
delayed controller both tend to stabilize the system—
with the distinction that the delayed controller is slower
in meeting the performance requirements. Therefore, the
time spent by Ci with the delayed controller already
allows rejecting some amount of disturbance. This dis-
turbance rejection by the delayed controller reduces the
amount of work that needs to be done by the zero-delay
controller. The relation between tdw,i and twait,i is illus-
trated in Fig. 1 (explained in Section III). The slope βi can
closely be approximated as the ratio between the response
time ξTTi of a purely TT (i.e., zero-delay) controller and
the response time ξETi of a purely ET (i.e., delayed)
controller. Hence, tdw,i is given by ξTTi −βitwait,i. Since
ξTTi is strictly less than ξETi , βi < 1 holds. Note that a
twait,i = ξETi results in a tdw,i = 0; however, this also
implies a deadline violation as shown in Fig. 4.

TABLE I
ILLUSTRATIVE EXAMPLE

Case twait,i(samples) tdw,i(samples) ξi(samples)
1 1 14 15
2 3 13 16
3 5 12 17
4 9 11 20
5 13 10 23

Clearly, if every Ci has its own slot on the static segment,
then all of them will be able to meet their response time
requirements ξdi because there will be no contention for the
static segment. However, this leads to a poor overall bus
utilization and an expensive design. Since ξTTi < ξdi normally
holds, applications can tolerate some contention ξdi − ξTTi
and still meet their deadlines. Hence, we propose allocating
multiple applications to the same TT slot. Now, the access to
these shared slots needs to be arbitrated which leads us to
the following schedulability problem.

Problem statement: We consider n control applications Ci

with ξTTi , ξETi and ξdi where i ∈ {1, 2 . . . n}. Given a bound
on the disturbances for each application, we intend to compute
the minimum number of static segment slots m (m ≤ n) to
ensure that all control applications meet their response time
requirements ξdi .

III. DETAILS OF CONTROL APPLICATIONS

In this section, we illustrate the behavior of the control
applications Ci (i ∈ {1, 2 . . . n}) shown in Fig. 2 using a
second-order discrete-time plant of the form (1) and,

A =

[
0.4 −1.2

−2.56 −1.9

]
, B =

[
0.1
0.4

]
. (2)

We consider the case where u[k] = K1x[k − 1] is applied
for twait,i time units after the occurrence of disturbance and
subsequently, the controller switches to u[k] = Koptx[k]
and is applied for tdw,i time units to bring back the control
application to a steady-state. Table I shows various cases with
different twait,i and the corresponding tdw,i and ξi for the
discrete-time plant (2) with initial conditions x1[0] = x2[0] =
20 and Eth = 0.1. It may be noticed that tdw,i decreases
with an increase in twait,i and their relation can closely be
approximated as:

tdw,i = ξTTi − βitwait,i, (3)

Eq. (3) can be interpreted as follows: A fraction of the
disturbance is already rejected by u[k] = K1x[k − 1] during
twait,i and hence u[k] = Koptx[k] needs less time to bring
back the system to steady-state (i.e., shorter tdw,i).

The basic design consideration is that the response time ξTTi
of a purely zero-delay controller is considerably lesser than the
response time ξETi of a purely worst-case delay controller. The
slope βi essentially captures this property and can therefore

be approximated by βi =
ξTT
i

ξET
i

< 1. Further, the response time

ξi is given by:

ξi = twait,i + tdw,i,

= ξTTi + (1− βi)twait,i. (4)

Based on the fact that βi < 1, we can notice that ξi
increases with an increase in twait,i which is also supported
by various cases shown in Table I. Thus, there is an
upper-bound of twait,i to meet a given deadline ξdi . As

per (4), the upper-bound on twait,i is longer for a shorter
tdw,i. That is, the control applications are allowed to spend
more time in the ET mode for a shorter tdw,i. Naturally, a
shorter tdw,i is more desirable from schedulability perspective.

Stability in presence of switching: The shifting between the
zero-delay and the worst-case delay controllers essentially
results in a switched system. Once the controller switches
from u[k] = K1x[k − 1] to u[k] = Koptx[k], it stays in TT
mode for tdw,i time units. Here, tdw,i is chosen sufficiently
long to bring the system back to steady-state from any initial
condition at the point of switching. Now, consider the time
interval from the point at which the disturbance occurred until
it is fully rejected, i.e., ξi. During ξi, the controller switches
only once after twait,i time units. If it is assumed that each
control application gets enough time to reject a disturbance
before the next one arrives, then the system energy never
becomes unbounded. This essentially avoids the possibility
of instability arising from such switching control strategy.

Detailed problem statement: Given the above-described
properties, there are two possible ways to choose tdw,i for
a control application. First, tdw,i can be chosen the maximum
time required by the zero-delay controller to reject a distur-
bance after switching, for all twait,i. For example, we can
choose tdw,i = 14 samples as in Case 1 (Table I) for all the
cases. The schedulability analysis with such tdw,i will certainly
provide a safe result. However, the actual tdw,i is shorter than
14 samples for the Cases 2-5. Hence, the second possibility
is to choose the actual tdw,i as per (3) to avoid pessimism.
In this work, we address the schedulability analysis problem
described in the previous section considering the actual tdw,i.

IV. SLOT SHARING AND SCHEDULABILITY

To determine the number of necessary slots on the static
segment, we first need to decide on how control applications
will access slots. In general, similar to scheduling real-time
tasks on processors, there are two different ways of imple-
menting a slot-sharing strategy in our setup. First, applications
can be assigned fixed slots in a partitioned scheme. Second,
applications can be dynamically scheduled on slots in a global
scheme. In this paper, we focus on the partitioned scheme,
i.e., each application is assigned to a single slot such that
it always uses the same slot when transmitting over the static
segment. To determine the necessary number of slots, we need
to analyze the schedulability of a set of applications on one
slot. Based on such a schedulability analysis, we can allocate
applications to one or more slots accordingly.

A. Schedulability Analysis
The schedulability analysis on one slot requires two inputs:

(i) the performance-related requirements derived from the
control design, (ii) the disturbance arrival pattern.

In principle, a TT slot behaves as a processor with a certain
processing capacity. The control applications Ci requesting for
zero-delay transmission behave like tasks running on the TT
slot. At a disturbance, a control application requests the TT
slot for a given amount of time tdw,i ≤ ξTTi . tdw,i here behaves
as the execution time of Ci. A TT slot or processor must then
provide this amount of service to Ci within a deadline ξdi .

A request for zero-delay communication tdw,i coming from
a Ci depends on the disturbance arrival pattern of Ci, which
we characterize in the next paragraph.

Disturbance model: For a control application Ci, disturbances
may arrive sporadically with a minimum inter-arrival time
denoted by ri. In this paper, we consider the case where
ξdi ≤ ri holds for every Ci in the system. That is, any control
application is assumed to have enough time to recover from
a disturbance before the next one arrives. The sources of
disturbance are assumed to be independent of each other. Con-
sequently, the worst-case disturbance arrival pattern happens
when disturbances occur simultaneously with their respective
minimum inter-arrival times ri for all Ci in the system.

From the previous discussion, we know that Ci needs
to recover from disturbances within ξdi time units. For this

purpose, a Ci has to send
tdw,i

pi
zero-delay messages. However,

as discussed previously, tdw,i varies with the time twait,i that
Ci remains in the ET regime (sending delayed messages). This
behavior requires special attention.

In order to schedule a number of control applications Ci on
the same TT slot, we implement a priority-based slot sharing.
All Ci sharing one slot on the static segment are assigned
priorities according to their criticality. For this purpose, we
make use of the Deadline Monotonic (DM) policy, i.e., the
shorter the deadline of a Ci, the higher its priority on the given
slot. As mentioned before, the deadline of a Ci here is given by
its desired response time ξdi . Note that the technique proposed
in this paper trivially extends to other priority assignments.

From our previous discussion, we know that a control
application can be switched at most once between the ET
and TT regime during a disturbance. Otherwise, the stability
of the switching would be compromised. That is, once an
application Ci has access to a TT slot, it requires blocking the
slot for tdw,i amount of time (i.e., until it finishes transmitting
tdw,i

pi
messages). As a result, the scheduling of a sequence

of messages on the static segment must be implemented in a
non-preemptive manner.

Independent of its priority, an application Ci will have to
wait to have access to the TT slot, if this is being used by
another application. This increases its waiting time twait,i of
Ci. Hence, its demand for zero-delay communication tdw,i de-
creases as discussed before—see Fig. 1. However, as discussed
before, the overall response time of the application increases
with twait,i (see Eq. (4)). This is because the parameter

βi =
ξTT
i

ξET
i

is always less than one.

The schedulability of a control application Ci on a shared
TT slot will then be guaranteed, if the following condition
holds for every possible twait,i: ξ

d
i ≥ (1− βi)twait,i.

Hence, to test the schedulability of Ci, we need to find
the greatest possible twait,i (denoted by t̂wait,i) which leads

to the worst-case response time of Ci (denoted by ξ̂i). This
occurs when Ci suffers the maximum possible interference due
to higher-priority applications. For this, we will consider that
all higher-priority applications Cj interfering with Ci require
their maximum possible transmission time on the shared slot,
i.e., tdw,j = ξTTj . This assumption is pessimistic since tdw,j

actually decreases with the blocking time suffered by Cj .
However, this allows us to simplify the analysis and leads
to a safe schedulability condition. Under this assumption, the
worst-case interference on Ci clearly occurs when it needs to
have access to the TT slot together with all higher-priority Cj

(sharing the same slot). This again happens when all higher-
priority Cj and Ci undergo disturbances at the same time.

(Recall that the sources of disturbance are independent of each
other.) Since the scheduling is non-preemptive, Ci may also
suffer some blocking time due to lower-priority applications.

Computing t̂wait,i and ξ̂i here has some similarities with
computing the worst-case response time in a fixed-priority
non-preemptive scheduling like the one of CAN [17], [18].
That is, we need to compute the response times of all jobs of
that task within its maximum busy period [18].

In our case, the task is given by a control application Ci

sending a certain number of consecutive messages over a
shared slot. The maximum busy period tmax,i of a Ci is then
the largest time interval in which the shared slot is constantly
being used by higher-priority control applications and by Ci

itself. For ease of exposition, we assume that tmax,i ≤ ri holds
for all Ci in this paper, i.e., there is only one transmission of
tdw,i

pi
messages of Ci within its busy period tmax,i. This way,

we only need to compute the response time ξi of the sole job
of Ci within tmax,i to obtain its worst-case response time ξ̂i,
which can be done in the following manner:

ξi = ξTTi + (1− βi)bi + (1− βi)

i−1∑
j=1

⌈
ξi
rj

⌉
ξTTj , (5)

where bi = maxnk=i+1(ξ
TT
k) denotes the maximum possible

blocking time due to lower-priority applications suffered by Ci

and n is the number of applications. Without loss of generality,
we assume in Eq. (5) and in the remainder of the paper that
applications are sorted in order of decreasing priority (i.e., Cj

has higher priority than Ci and Ci has higher priority than
Ck for 1 ≤ j < i < k ≤ n). Eq. (5) can be solved starting
from ξi = ξTTi + (1− βi)bi and computing it iteratively until
ξi becomes greater than ξdi or converges to a certain value.
Clearly, if ξi exceeds ξdi , Ci is not schedulable on the shared
slot. On the other hand, if there is a convergence value prior
to ξdi , then Ci can meet its deadline and is schedulable.

B. Reducing lower-priority blocking time
For the sake of stability, a control application can only be

switched once from ET to TT during a disturbance rejection,
which resulted in a non-preemptive scheduling studied in the
previous section.

Under the considered DM policy, lower-priority applications
have longer deadlines and normally higher communication
requirements, i.e., greater ξTTi . Hence, in a non-preemptive
scheme, a higher-priority Cj may be blocked for a long time
to have access to the TT shared slot.

At the other extreme, in every communication cycle, it can
be decided which application starts transmitting next on the
TT slot. As long as every Ci is switched only once from TT to
ET, we can use this fact to mitigate the blocking time suffered
by higher-priority applications.

First, we compute the maximum possible blocking time b̂i
an application can withstand without missing its deadline. This
can be done replacing ξi by ξdi (i.e., the deadline) in Eq. (5)

and then resolving for bi. The resulting value is b̂i:

b̂i =
ξdi − ξTTi
1− βi

−
i−1∑
j=1

⌈
ξdi
rj

⌉
ξTTj . (6)

An application Ci can wait (or be blocked by a lower-
priority Ck) up to b̂i time units. After that time, it needs to
switch to the TT regime in order to meet its deadline under

Algorithm 1 Computation of the number of slots

Require: Set of control applications Ci with ξdi and ξTT
i

Require: The minimum disturbance inter-arrival time ri for every Ci
1: number slots=1
2: Sort Ci according to decreasing priority
3: for i = 1 to n do
4: for s = 1 to number slots do
5: if Schedulable(Ci,slot(s)) then
6: Allocate Ci to slot(s)
7: else if s==number slots then
8: number slots = number slots + 1
9: Allocate Ci to slot(number slots)

10: end if
11: end for
12: end for
13: Return number slots

all possible conditions (i.e., considering the maximum possible
interference by higher-priority Cj according to Eq. (6).

If we compute b̂i from the lowest- to the highest-priority
application, we can then calculate ti in the following manner:

ti = b̂i − n
max
k=i+1

(
ξTTk − βktk

)
, (7)

which stands for the time Ci can wait at maximum before
switching to TT minus the maximum blocking time by lower-
priority Ck (which also wait for a time tk to switch to TT).

When a disturbance arrives, we now force all applications
Ci to wait in the ET regime up to ti time units before switching
to TT. As a result, the maximum blocking time suffered by
any Ci will be given by:

b′i =
n

max
k=i+1

(
ξTTk − βktk

)
. (8)

As it can be seen from Eq. (8), b′i is always less or equal to
bi. Hence, the blocking time due to lower-priority applications
can be reduced this way.

Replacing bi by b′i in Eq. (5) and proceeding as explained
before, we can then test the schedulability of applications
under this new scheme with reduced lower-priority blocking.

C. Allocation Algorithm
The problem of finding the minimum number of slots (that

guarantees the response time requirements of all Ci) is clearly
an allocation problem. Often such problems are NP-hard in
the strong sense, i.e., finding an optimal solution results in
exponential complexity.

The technique proposed in this paper is based on the well-
known First Fit (FF) heuristic. FF leads to a number of slots
that is acceptably close to the optimum and has polynomial
complexity. Our algorithm (Alg. 1) first sorts the control
applications Ci according to increasing priority (i.e., in the
case of DM, according to increasing values of ξdi). Then, it
iterates over the sorted set of Ci and tries to allocate them in
the minimum possible number of slots.

The algorithm we propose starts with only one slot and
allocates the control applications Ci to it as long as they are
schedulable on that slot (line 5). A Ci is schedulable on one
slot if it can meet its timing requirement ξdi when assigned to
that slot. To test this, the proposed algorithm makes use of the
schedulability analysis presented in the previous section.

Our algorithm allocates all Ci to one or more slots in the
list of existing slots (line 4 to 11). If a Ci could not be
scheduled on any of the exiting slots, it then adds a slot to the
list (line 8). The algorithm concludes when all Ci have been

TABLE II
CONTROL APPLICATIONS: PARAMETERS IN MS

Ci ri ξdi ξTTi ξETi ξ̂i(bi) ξ̂i(b
′
i)

C1 2000 150 50 200 87.50 98.70
C2 2000 500 200 550 327.27 263.63
C3 1500 150 50 200 87.50 136.20
C4 2000 300 200 400 300.00 280.35
C5 5000 1000 800 2000 800.00 800.00
C6 600 600 300 700 300.00 414.28

allocated and returns the number of slots that were necessary
for accommodating all of them (line 13).

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed switching scheme
through an illustrative example. We consider six control
applications with the parameters shown in Table II. The
communication protocol is assumed to be FlexRay with a
cycle length of 5 ms. The static segment has 2 ms length and
it is divided into 10 slots. The rest of the cycle is assigned to
the dynamic segment.

Results and discussion: Given the six control applications
shown in Table II, we apply the non-preemptive scheduling
analyzed in Section IV-A and determine the necessary number
of slots that guarantee all requirements using Alg. 1.

For the considered example, we obtained four slots with
the following partitioning: {C1, C3}, {C4, C2}, {C6} and
{C5}. On the other hand, using the technique described in
Section IV-B to reduce the lower-priority blocking time, we
can allocate the six applications into three slots: {C1, C3, C2},
{C4, C6} and {C5}. Although we can improve (i.e., reduce)
the number of necessary slots, this is normally achieved at
the cost of higher response times—see column ξ̂i(b

′
i), i.e., ξ̂i

obtained with b′i of Eq. (8). This is because the technique
presented in Section IV-B forces applications to wait for ti
time (see Eq. (7)) before switching to the TT slot. However,
the resulting response times of applications depend also on the
other applications that are mapped to the same slots.

The experiments demonstrate that the proposed switching
scheme allows saving TT slots with respect to a purely TT
scheme, which requires six slots. Using the non-preemptive
scheduling of Section IV-A, it is possible to reduce the number
of necessary TT slots by two. On the other hand, using the
technique of Section IV-B to reduce lower-priority blocking,
it is further possible to save up an additional slot, i.e., in this
latter case, we used half of the TT slots that a purely TT
solution requires.

Finally, Fig. 5 shows the schedulability region for the
applications C1, C2, C3 and C4. For C4 given as in Table II,
we vary the disturbance arrival rates of C1, C2 and C3. As
it can be noticed, for r1 = 250 and r2 = 1000 ms, these
applications are only schedulable for an r3 = 10 ms. Further,
an r3 = 300 ms is then possible if we decrease r2 to 700 ms.

VI. CONCLUDING REMARKS

In this paper we proposed a switching strategy for dis-
tributed control applications communicating via a hybrid
event-/time-triggered protocol. The response times of the con-
trol applications are considerably shorter in the TT compared
to the ET mode. However, a TT implementation essentially
results in poor bus utilization and hence in an expensive
design. The approach we followed in this paper allows for
a performance close to that of a purely TT scheme using

0

100

200

300 0
200

400
600

800
1000

0

100

200

300

400

r2r1

r 3

Fig. 5. Schedulability region

fewer TT slots. Towards this, we proposed a priority-based
slot sharing scheme, for which we presented and analyzed
its schedulability. The novelty of our approach lies in the
formal characterization of control performance requirements
in the context of schedulability analysis. As a part of future
work, we plan to investigate the impact of different kinds of
disturbance models (rather than always assuming the worst-
case disturbance arrival) and extend our analysis to handle
them in a conservative fashion.

REFERENCES

[1] “The FlexRay Communications System Specifications,” Ver. 2.1,
www.flexray.com.

[2] D. Goswami, R. Schneider, and S. Chakraborty, “Re-engineering cyber-
physical control applications for hybrid communication protocols,” in
Design, Automation and Test in Europe (DATE), Grenoble, France, 2011.

[3] K. Tindell, A. Burns, and A. J. Wellings, “An extendible approach for
analyzing fixed priority hard real-time tasks,” Real-Time Systems, vol. 6,
no. 2, pp. 133–151, 1994.

[4] S. Baruah, “Dynamic- and static-priority scheduling of recurring real-
time tasks,” Real-Time Systems, vol. 24, no. 1, pp. 93–128, 2003.

[5] P. Pop, P. Eles, and Z. Peng, “Schedulability-driven communication
synthesis for time triggered embedded systems,” Real-Time Systems,
vol. 26, no. 3, pp. 297–325, 2004.

[6] T. Pop, P. Eles, and Z. Peng, “Design optimization of mixed time/event-
triggered distributed embedded systems,” in International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2003.

[7] M. Lukasiewycz, M. Glaß, J. Teich, and P. Milbredt, “Flexray schedule
optimization of the static segment,” in International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2009.

[8] A. Martinez and P. Tabuada, “On the benefits of relaxing the periodicity
assumption for networked control systems over CAN,” in Real-Time
Systems Symposium (RTSS), 2009.

[9] F. Zhang, K. Szwaykowska, W. Wolf, and V. J. Mooney, “Task schedul-
ing for control oriented requirements for cyber-physical systems,” in
Real-Time Systems Symposium (RTSS), 2008.

[10] S. Samii, A. Cervin, P. Eles, and Z. Peng, “Integrated scheduling and
synthesis of control applications on distributed embedded systems,” in
Design Automation and Test in Europe (DATE), 2009.

[11] D. Fontanelli, L. Palopoli, and L. Greco, “Deterministic and stochastic
QoS provision for real-time control systems,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2011.

[12] Z. Gu, X. He, and M. Yuan, “Optimization of static task and bus access
schedules for time-triggered distributed embedded systems with model-
checking,” in Design Automation Conference (DAC), 2007.

[13] Z. Gu, “Solving real-time scheduling problems with model-checking,”
in IEEE International Conferences on Embedded Software and Systems
(ICESS), 2005.

[14] H. Zeng, A. Ghosal, and M. Di Natale, “Timing analysis and optimiza-
tion of flexray dynamic segment,” in IEEE International Conference on
Computer and Information Technology (ICCIT), 2010.

[15] W. Jiang, E. Fridman, A. Kruszewski, and J. Richard, “Switching
controller for stabilization of linear systems with switched time-varying
delays,” in IEEE Conference on Decision and Control (CDC), 2009.

[16] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
Prentice Hall, New Jersey, 1996.

[17] K. Tindell, H. Hansson, and A. Wellings, “Analysing real-time com-
munications: Controller area network (CAN),” in Real-Time Systems
Symposium (RTSS), 1994.

[18] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller area network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-
Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

