
Amplitude Demodulation-based EM Analysis of
different RSA implementations
Guilherme Perin, Lionel Torres, Pascal Benoit and Philippe Maurine

LIRMM, University of Montpellier 2
161, Rue Ada 34095, Montpellier, France

Email: perin, lionel.torres, pascal.benoit, philippe.maurine@lirmm.fr

Abstract—This paper presents a fully numeric amplitude-
demodulation based technique to enhance simple electromagnetic
analyses. The technique, thanks to the removal of the clock
harmonics and some noise sources, allows efficiently disclosing
the leaking information. It has been applied to three different
modular exponentiation algorithms, mapped onto the same
multiplexed architecture. The latter is able to perform the
exponentiation with successive modular multiplications using
the Montgomery method. Experimental results demonstrate the
efficiency of the applied demodulation based technique and also
point out the remaining weaknesses of the considered architecture
to retrieve secret keys.

Keywords: Public-Key Cryptography, RSA, Modular Ex-
ponentiation, Side-Channel Attacks, AM Demodulation.

I. INTRODUCTION

Side-channel Analysis (SCA) has been widely adopted to
attack cryptographic systems. Although cryptographic devices
leak information through different channels, power analyses
(SPA, DPA [1], CPA [2]) were recognized as the most efficient
ones. However, Electromagnetic (EM) Analyses have been
recently pointed out as more efficient due to several practical
advantages [3][4][5][6][7].

In this paper we propose to concentrate our efforts on a well-
known Public-Key Algorithm [8], the RSA [9]. But the method
could be easily transposed to any Public-Key Algorithm.
These algorithms perform long and secret-exponent specific
sequences of modular squaring and products. They are also
characterized by different EM emission patterns. As a result,
an adversary may typically try to disclose the secret exponent
by identifying the repetitive patterns constituting a complete
EM trace.

However, according to the hardware device on which is
mapped the RSA algorithm, patterns associated to a squaring
and a product might be really similar so that they cannot be
distinguished. This is the case for the multiplexed architecture
[10] considered in this paper (see Fig. 1). As a result, more
powerful SCA must be applied to determine the secret ex-
ponent. For example, by applying differential or correlation
analyses. However this requires spending a lot of time to
acquire and process EM traces. One solution is to apply
demodulation based techniques to increase the signal to noise
ratio, as suggested, in [11][12] to disclose remaining leakages.
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Within this context our first contribution is an experimental
amplitude-demodulation based technique to enhance simple
EM analyses. Unlike to [11][12], the proposed procedure is
fully numeric and does not require additional equipments such
as an expensive TEMPEST receiver [3] or a phase shifter
[11]. Moreover, our solution does not involve any CPU-time
consuming statistical tool such as the Mutual Information tech-
nique [12]. Our second contribution is a set of experimental
procedures to analyze left-to-right square-and-multiply [14],
square and multiply-always [15] and Montgomery powering
ladder [16] implementations of the RSA. Note that [12]
addresses only the case of the left-to-right square-and-multiply.
Finally, our last contribution is an experimental evidence
that the considered architecture [10] is robust to simple EM
analyses but can still be attacked if memory accesses remain
unprotected.

The paper is organized as follows. In section II, basics
about amplitude modulation are recalled to point out where
the remaining leaking information must be tracked in the
frequency domain. Section III presents the proposed amplitude
demodulation-based technique while the section IV presents
the robustness evaluation results of three algorithms and the
relevant target architecture details. Finally, a conclusion is
drawn in section V.

II. SEARCHING INFORMATION IN THE FREQUENCY
DOMAIN

In this section, some basics about amplitude modulation
(AM) are reminded. These basics provide guidelines to search
the leakage information in the frequency domain.

For the sake of simplicity, we first consider that the leakage
L(t) is a sinusoidal signal of frequency fL and amplitude
AL. Because, this leakage may appear at each clock cycle
in the worst case scenario, the frequency fL is necessarily
lower than the clock frequency fclk. As a result, the EM signal
collected over several tenths or hundreds of clock cycles must
have similar properties than the signal Sam resulting from
the amplitude modulation of the L(t) by the clock signal of
frequency fclk and amplitude Aclk:

Sam(t) = Aclk(t)AL(t) cos(2πfLt) cos(2πfclkt) (1)

According to the Fourier Transform properties, the leakage
appears at two different positions (both close to the clock
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Fig. 1. A typical EM trace collected above the multiplexed architecture of
[10]. S and M denotes squares and multiplies.

frequency) in the spectrum as shown by Equation 2 that gives
the power spectral density of Sam.

Φ(ω) =
1

2
F (ω + ωc) +

1

2
F (ω − ωc) (2)

If considering a sinusoidal signal to model the clock signal
may be acceptable while working with circuits operating above
the GHz, this is clearly not the case for smartcard products
that typically operate at few tenths of MHz. The clock signal
should therefore be modelled by a square signal. Similarly,
the leakage resulting from the switching of CMOS gates or
structures should be better modelled by a composite signal.
According to these observations, the carrier involved in the
amplitude modulation is given by:

p(t) =
4

π

∞∑
n=1,3,5...

1

n
sin(2πnfclkt) (3)

In the case of a leakage signal f(t) composed of three
harmonics fL1, fL2 and fL3:

f(t) = AL1 cos(2πfL1t) +AL2 cos(2πfL2t)

+AL3 cos(2πfL3t) (4)

Sam, becomes:

Sam(t) = f(t) sin(2πfclkt) +
1

3
f(t) sin(2π3fclkt) +

1

5
f(t) sin(2π5fclkt) (5)

As shown in Fig. 2, the leakage appears at different fre-
quencies in the spectrum. The interesting point is that the low
frequencies composing the leakage are necessarily closed to
the carrier harmonics. Therefore, an adversary may search for
leaking information in narrow bandwidths located close to all
harmonics of the clock signal falling into the bandwidth of its
SCA platform.

Once have been identified the frequency bandwidth(s) of
interest, we first remove all uninteresting harmonics using
bandpass filtering (with 5th order Butterworth filters) and then
we recover the leakage by demodulating the filtered traces.
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Fig. 2. Power spectral density of a signal modulated by a square wave
carrier. The information signal has frequencies fL1 =5MHz, fL2 =10MHz
and fL3 =15MHz.

This finally results in the experimental setup described in Fig.
3. It is worth observing that the only information required to
apply it is the value of the clock frequency; information that
can easily be obtained from basic EM analyses.

III. APPLICATION TO DIFFERENT RSA IMPLEMENTATION

From the side-channel point of view, finding the band-
width(s) containing the leakage, or part of it, is a crucial step to
obtain interesting results with the above procedure. This search
could be in practice tedious or even infeasible depending on
the considered cryptographic algorithms.

However, in the case of the RSA algorithm, finding the
bandwidth(s) containing the leaking information is straight-
forward. It simply stands on computing the Power Spectral
Densities (PSD) of modular squaring and products and then
in identifying harmonics that significantly differs from one
PSD to the other. Note, this is feasible in the case of RSA
implementation because the most significant bit of a modular
exponentiation is always one and, consequently, the three main
computations steps are known (e.g., square/multiply/square,
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- s2 - Identify the clock
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EM traces
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Fig. 3. Experimental procedure to disclose tiny leakage hidden in noise.
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Fig. 4. Power spectral density of a modular squaring and a modular
multiplication execution.

for the left-to-right square-and-multiply algorithm).
In the case of the architecture [10] considered herein, we

have computed and characterized, around the clock frequency
(≈ 50 MHz), the power spectral densities of a modular
squaring and a modular product. It is important to note that we
consider during the computation the short time window related
to the activity of the control logic and RAM accesses (see
Fig. 1). Fig. 4 gives both averaged PSD obtained with 40 EM
traces (20 modular squaring and 20 modular products). Since
significant differences appeared around 40 MHz, we therefore
retained two narrow bandwidths for bandpass filtering because
the double-side band property of the AM. The first was
centered at 40 MHz and the second at 60 MHz. Finally, we
demodulated the filtered traces to obtain the results reported
in Fig. 5.

Comparing Fig. 5a and 5b, which present a time frame of a
modular squaring and a modular multiplication, respectively,
one may conclude that no information leaks during the mod-
ular operations. Indeed, the right parts of Figures 5a and 5b
are really similar. Note this was an expected advantage of
using the multiplexed architecture of [10] in which the same
Montgomery Multiplier [13] performs the modular squaring
and products.

Comparing now the left part of Figures 5c and 5d that
corresponds to the time window during which RAM accesses
and control operations are performed, one may clearly identify
a spike differentiating a square from a multiply. As a result,
one may conclude that the proposed filtering and demodulation
procedure is able to visually disclose a remaining and tiny
leakage.

IV. ELECTROMAGNETIC ANALYSES

EM traces were collected with a measurement platform
composed of: an oscilloscope (bandwidth: 2.5 GHz; sampling
rate: 40 GS/s), a low-noise amplifier (48 dB gain and 1 GHz
bandwidth), a 500 µm probe, a motorized stage, a FPGA
board and a PC to control the whole measurement setup.
A cartography process, for acquiring EM averaged traces
in 34 × 34 points (x,y) over the die area of the chip, was
made to analyse the above multiplexed architecture and more
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Fig. 5. Original (a) squaring and (b) multiplication traces and filtered and
demodulated (c) squaring and (d) multiplication traces.

precisely to determine the (x,y) coordinates at which the EM
are strongly data dependent. This was done using the method
proposed in [4].

For EM measurements, the multiplexed RSA architecture
was set up with two different word sizes: 16 and 32 bits.
The goal was to analyse the word size effect on the leaking
syndrome. The arithmetic operations in the target RSA archi-
tecture are sequences of Montgomery modular multiplications
and are performed in a multi-precision context. Therefore,
bigger the word size, more gates are switched per clock
cycle when performing such single-precision operations, and,
consequently, more EM is emanated. Similarly, bigger the
word size of the read and written words during the memory
accesses, the more information is expected to leak during to
RAM accesses.

Keeping this idea in mind, we applied our amplitude-
demodulation based technique, designated by Simple and De-
modulated Electromagnetic Analysis (SDEMA), on the three
implemented modular exponentiation algorithms to evaluate
if the exponent bits, manipulated by three different RSA
implementations, may be recovered by processing a single EM
trace as it can be done by applying a SPA or SEMA on an
unprotected RSA.

Note that, in the left-to-right square-and-multiply case, our
analyses aimed at identifying, as usual, square and multiply
executions to directly disclose the exponent bits. In the case of
the square-and-multiply always algorithm, our analysis aimed
at finding the occurrence of dummy multiplications charac-
terizing exponent bits with a zero value. Finally, to analyse
the Montgomery powering ladder, we aimed at disclosing
the squared operand of squares executions, which reveals the
exponent bit value.

Our analyses adopt the sliding window method, which
allows computing the differential trace between a reference
frame (sampled points of a modular multiplication related to
a known exponent bit) and frames related to an unknown expo-
nent bit. The sliding window method was applied considering
only one averaged EM trace (20 trials).

In the following sections, we provide the results and



procedures for the SDEMA attack, applying our amplitude-
demodulation based technique, on the three implemented
modular exponentiation algorithms. The target architecture
performs modular exponentiations through successive Mont-
gomery multiplications which the input message is first
converted into the Montgomery domain. The operation
Mont(X,Y,N ) always gives the result XY 2−nmod N , where
n is the key (exponent) size and 2−n is the Montgomery
constant. This constant is removed from the final result by
a last call to Mont() having A and 1 as input parameters.
The steps 1 and 2 in Alg. 1, 2 and 3 are precomputed and
stored in memories.

To highlight the efficiency of our method, we also provide
results for the simple EM analysis, without filtering and
amplitude demodulation processes.

A. SDEMA on Left-to-Right Square-and-Multiply

In the left-to-right square-and-multiply (Algorithm 1), the
first exponent bit is always one (MSB), because this is a
downward method. The sliding window method employs the
following steps:

1) apply the bandpass filtering and amplitude demodulation
on the considered EM trace;

2) the three first computations are square-multiply-square;
3) select the sampled points related to one of these first

computations to be a reference window frame;
4) compute the differential trace between the reference

window frame and frames related to unknown exponent
bits.

Fig. 6 and 7 show the results for the SDEMA and SEMA
attacks on the left-to-right square-and-multiply implementa-
tion, respectively, considering the word sizes of 16 and 32
bits. We can observe that the sampled points related to the
control activity (C) are on the left side of the dotted line.

Unlike the SEMA results for the two considered word sizes,
the SDEMA attack discloses the exponent bits by displaying,
in the left part of the differential EM traces, shapes that are
specific to either square or multiply. These differences (spikes)
appear because different operands are read for the square and
multiply operations. Note, however, that the difference is quite

Algorithm 1: Left-to-Right Square-and-Multiply
Input: m, e, N , R = 2nmod N (pre-computed).
Output: c = me mod N
1. A = Mont(1, R2, N);
2. B = Mont(m,R2, N);
3. for i = n− 1 to 0 do
4. A = Mont(A,A,N)
5. if ei = 1 then
6. A = Mont(A,B,N)
7. end if
8. end for
9. c = Mont(A, 1, N)
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Fig. 6. SDEMA analysis on the left-to-right square-to-multiply implemen-
tation.
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reduced in case of 16 bits architecture contrarily to the 32 bits
architecture.

B. SDEMA on Square-and-Multiply Always

The square-and-multiply always (Algorithm 2) is a down-
ward method, therefore the first exponent bit is always one
(MSB). For every exponent bit interpretation, one can find a
square followed by a multiply. If the exponent bit is zero, the
modular multiplication is a dummy operation. So:

1) apply the bandpass filtering and amplitude demodulation
on the considered EM trace;



Algorithm 2: Square-and-Multiply Always
Input: m, e, N , R = 2nmod N (pre-computed).
Output: c = me mod N
1. A = Mont(1, R2, N);
2. B = Mont(m,R2, N);
3. for i = n− 1 to 0 do
4. A = Mont(A,A,N)
5. if ei = 1 then
6. A = Mont(A,B,N)
7. else
8. X = Mont(A,B,N) (dummy)
9. end if
10. end for
11. c = Mont(A, 1, N)

2) the second computation is not a dummy modular multi-
plication;

3) select the sampled points related to this effective multi-
ply computation to be a reference window frame;

4) compute the differential trace between the reference
window frame and all frames of multiply computations,
to identify the dummy multiplications.

Fig. 8 and 9 illustrate the results for the SDEMA and SEMA
attacks, respectively. The results are presented for 16 and 32
word sizes.

The target multiplexed architecture does not store the result
of dummy modular multiplications. So, if the differential
trace presents highest amplitudes during the time window
(C) related to the control activity, one may conclude that we
are subtracting a effective multiply from a dummy operation.
Otherwise, it means that the target modular multiplication
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Fig. 8. SDEMA analysis on the square-to-multiply always implementation.

frame is not a dummy operation.

C. SDEMA on Montgomery Powering Ladder

To apply the proposed SDEMA analysis on the Montgomery
Powering Ladder implementation, we considered the algorithm
according to the downward method (Algorithm 3). Thus, the
first exponent bit is always one and, therefore, the two first
executions are a multiply followed by a square. The remainder
modular multiplications are always a multiply followed a
square, however the squared operand of the modular squaring
execution (A0 or A1) indicates the bit value of the exponent.
So:

1) apply the bandpass filtering and amplitude demodulation
on the considered EM trace;

2) the second computation is a modular squaring, having
A0 as squared operand;

3) select the sampled points related to this modular squar-
ing computation to be a reference window frame;

4) compute the differential trace between the reference win-
dow frame and the frames related to modular squaring
computations, to identify the modular squaring having
A1 as squared operand.

When applying SDEMA and a sliding window method it
is possible to reveal the exponent by observing the different
RAM accesses for the remainder modular squaring executions.
The results are presented in Fig. 10. Fig. 11 shows the results
for simple EM analysis.

Indeed, when a time frame of a modular squaring exe-
cution A1 = Mont(A1, A1, N) is subtracted from A0 =
Mont(A0, A0, N), spikes appear at the beginning and at the
end of the differential trace, indicating that different operands
have been read and stored. On the other hand, if we are sub-
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Fig. 9. SEMA analysis on the square-to-multiply always implementation.



Algorithm 3: Montgomery Powering Ladder
Input: m, e, N , R = 2nmod N (pre-computed).
Output: c = me mod N
1. A0 = Mont(1, R2, N);
2. A1 = Mont(m,R2, N);
3. for i = n− 1 to 0 do
4. if ei = 1 then
5. A1 = Mont(A0, A1, N); A0 = Mont(A0, A0, N)
6. else
7. A0 = Mont(A0, A1, N); A1 = Mont(A1, A1, N)
8. end if
9. end for
10. A1 = Mont(A0, 1, N)
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Fig. 10. SDEMA analysis on the Montgomery Powering Ladder implemen-
tation.

tracting modular squaring executions with the same squared
operands, the differential trace is smoothed.

V. CONCLUSION

This paper presented an amplitude demodulation technique
(SDEMA) to enhance simple electromagnetic analysis. The
analysis based on amplitude demodulation and bandpass filter-
ing processes was described. Its application to three different
modular exponentiation methods configured with two different
word sizes was presented. The results obtained with SDEMA
demonstrate its efficiency on simple protected RSA methods
like square-and-multiply always and Montgomery powering
ladder over only one averaged trace (20 trials), because the
filtered and amplitude demodulated traces reveal weakness
of the control elements (RAM memories access, multiplexers
addressing). The obtained results also highlight the need for
specific RAM memories able to perform dummy write and
read operations to enhance the robustness of the multiplexed
architecture.
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Fig. 11. SEMA analysis on the Montgomery Powering Ladder implementa-
tion.
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[12] O. Meynard, D. Réal, F. Flament, S. Guilley, N. Homma, and J.-
L. Danger. Enhancement of simple electro-magnetic attacks by pre-
characterization in frequency domain and demodulation techniques. In
DATE, pages 1004–1009, 2011.

[13] P. L. Montgomery. Modular Multiplication Without Trial Division.
Mathematics of Computation, 44:519–521, 1985.

[14] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. The Handbook
of Applied Cryptography. Boca Ranton, Fla.: CRC Press, 1997.

[15] J.-S. Coron. Resistance Against Differential Power Analysis for Elliptic
Curve Cryptosystems. CHES, Springer-Verlag, pages 292–302, 1999.

[16] M. Joye, and S., M. Yen. The Montgomery Powering Ladder. CHES,
Springer-Verlag, pages 291–302, 2002.


