
Multi-Token Resource Sharing for Pipelined Asynchronous Systems

John Hansen and Montek Singh
University of North Carolina at Chapel Hill

Chapel Hill, NC 27599, USA
{jbhansen,montek}@cs.unc.edu

Abstract—This paper introduces the first exact method for
optimal resource sharing in a pipelined system in order to
minimize area. Given as input a dependence graph and a
throughput requirement, our approach searches through the
space of legal resource allocations, performing both scheduling
and optimal buffer insertion, in order to produce the minimum
area implementation. Furthermore, we do not arbitrarily limit
the number of concurrent threads or data tokens; instead, we
explore the full space of legal token counts, effectively allowing
the depth of pipelining to be determined by our algorithm,
while concurrently minimizing area and meeting performance
constraints. Our approach has been automated, and compared
with an existing single-token scheduling approach. Experiments
using a set of benchmarks indicate that our multi-token approach
has significant advantages: (i) it can find schedules that deliver
higher throughput than the single-token approach; and (ii) for
the same throughput, the multi-token approach obtains solutions
that consumed 33-61% less area.

I. INTRODUCTION

This paper introduces a new approach for performing
resource sharing in pipelined asynchronous systems. Since
the pipelined paradigm is mainly meant for designing high-
performance systems, conserving area is secondary to achiev-
ing high performance. Therefore, existing approaches to de-
signing pipelined systems typically do not handle resource
sharing (e.g., [1]). On the other hand, high-level synthesis
approaches that handle allocation, scheduling and binding
of shared resources generally assume a control-driven ar-
chitecture (e.g., [2]). These latter approaches do not lend
themselves easily to fast pipelined multi-token operation. This
work attempts to bridge the gap between pipelined data-flow
systems and control-driven shared-resource systems.

The key contribution in this paper is a novel multi-token
scheduling approach that targets throughput rather than la-
tency. Our proposed approach specifically targets resource
sharing in a pipelined context, one where multiple instances
of the problem are being computed at once. This domain is
distinct from that of [3] and others, which focus on single-
token scheduling in order to minimize the overall latency.

More specifically, this paper introduces the first exact
method for minimizing area by optimally sharing resources in
a pipelined multi-token manner while meeting a performance
(i.e., cycle time) constraint. This problem has long been a
challenge even in synchronous design, and is much harder
than single-token (i.e., unpipelined) scheduling because of two
reasons: (i) one cycle of the cyclic schedule can mix-and-
match operations from multiple successive tokens, and (ii)
there is an additional dimension to the search space because
of the need for pipeline buffer insertion in order to meet
correctness and performance constraints. Thus, in multi-token
scheduling, the search space includes all possible resource
allocations, all schedules that satisfy data dependences, all
token counts, and all possible buffer insertions.

While there are several flavors of the resource sharing
problem, this paper focuses on minimizing area subject to
performance constraints. The rationale is that typically a
performance bound is specified by the target application, and
the designer’s objective is to reduce area in order to improve
yield, lower die costs, and reduce leakage power.

A key feature of our multi-token scheduling approach is
that, unlike some existing approaches [4], it does not repeat-
edly perform “unfolding” of the data-flow graph, followed
by scheduling, and finally compaction in order to determine
the schedule for multi-token operation. Instead, it directly
determines a compact, multi-token schedule in an optimal
fashion. Central to our approach is a new graphical model—
scheduled buffered dependence graphs (SBDGs)—which al-
lows the entire joint search space of resource schedules and
buffer insertions to be efficiently enumerated.

Our approach has been automated, and experimental results
on a set of benchmarks are promising. Multiple different test
cases were considered, each was synthesized using several
different throughput constraints. In each case, our approach
performed resource scheduling to meet the throughput con-
straints and reported the area of the implementation. As
expected, as throughput constraints were relaxed, the area of
the implementation improved. More importantly, however, the
multi-token approach obtained far superior results as compared
to the single-token approach of [3]. While in 10 out of 20
examples, the single-token approach could not find a schedule
that met the throughput requirement, the multi-token approach
found a schedule in all cases. Moreover, for examples in which
single-token schedules were found, the multi-token solution
consumed 33–61% less area.

The remainder of this paper is organized as follows. Sec-
tion II discusses previous work. Section III gives background
on dependence graphs, and then Section IV describes how
we extend the model by incorporating buffering and resource
schedules. Section V presents our architectural model, and
then Section VI introduces our synthesis algorithm. Sec-
tion VII presents results, and Section VIII gives conclusions.

II. PREVIOUS WORK

Several techniques have been proposed for performing
high-level synthesis of synchronous (discrete-time) and asyn-
chronous (continuous-time) systems; a general survey of tech-
niques is provided by [5]. The majority of proposed techniques
are heuristic, such as force-directed scheduling [6] and list
scheduling [7]. In the asynchronous realm, synchronous ILP
approaches have been adapted in order to approximate optimal
single-token schedules, but these approaches may end up being
either slow or sub-optimal depending on the discretization
of time. Such asynchronous ILP-based approaches have been
reported in [8], [9]. Some optimal asynchronous single-token978-3-9810801-8-6/DATE12/ c©2012 EDAA



while(true){
a=read();
b=((3*b)+a)*0.25;

} //Loop A

while(true){
a=read();
b=3*d;
c=a+b;
d=c*0.25;

} //Loop B

Fig. 1: Simple code example

scheduling algorithms exist [3], [10]; these are used for
comparison in the results section.

All of these approaches, however, allow only one problem
instance to be computed at a time, limiting their performance
substantially. Other approaches, such as [11] can allow mul-
tiple threads of execution, but the designer must specify how
many tokens will exist in the implementation. [12] provides a
heuristic method for synchronous multi-token scheduling but
focuses on practicality (tool run-times) rather than optimality.

In contrast to these approaches, the approach we present in
the following sections creates a multi-token schedule, subject
to a throughput constraint, that optimally minimizes the total
resource and buffer area of a pipeline. This approach searches
the full space of multi-token schedules and concurrently per-
forms slack-matching to meet a throughput constraint. To the
best of our knowledge, this is the first optimal formulation to
jointly minimize function unit area and pipeline buffer area
while searching the complete multi-token scheduling search
space and allowing for a variable token count.

III. BASIC GRAPHICAL MODEL

This section reviews folded dependence graphs [13] as a
convenient graphical model for representing repeated sets of
dependent computations. The next section will introduce our
extended model (scheduled buffered dependence graphs) for
incorporating resource sharing and buffering.

A. Dependence Graphs
Dependence graphs are used to model data dependencies

between the individual operations in a specification. An ex-
ample representation is shown in Figure 2a, corresponding to
the specification in Figure 1. Here the graph has been folded
to show data and control dependence across iterations.

Here, a single node a represents the execution of the
operation over all iterations (a0, a1, a2, · · · ); the subscripts
representing iteration numbers are dropped. A weight is asso-
ciated with each arc to represent the difference in subscripts
from the source node to the destination node. Thus, intra-
iteration arcs, such as the one between operation b and c, will
have a weight of 0. Inter-iteration arcs, such as the arc from d
to b, have a non-zero weight, in this case 1. To ensure liveness
of the specification, the weight on each cycle in the graph must
sum up to one or greater, otherwise a deadlock is implied.

In addition to a weight on each arc, let there be a delay
associated with each arc in the folded dependence graph (a
“fixed-delay model”). The delay associated with an arc from
node x to node y represents the length of time that must elapse
from the instant that the x operation completes to the instant
the y operation completes. No delays are associated with the
nodes; instead all delays are represented on arcs. This delay
is distinct from the weight associated with an arc.

B. Cycle Time Analysis
A dependence graph can be analyzed to determine its

maximum throughput (or, equivalently, its minimum cycle

b) 

b 

c 

d 

0 

0 

0 

a 

1 

0 1 

1 

1 

c) 

c 

0 

0 

0 

a 

1 

0 1 

1 

1 

a) 

b 

c 

d 

0 

0 

0 

a 

1 

1 

1 

0 1 b 

d 

Fig. 2: a) Data, b) buffering, and c) resource arcs

time), using the classical approach of maximum cycle mean
computation [14]. The cycle mean for cycle c in graph G is
defined as follows:

Mean(c) =
∑

e∈c delay(e)∑
e∈c weight(e)

where e is an edge in the cycle c. The cycle time is given by
the maximum of the cycle means for all cycles in the graph:

Cycle Time(G) = max
c∈G

(Mean(c))

Intuitively, the cycle time of an individual cycle is the total
cycle delay divided by the number of tokens on that cycle.
The cycle time of the full graph is the longest cycle time of
any cycle in the graph.

IV. EXTENDED GRAPHICAL MODEL

The basic model of Section III captures data-dependencies
(read-after-write or RAW constraints). In this section, we
introduce an extension called scheduled buffered dependence
graphs (SBDGs), which incorporate two additional types of
constraints: (i) write-after-read (WAR) constraints, which pre-
vent data from being overwritten until it has been consumed;
and (ii) resource scheduling constraints, which model resource
sharing. Both of these types of constraints are modeled by
adding additional arcs to the dependency graph.

A key contribution of this section is illustrating how buffer-
ing (i.e., storage) requirements can be directly inferred from
the graph model. In addition, it also describes how the delays
of those buffers are modeled appropriately in the graph.

A. Modeling Write-After-Read (WAR) Constraints
WAR constraints are necessary to ensure that a storage

location is written only after its previous value has been read.
Because there is contention for storage, the extent of allowable
concurrency in execution scenarios becomes restricted. In
order to model this resctriction, we add WAR arcs to the
dependency graph. For each data dependence arc between a
pair of nodes, we add a WAR arc between the same nodes in
the reverse direction, as shown in Figure 2b. Here, the dotted
black arcs represent data dependence, and the dashed green
arcs represent WAR constraints. In the remainder of this paper,
the terms WAR arc, reverse arc, and acknowledgment arc are
used interchangeably.

Theorem 1. Given a data channel between two nodes a and
b, with m the weight of the forward arc, and n the weight of
the reverse arc (as shown in Figure 3a), the number of buffers
required for correct operation is m+ n.

Proof: Assume an instant in time such that bm has
occurred (and therefore bk for all k < m have also already



occurred), but bm+1 has not occurred. Then, by virtue of
data dependence, a0 must have occurred. Also, because of
the reverse arc from b to a, am+n+1 cannot have occurred yet
since bm+1 has not occurred. At this point in time, the events
a1 · · · am+n may occur before any further events on b, and
therefore all of these results must be stored and preserved as
the future events bm+1 · · · b2m+n will need them. As a result,
up to m+ n buffers may be required to queue up the values
a1 · · · am+n. Figure 3b graphically illustrates the proof.

B. Modeling Buffer Delays
When buffers are present on a data channel, their delays

must be correctly included during timing analysis. In partic-
ular, the forward latency through the buffers will add to the
total delay from the source node to the destination node. In
addition, each buffer also has a reverse latency: the time from
the instant the buffer is emptied to the instant its predecessor
is enabled to produce the next value.

The proposed approach to modeling the delays due to
buffering is illustrated by Figure 3c. In the figure, the node a
is replaced by m + n new nodes, numbered a0 · · · am+n−1,
each new nodes representing a distinct buffer.

For correctly modeling the timing behavior, we set the
delays along the arcs are as follows:
• the weight of the forward arcs a0 → a1 · · · am+n−2 →
am+n−1 is equal to the buffer forward latency, bufff

• the weight of the forward arc am+n−1 → b is equal to
d, which is the latency associated with operation b

• the weight of the reverse arc b→ am+n−1 is equal to r,
which is the reverse latency associated with b

• the weight of the reverse arcs am+n−1 → am+n−2 · · ·
a1 → a0 is equal to the buffer reverse latency buffr

The graph of Figure 3c is compacted into the simplified
representation of Figure 3d by setting the delays appropriately:
• set the forward arc delay equal to d+(m+n−1)∗bufff
• set the reverse arc delay equal to r+(m+n− 1) ∗ buffr
• add a self loop on a with weight bufff + buffr
• add a self loop on b with weight d+ r
With these delay assignments, the computation of the max-

imum cycle mean for any graph that contains the sub-graph
of Figure 3c will be correctly computed by including instead
the sub-graph of Figure 3d.

C. Modeling Resource Sharing
Scheduling of shared resources is modeled by adding new

arcs to the dependence graph, called resource arcs, as shown
in Figure 2c. In particular, one cycle of resource arcs is created
for each available resource. The delay associated with each of
these resource arcs is the latency of that resource.

The sum of the weights of the arcs in each such cycle
is equal to 1 as the proposed multi-token approach only
considers cyclic schedules with a unit stride. As an example,
if a certain function unit executes the sequence of operations
ai, bj , ck · · · in one iteration, then the same function unit must
execute the same sequence of operations in the next iteration,
ai+1, bj+1, ck+1 · · · . Therefore, the weight of each resource
cycle will be equal to 1.

Property 1. (Unit Stride Property) The cycle weight for a
resource cycle with unit stride must be equal to 1.

In practice, the delays on each arc consist of overheads
beyond the operation latency. The controller delay associated

!"!"

!"!#$"

#"$"
#"%"

#"!#&"

!"

!$"#$" #"

!"
#" $"

!"#$%&'(
)%"&'()*+&$",(-*."
)%")(/()0(",(-*."

*+,-%"123()"4&)5*),"
*+,.%"123()")(/()0("

"
6)7"8(9:;<0%"
#%",*<*"*)7"
$%")(/()0("*)7"

#"

'"
=" >"

'"
=" >"

'"
>" ="

!"
>" ="

/(

0(

1203/(

*+
,-
( *+,

.(

*+
,-
(

*+
,-
(

)( 4(

%$"

&"
()
'&

&*
+,
"

!
"(
)'

&&
*+
,"

5(

!"

&$"

#"

!"

#" $"

)2
61

20
3/
78
*+

,-
(

42
61

20
3/
78
*+

,.
(

*+,-2*+,.(

)?)(

*+,
.(

*+,
.(

Fig. 3: Modeling buffering requirements

with a function unit, multiplexing delay, and the forward delay
of a buffer stage are also incorporated.

D. Converting the Graph to Architecture-Ready Form
Once a graph has been scheduled and slack-matched using

the model above, one additional step is performed to prepare
the graph for conversion into hardware. The method for map-
ping a graph to a hardware implementation (to be described in
Section V) is straightforward, provided there are no negative
weights on any arcs in the graph. Therefore, we must remove
these negative arcs, and do so in such a way that the schedule,
circuit performance, and buffer requirements are preserved.

Here, we prove that any graph with negative arc weights
can be converted to an equivalent non-negative graph which
we call the architecture-ready form by following a series of
transformations under the constraints above.

To begin with, let us define the method of re-weighting. In
this method, we select a node that has all positive incoming
arcs. Let the weight of the smallest positive incoming arc be α.
The re-weighting step reduces the weights of all incoming arcs
by α, and increase the weights of all outgoing arcs by α. Since
we are adding the same value to every outgoing arc that we
are subtracting from the incoming arc, this method preserves
the total weight on any cycle going through the node. One key
aspect of re-weighting is that the weight of any non-negative
arc can never become negative through re-weighting.

Theorem 2. For a deadlock-free, strongly-connected graph,
there must be at least one node in the graph that has positive
weights on all its incoming arcs.

Proof: The proof is by contradiction. If there was no node
in the graph with positive weights on all its incoming arcs, it
would be possible to trace a cycle in the graph with a total
cycle weight of 0 or less, implying a deadlock.

Corollary 3. For a deadlock-free, strongly-connected graph,
we can perform an infinite number of re-weightings.

Proof: This corollary is trivially true, as there will always
exist a node that can be re-weighted (Theorem 2).

Lemma 4. For a deadlock-free, strongly-connected graph, all
nodes in a graph will have been re-weighted after a finite
number of re-weightings.

Proof: We begin by considering a node that has not been
re-weighted, X . Because our graph is strongly-connected,



a 

b 

d 

e 

c 

f 

g 
+ 

* 

* 

a b 

c 

! 

g 

f 

d e 

* 

+ 

* 

a) b) 

a 

b 

d 

e 

c 

f 

g 
+ * 

c) 

Fig. 4: a) Sample DFG, b) unshared architecture, and
c) shared architecture with buffering

there is a path from X to every other node in the graph. For
a path from X to any other node in the graph Y , we can sum
up all the weights on this path to give a finite value. Because
Y can only be re-weighted if its incoming arc is positive, this
sum corresponds to the maximum number of times that Y
could be re-weighted before X must be re-weighted.

Since there are a finite number of nodes in the graph,
and since each can only be re-weighted a finite number of
times before X is re-weighted, there are a finite number of
re-weightings that can occur before X must be re-weighted.
Since the number of legal re-weightings is infinite according
to Theorem 2, X must eventually be re-weighted. By the same
reasoning, all nodes in the graph must be re-weighted within
a finite number of re-weightings.

Theorem 5. Any deadlock-free, strongly-connected graph that
contains arc(s) with negative edge weight(s) can be converted
into an equivalent graph with no negative edge-weight arcs.

Proof: According to Lemma 4, all nodes in the graph
are guaranteed to have been re-weighted after performing a
finite number of re-weightings. Therefore, we can perform
re-weighting in any legal order until each node has been re-
weighted at least once, and therefore each node’s incoming
arcs will have become non-negative.

Because the total weight on a cycle remains unchanged,
each channel will have the same number of buffer stages
after this conversion, and the cycle time of the graph will be
unchanged. Additionally, since no arcs were added, removed,
or redirected, each resource’s schedule remains the same.

V. ARCHITECTURAL MODEL

This section introduces a data-flow, shared-resource archi-
tecture that implements the extended graphical model of Sec-
tion IV. We will begin with a general overview of the datapath,
then discuss the components used in the proposed architecture:
buffers, forking data latches, and resources (function units).

A. Overview
A diagram illustrating the basic architecture is illustrated

in Figure 4. An example DFG is shown in Figure 4a, one
which performs a dot-product of a pair of two-element vectors:
< a, c > · < b, d >= a · b + c · d. Figure 4b shows a basic
architecture for this DFG without resource sharing. Finally,
Figure 4c shows our architecture with a shared multiplier and
additional buffers on two data channels. This example features
the three key components in the proposed architecture: (i)
storage locations for variables (a− g) that come directly from
the environment or function units, (ii) extra data buffers (in
gray), and (iii) resources (shared or dedicated).

To generate an architecture from a given dependence graph,
we begin by replacing each node in the graph with a data latch.
This step ensures that we have at least one storage location

Control 
FSM 

M
U

X 
M

U
X 

FU 

D
EM

U
X 

LATC
H

 
LATC

H
 

LATC
H

 
LATC

H
 

LATC
H

 
LATC

H
 

ack1 

req1 

reqn 

ackn 

. . . 
ack1 

req1 

reqn 

ackn 

. . . 

. . . 

. . . 

. . . 

Fig. 5: Shared resource implementation

for each variable in the original specification. Then, between
nodes with data-dependencies, we build a channel with zero or
more additional buffers, necessary for slack matching and data
synchronization. Multiple channels may be generated from the
same data latch source, since a variable may be needed for
different computations, but each channel from the same source
variable may contain a different number of buffers. At the end
of a channel, the final buffer feeds into a function unit, which
will, in turn, feed into a new data latch.

B. Components
1) Buffers: The purpose of a buffer in this architecture

is (i) hold older data while new data is being computed,
preventing old data from being overwritten, and (ii) to improve
performance via slack-matching, as described in Section III-B.
A series of buffers may be placed on a channel between a data
latch and the function unit it feeds into. The total count of all
buffers on a channel is described in Section IV.

The buffer stage consists of a basic storage element manip-
ulated by a simple controller. The behavior of a single buffer
stage repeats as follows: (i) wait for an incoming request, (ii)
latch data, acknowledge, send an outgoing request, (iii) wait
for acknowledgement. While we have selected this specific
pipeline style, other pipeline styles can certainly be used.

The output of a function unit goes into a special buffer: a
forking data latch. This latch may forward data down multiple
paths, unlike a standard buffer, that sends data down only one
path. Based on the architecture-ready graph produced by our
algorithm, a buffer stage will either be initialized as full (a 1
on a forward data arc) or empty (a 1 on the reverse data arc).

2) Function Unit and Control: Function units may be dedi-
cated or shared. If dedicated, no complex control is necessary.
If a function unit is shared, there will be multiple inputs to be
multiplexed and outputs that need to be routed. The diagram
for a function unit is shown in Figure 5.

All of the handshake channels feed into a state machine that
controls the schedule of operations on the function unit. This
state machine is not global, but is instead a local controller,
one per function unit. The state machines repeats the following
steps indefinitely: (i) consult schedule to set input and output
multiplexers, (ii) forward incoming request to data latch with
appropriate matched delay, (iii) forward acknowledgement
from data latch to inputs.

VI. PROBLEM FORMULATION

In this section, we describe an optimal approach for syn-
thesis. We first give a top-level overview of the approach,



then describe a branch and bound strategy for scheduling,
allocation, and binding of resources. Next, we describe an
ILP-based approach for verifying the throughput constraint by
performing slack-matching.

A. Overview of Approach
The multi-token scheduling problem can be broken down

into two specific sub-problems: (i) scheduling and allocating
function units, and (ii) verifying that the schedule meets the
throughput constraint after optimal buffering. Therefore, the
proposed solution has been broken down into two phases: a
branch-and-bound scheduling phase, and an ILP-based tech-
nique for optimal buffer insertion and ensuring satisfaction of
the throughput constraint.

At the top level, the proposed approach steps through the
scheduling process for each function unit, allocating additional
units as necessary. This branch-and-bound algorithm fully
schedules each resource one by one. As each function unit
is scheduled, an ILP instance is run to ensure it meets
the throughput constraint given the opportunity for buffer
insertion. Once a legal schedule is found with all operations
scheduled that meets the cycle constraint, this schedule com-
pared with the best solution so far, and searching continues
until no better schedules can be found.

B. Scheduling, Binding, and Allocation: Branch and Bound
The branch and bound portion of the proposed approach

begins with the original graph with all the data-dependencies
in place. Next, a reverse arc is added between each data-
dependent node in order to produce a complete channel.

The basic recursive scheduling algorithm is as follows:
1) Generate a list of unscheduled items, sorted lexicograph-

ically. Select the first unscheduled item from the list.
2) Create a list of resources on which this item could

execute, subject to an area constraint.
3) Explore scheduling the operation on each one of these

resources in a depth-first fashion.
4) After an operation has been scheduled, create a list of

unscheduled nodes remaining that could execute on the
same resource. Include the first node on this resource’s
schedule in order to complete the resource’s cycle.

5) Explore scheduling each child operation on this resource
in a depth-first fashion, adding a resource arc from the
previously scheduled node to the current node.

6) If the resource cycle has been closed, compute the
buffering needed to achieve the throughput constraint by
running ILP described in VI-C. If buffering cannot meet
the throughput constraint, or if the total area exceeds the
best area, we stop exploring this partial schedule.

7) If there are unscheduled nodes remaining, return to
Step 1. Otherwise, a new best area solution has been
found. This value is recorded and scheduling continues.

Beyond the basic bounding performed in Step 6, we can
improve run-time by adding a few additional optimizations.
The first optimization is to estimate the minimum area for
unscheduled operations by using utilization analysis, and use
this value to help prune. This estimation includes preserving
the minimum amount of buffers needed for a partially sched-
uled implementation, as we know that this amount cannot
decrease as we continue to schedule more items. Additional
optimizations include ordering the search space to consider
more promising results first, and employing backtracking when

generating partial schedules to determine which scheduling
steps introduced additional buffers.

C. Buffering and Cycle Time Constraints: ILP

After the step of scheduling each specific resource, the
result must be confirmed to meet the performance constraint
specified by the designer. In order to meet the throughput con-
straint, additional buffers may be inserted automatically by the
algorithm. Because the designer’s goal is area minimization,
we aim to minimize the count of these additional buffers.

The steps of buffer insertion and confirming that a schedule
meets the throughput constraint are performed in tandem
using an ILP approach. In this formulation, we will insert the
performance constraints as linear constraints in the ILP, and
allow the solver to vary the number of buffers. The sum of
buffers in the implementation will be the minimization target.

The following notation is used below:
• F : the set of forward arcs (data dependencies)
• R: the set of reverse arcs (WAR constraints)
• S: the set of resource scheduling arcs
• C: the set of cycles in the dependence graph
• CS: the set of cycles consisting solely of scheduling arcs
• T : the target cycle time specified by the designer
• ch#: the number of channels in the graph
• n#: the number of nodes in the graph

The set of variables in the ILP consists of the weight(e) for
each e ∈ R ∪ S (reverse and scheduling arcs).

1) Cost Function: The cost function to minimize is simply
the total number of buffers required. As described in IV-A,
the total number of buffers required on a channel is given by
the sum of the weights on the forward and reverse arcs that
constitute that channel. However, if a node has more than one
output channels (i.e., it represents a fork), then the first latch
is common to all channels; any additional buffers added are
disjoint. Therefore the cost function is:∑

e∈(F∪R)

weight(e)− ch# + n#

2) Constraints: For each cycle in the graph, we enumerate
three sets of constraints to ensure that (i) the liveness property
is met; (ii) only schedules with stride of 1 are allowed; and
(iii) the performance target is met.

Liveness constraint: The sum of the weights on a cycle
must be greater than or equal to 1:∑

e∈c
weight(e) ≥ 1 for all c ∈ C

Unity stride of schedules: According to Property 1,
the cycle weight for a cycle consisting solely of resource
scheduling arcs must be equal to 1:∑

e∈c
weight(e) = 1 for all c ∈ CS

Performance constraint: As discussed in Section III-B,
the cycle mean for each cycle in the graph must be less than
or equal to the target cycle time specified, T , which can be
rewritten as the linear constraint:∑

e∈c
delay(e) ≤ T ·

∑
e∈c

weight(e) for all c ∈ C

Note that the the expression for delay(e) will, in general,
include delay terms for forward and reverse buffer latencies,



TABLE I: Function unit parameters
Function Area Latency

Unit (unit) (unit)
Add 8 8

Subtract 8 8
Multiply 48 9

Shift/Logical 8 8
Buffer 2 1 / 1

which is in turn dependent on the number of buffers re-
quired on the corresponding data channel. As discussed in
Section IV-B, the number of buffers is determined by the sum
of the weights of the forward arc (known constant) and the
weight of the reverse arc (a variable in ILP). Therefore, the
cycle mean constraints are linear in the variables.

VII. RESULTS

Setup. In our experiments we used six different benchmark
DFGs for analysis, described in [3]. For each test case, we
set constraints for cycle time and optimized for minimum
area, and compared out results to the single-token approach
of [3]. We provided the same library of functional units to all
benchmarks; their parameters are shown in Table I.

Our approach was implemented in Java on a Macbook Pro
with a 2.8 GHz Intel Core 2 Duo processor and 4GB of RAM
on JVM 1.6. For solving the ILP instances, we used the ILOG
CPLEX tool. Runtimes are shown in seconds.

Discussion. Table II shows the experimental results for the
optimal approach. The first two columns list the benchmark
and throughput constraint respectively. For the single-token
solver in [3], this throughput constraint was equal to the
latency constraint, as only single-token schedules were pro-
duced. The next column shows the logic area a single token
schedule could produce using the single-token approach (this
method ignores buffer area). The next three columns show the
results of the multi-token approach, including logic, buffer, and
total area. The final column shows the run-time in seconds.

The results clearly show that a multi-token approach is
superior to a single-token approach in terms of function unit
area. In all test cases, the logic area was less than or equal
to that of the single-token solver. In fact, in most cases, the
total area (including buffering) was lower than the function
unit area of the single-token solver. Further, there are several
instances where the single-token approach cannot meet the
throughput constraint, even with infinite resources.

Now let us consider the effect of the throughput constraint
on buffer area: when the throughput constraints become very
tight we begin to see an increase in buffer area because
more pipelining is needed. For example, consider the first
two test cases of COS, where the buffer area is 52 under a
tight throughput constraint of 16, but when the throughput
constraint is relaxed to 32, the buffer area reduces to 48.

Finally, the runtime of this approach is illustrated in the last
column. For the single-token approach, the run-time was under
5 seconds in each test case. In the multi-token test cases, the
runtime was under 10 seconds in all but four test cases. Three
of those successfully completed in under an hour, while one
test case did not complete within 8 hours and was manually
terminated. This one case demonstrates the high complexity
of the search space, and motivates the need for faster heuristic
approaches, which is part of our ongoing work.

TABLE II: Synthesis results and tool runtimes
Cycle Area (unit) Tool
Time 1-• Multi-• Runtime

Benchmark Constraint Logic Logic Buffers Total (s)
ODE 9 - 272 30 302 0.2
ODE 34 160 112 18 130 0.2
ODE 50 112 64 18 82 0.2
DP8 9 - 440 48 488 0.3
DP8 27 - 168 32 200 0.4
DP8 35 416 160 32 192 0.4
DP8 50 208 112 32 144 0.7
DP8 90 104 56 32 88 0.7
COS 16 - 800 52 852 3.8
COS 32 - 304 48 352 355
COS 75 208 104 48 152 1908
7TH 9 - 832 88 920 0.7
7TH 16 - 776 58 834 1.1
7TH 45 - 168 58 226 51
7TH 90 168 112 58 170 493
ELP 9 - 592 202 794 2.5
ELP 115 168 - - - >8hr
TEA 32 - 40 36 76 7.8
TEA 40 48 32 36 68 4.1
TEA 43 32 32 34 66 5.9

VIII. CONCLUSION

In this paper we described an optimal method for generating
multi-token schedules for performing resource sharing in a
pipelined system. We illustrated how these schedules could be
modeled graphically, described an architecture to implement
these schedules, and developed an exact algorithm to minimize
overall logic and buffer area while meeting a throughput
constraint. In future work, we aim to pursue a heuristic
approach that can handle larger examples.

REFERENCES

[1] M. Budiu, “Spatial computation,” Ph.D. dissertation, Carnegie Mellon
University, Computer Science Department, December 2003.

[2] S. F. Nielsen, J. Sparsø, and J. Madsen, “Towards behavioral synthesis
of asynchronous circuits - an implementation template targeting syntax
directed compilation.” Digital Systems Design, Euromicro Symposium
on, pp. 298–305, 2004.

[3] J. Hansen and M. Singh, “A fast branch-and-bound approach to high-
level synthesis of asynchronous systems,” in Proc. Int. Symp. on Asyn-
chronous Circuits and Systems (ASYNC), 2010.

[4] R. Potasman, J. Lis, A. Nicolau, and D. Gajski, “Percolation based
synthesis,” in Proceedings of the 27th ACM/IEEE Design Automation
Conference, ser. DAC ’90. ACM, 1990, pp. 444–449.

[5] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill Higher Education, 1994.

[6] P. G. Paulin and J. P. Knight, “Force-directed scheduling in automatic
data path synthesis,” in DAC ’87: Proceedings of the 24th ACM/IEEE
Design Automation Conference. ACM, 1987, pp. 195–202.

[7] A. M. Sllame and V. Drabek, “An efficient list-based scheduling
algorithm for high-level synthesis,” in DSD ’02: Proceedings of the
Euromicro Symposium on Digital Systems Design, 2002, p. 316.

[8] S. F. Nielsen, J. Sparsø, J. B. Jensen, and J. S. R. Nielsen, “A behavioral
synthesis frontend to the haste/tide design flow,” in Proc. Int. Symp. on
Asynchronous Circuits and Systems, 2009, pp. 185–194.

[9] H. Saito, N. Hamada, N. Jindapetch, T. Yoneda, C. Myers, and T. Nanya,
“Scheduling methods for asynchronous circuits with bundled-data im-
plementations based on the approximation of start times,” IEICE Trans.
Fundam. Electron. Commun. Comput. Sci., vol. E90-A, no. 12, 2007.

[10] J. Hansen and M. Singh, “An energy and power-aware approach to
high-level synthesis of of asynchronous systems,” in Proc. Int. Conf.
Computer-Aided Design (ICCAD), 2010.

[11] S. Tugsinavisut, R. Su, and P. A. Beerel, “High-level synthesis for highly
concurrent hardware systems,” Application of Concurrency to System
Design, International Conference on, pp. 79–90, 2006.

[12] A. Kondratyev, L. Lavagno, M. Meyer, and Y. Watanabe, “Realistic
performance-constrained pipelining in high-level synthesis,” in Proc.
Design, Automation and Test in Europe (DATE), 2011, pp. 1382–1387.

[13] T. E. Williams, “Self-timed rings and their application to division,” Ph.D.
dissertation, Stanford, CA, USA, 1991, uMI Order No. GAX92-05744.

[14] A. Dasdan and R. K. Gupta, “Faster maximum and minimum mean
cycle algorithms for system performance analysis,” IEEE Transactions
on CAD, vol. 17, pp. 889–899, 1997.


