
Debugging of Inconsistent UML/OCL Models
Robert Wille∗ Mathias Soeken∗
∗Institute of Computer Science, University of Bremen

28359 Bremen, Germany
{rwille,msoeken,drechsle}@informatik.uni-bremen.de

Rolf Drechsler∗§
§Cyber-Physical Systems, DFKI GmbH

28359 Bremen, Germany
rolf.drechsler@dfki.de

Abstract—While being a de-facto standard for the modeling of
software systems, the Unified Modeling Language (UML) is also
increasingly used in the domain of hardware design and hard-
ware/software co-design. To ensure the correctness of the specified
systems, approaches have been presented which automatically
verify whether a UML model is consistent, i.e. free of conflicts.
However, if the model is inconsistent, these approaches do not
provide further information to assist the designer in finding the
error.

In this work, we present an automatic debugging approach
which determines contradiction candidates, i.e. a small subset of
the original model explaining the conflict. These contradiction
candidates aid the designer in finding the error faster and
therefore accelerate the whole design process. The approach
employs different satisfiability solvers as well as different de-
bugging strategies. Experimental results demonstrate that, even
for large UML models with up to 2500 classes and constraints,
the approach determines a very small number of contradiction
candidates to be inspected.

I. INTRODUCTION

In the recent years, the Unified Modeling Language (UML)
has been widely accepted as the standard language for mod-
eling and documentation of software systems [1]. With the
ongoing trend towards the design at the Electronic System
Level (ESL), UML also offers promising applications in
the domain of hardware design and hardware/software co-
design [2]. The desired system can initially be specified at a
high level of abstraction, before precise implementation steps
are performed. Therefore, UML provides appropriate models
which hide concrete implementation details while being ex-
pressive enough to specify a complex system. Additionally,
the Object Constraint Language (OCL) [3] can be applied to
refine a UML model with textual constraints describing further
properties and relations between the specified components.

During the specification of a complex system, numerous
different components with various relations, dependencies, and
constraints are defined. This leads to a nontrivial description
where errors can easily arise. Therefore, researchers started
the investigation of appropriate verification techniques. Ap-
proaches based on enumeration [4], theorem provers [5], [6],
or automatic proof engines [7], [8], [9] have been introduced
for this purpose. They enable the detection of design flaws
already in early stages of the system’s development, which is
especially crucial when considering shortening time-to-market
demands. However, even if these approaches help to detect the
existence of an error, they provide no support for determining
the source of this flaw. That is, in case of an erroneous
specification, the designer has to debug the respective model
manually, which often is a complex and time consuming task.

In this paper, approaches for debugging of inconsistent
UML/OCL models are presented. A model (specification) is
inconsistent, if it is contradictory in itself and, thus, no valid

system state (instantiation) can be generated. In particular,
static descriptions, i.e. class diagrams and their system states,
are considered. Design flaws in such descriptions can result
in a contradiction typically caused by (1) wrong UML con-
straints, i.e. errors in the specification of the relation between
the respective components, or (2) wrong OCL constraints,
i.e. errors in the additional properties specified by the textual
OCL constraints.

A two-stage method is proposed which narrows down the
number of possible candidates for the contradiction. First,
it is determined whether the error occurs either because of
contradictory UML constraints or contradictory OCL con-
straints. Afterwards, the source of error is further confined
leading to contradiction candidates, i.e. a set of components
of the specification explaining the error. They can be used
to pinpoint to the error source. Solvers for Linear Integer
Arithmetic (LIA) [10] and Bit-Vector logic (BV) [11] are
utilized in the proposed approach.

Experiments demonstrate that using the proposed approach
the reason for a contradiction can be narrowed down to a
small set of components. The approach is applicable even for
very large UML/OCL models with more than 2500 classes
and constraints.

The remainder of this paper is structured as follows.
UML/OCL models are briefly reviewed in the next section.
Section III motivates the considered problem, while Section IV
introduces the general flow of the proposed approach. The
respective approaches determining the contradiction candi-
dates are described in detail in Section V and evaluated in
Section VI. Finally, related work is discussed and conclusions
are drawn in Section VII and Section VIII, respectively.

II. MODELS AND SYSTEM STATES

When modeling systems, one differentiates between the
model and its system states. The model describes the structure
of the system on an abstract level. The precise instantiation
of the model is called system state, and for one particular
model, several system states may exist. The main components
of a model are classes and associations. Classes describe what
information can be handled within the modeled system and
how this information is structured. Inside a class, attributes
define the single data elements. Associations describe the
relation between classes, where each association is annotated
by multiplicities which specify its type, i.e. a one-to-one, a
one-to-many, or a many-to-many relation.

Since the associations in a model are restrictive, they are
also called UML constraints. More complex constraints can
be defined using the OCL, which offers textual constructs
to express complex properties of classes, their attributes, and
their relations. One possible use case of OCL constraints are
invariants, which are attached to a class in a model.978-3-9810801-8-6/DATE12/ c©2012 EDAA



Host
ack: String

Client
req: String
active: Boolean

0..8
clients

1..2
hosts

Command

inv: clients.size() > 0 implies clients.one(c|c.req.active)

(a) Class diagram

c1: Client

req = “date”
active = True

h: Host

ack = “good”

c2: Client

req = “exit”
active = False

(b) Object diagram

Fig. 1. UML class diagram and object diagram

In the following, we denote a model by M, its set of classes
by C, and invariants are referred to as I. Since this paper
addresses the usage of UML models for specifications, the
terms model and specification are synonymously interchanged
in the remainder of this paper.

A model can be visualized by a UML class diagram. An
example of such a class diagram is given in Fig. 1(a), which
consists of the two classes Client and Host. The Client class
has two attributes req and active which represents a request
sent by a client and the state of the client, respectively. Further,
the Host class has one attribute ack, which represents an
acknowledge returned by the respective host. Both classes are
set into relation by an association Command, which expresses
that each host can be connected to up to eight clients and that
each client has to be connected to one or two hosts. Finally,
one OCL invariant expresses, that if there are clients connected
to a host, then exactly one of them has to be active. The OCL
offers further operators for the construction of constraints. For
a detailed consideration, the reader is referred to [3].

As mentioned above, a precise instantiation of a model is
called a system state. It consists of objects, which are precise
instances of a class and links, which are precise instances of
an association. Analogously to a class diagram, a system state
can be visualized by an object diagram. Fig. 1(b) shows an
object diagram representing a valid system state derived from
the model shown in Fig. 1(a).

In this paper, debugging of inconsistent UML models is
considered, where consistency is defined by means of valid
system states.

Definition 1 (Validity of system states): A system state is
called UML-valid if its links comply the UML constraints
implied by the model’s associations. Similarly, a system state
is called OCL-valid if it satisfies all OCL invariants. If a
system state is both UML-valid and OCL-valid, a system state
is called valid.
Based on the definition of validity, the definition of consistency
can be formulated.

Definition 2 (Consistency of a model): A model is consis-
tent, if it is possible to create a non-empty valid system state.
Analogously, a model is UML-consistent (OCL-consistent), if
there exists a non-empty UML-valid (OCL-valid) system state.
A model is inconsistent, if it is not consistent.
Checking whether a model is consistent is of importance, since
for an inconsistent model, each attempt to create a system state
fails a priori.

A
v: Integer
w: Boolean

C
u: Integer

B
x: Integer
y: Integer

D
z: Boolean

2 1
as cs

2

5

as

bs

3

5

cs

bs

3

5..12

cs

dsi1: v <= 10 implies w

i2: as->one(a|a.w = 0)
i3: x.isDefined()
i4: cs->exists(c|c.u.isDefined())

i5: A.allInstances().forAll(a|a.v=8)

i6: cs->forAll(c|c.u < 10)

Fig. 2. Running example

III. PROBLEM FORMULATION

Designing complex systems is a nontrivial task where errors
can easily arise. In particular, the application of additional con-
straints for refinement purposes is crucial. While constraints
enable to render the system in a more precise way, they can
lead to an over-constrained specification. That is, too many or
wrong constraints being applied make it impossible to generate
a valid system state from the specification.

Considering UML models, over-constrained specifications
are typically caused by (1) wrong UML constraints, i.e. asso-
ciations in a model, or (2) wrong OCL constraints, i.e. textual
properties further constraining the data and relation between
elements.

Example 1: Throughout this paper, the abstract model
shown in Fig. 2 is used as a running example. It consists of
four classes, four associations, and six OCL invariants. This
model is neither UML-consistent nor OCL-consistent, which
is not directly evident at first glance.

The first flaw results from the associations between the
classes A, B, and C. For each object of class C, two objects of
class A are required. Further, with each two objects of class A,
another five objects of class B are required which imply the
existence of three objects of class C. Summing up, for each
object of class C, three objects of class C are needed, which
is contradictory. This conflict can be fixed by changing the
multiplicity 1 at the association between class A and class C
to 3.

The other contradiction in the specification is “hidden” in
three OCL constraints. The invariant i5 enforces all attributes
v of each instance of class A to be set to the value 8. Adding
invariant i1, the attribute w always has to be true. However,
invariant i2 requires this attribute to be false for exactly one
connected instance of class A. This leads to a contradiction
and, therefore, the model is also not OCL-consistent. The
conflict can be fixed by changing invariant i5 such that it
does not call forAll on all instances of class A, but on the
connected objects of class A only. That is, invariant i5 should
be changed to as->forAll(a|a.v = 8).

In order to detect inconsistent specifications as early as
possible, verification approaches are already applied in the
early design stages. For this purpose, several methods have



Step 1

UML Debugging

Step 2

OCL Debugging

Model

Model

OCL

UML
Model

Model

Model

Model

UML

OCL

 

 

Contradiction
candidates

Fig. 3. General flow

been introduced in the past (see e.g. [5], [8], [6], [9], [4], [7],
[12]). Using the UML model along with all OCL constraints
as an input, they try to generate a non-empty, valid system
state. If this is possible, the existence of such a system state
is witnessed by an object diagram.

However, if no such witness can be generated, the speci-
fication has been proven to be over-constrained. In order to
identify the reason and fix the error, the designer has to debug
the specification – often a complicated and cumbersome task,
which results in a manual and time consuming procedure. In
the worst case, all classes and constraints have to be inspected.
While this might be feasible for the simple model discussed
in Example 1, it becomes highly inefficient for specifications
composed of several hundreds of classes and constraints.

In contrast, the source of a contradiction can often be limited
to very few components. For example, the contradiction dis-
cussed in Example 1 was simply caused by a single association
and three OCL constraints. Having this information, large
parts of the specification can be ignored in order to debug
a contradictory UML/OCL model. Motivated by this, in this
paper we address the following question:

How can we automatically detect an as small as
possible subset of a contradictory UML/OCL model
explaining the non-existence of a valid system state?

Different methods are introduced narrowing down the set of
possible reasons for contradictions in a given inconsistent
specification. First, it is determined which type of contradic-
tion occurred, i.e. whether either the UML constraints or the
OCL constraints should be inspected in detail. Afterwards,
more precise contradiction candidates are generated. A con-
tradiction candidate is a component of the model (e.g. an asso-
ciation or an OCL invariant) explaining the absence of a valid
system state. By means of these contradiction candidates, the
number of components which have to be manually considered
is significantly reduced, and accordingly, the time spent on
debugging is decreased.

IV. GENERAL FLOW

In order to obtain candidates explaining the contradiction,
a two-stage debugging flow is proposed. In the following, the
respective steps are briefly introduced by means of Fig. 3 and
the precise methods are described in detail in the next section.

Starting with an inconsistent UML model, first it is de-
termined whether the reason for the contradiction is due to
the UML constraints of the model. For this step, the OCL
invariants of the model are not required. In case the model
is UML-inconsistent, candidates in terms of associations re-
sponsible for the contradiction are returned, which can be

used by the designer to fix the problem. In contrast, if it
has been shown that the model is UML-consistent, a large
amount of contradiction candidates can be excluded for further
consideration. Then, the OCL constraints have to be the
reason for the contradiction. Therefore, a method for OCL
debugging is executed in the second step. Here, a subset of
all OCL invariants is determined, whose deactivation leads
to a consistent system state. This set is then returned as
contradiction candidates to be inspected by the designer.

Using this flow, the designers are pinpointed to UML or
OCL constraints explaining the contradiction in the model.
With this information, large parts of the model can be classi-
fied to be irrelevant to debug the error.

V. DEBUGGING METHODS

While the previous section sketched the general idea of the
proposed approach, in the following the respective methods
are introduced in detail. Following the flow shown in Fig. 3,
debugging of UML constraints is described first, before OCL
debugging is considered.

A. Debugging UML Constraints

UML constraints, i.e. associations along with multiplicities,
define the relations between classes and, therefore, they restrict
the number of objects instantiated from a class. As an example,
the association between class A and class C depicted in
Fig. 2 enforces that the number of objects derived from
class A always has to be twice the number of objects derived
from class C. Implications of such constraints may lead to
dependencies which eventually cannot be satisfied any longer
– in particular, if more than two classes are involved. As an
example, consider again the contradiction caused by the three
associations between the classes A, B, and C in Fig. 2.

In order to determine the reason for a contradictory UML
model, it has to be checked whether it is possible to instantiate
the appropriate number of objects from each class, so that
all restrictions enforced by the UML constraints are adhered
to. This is formulated as an instance of the satisfiability
problem encoded using Linear Integer Arithmetic (LIA) [10].
If the resulting formulation is satisfiable, a number of object
instantiations can be derived satisfying all UML constraints for
each class. If in contrast no solution exists, the reason for its
absence is analyzed. From the result of this analysis, classes
and associations responsible for the contradiction are derived.

1) Encoding: To encode the outlined problem, a formula

fuml : IN0 × IN0 × · · · × IN0 → IB

is created. For this purpose, variables xC ∈ IN0 are introduced
for each class C ∈ C in the considered UML model. Each
xC-variable represents the number of objects derived from
class C. Using these variables, all restrictions enforced by the
associations are encoded.

Fig. 4(a) shows a generic binary UML association including
multiplicities defined over intervals. This UML constraint
expresses that each object of class B must be linked to at
least m1 (lower bound), but at most m2 (upper bound) objects
of class A (0 ≤ m1 ≤ m2). The same applies to class A
analogously. To encode this, the conjunction of the following
LIA constraints is created.



A B
m1..m2 n1..n2

(a) Binary association

A B
m1..m2 n1..∗

(b) With infinite bound

R

A B

C

(c) Ternary association

RA B

C

1 1

1

OCL constraint

(d) Alternative repr.

Fig. 4. UML constraints

First, constraints ensuring the existence of the minimal number
of objects are added. This is expressed by

xA ≥ max{1,m1} ∧ xB ≥ max{1, n1}. (1)

The terms max{1,m1} and max{1, n1} imply that each class
is instantiated at least once. This is necessary, since empty
system states are not considered.

Second, the correlation of xA and xB is constrained. For
the case of m1 = m2 = 1 and n1 = n2, constraining the
correlation is straightforward. Then, for each object derived
from class A, n1 objects from class B are needed. To encode
this correlation, the LIA constraint xB = n1xA needs to
be added. If additionally m1 = m2 > 1, this constraint is
extended to m1xB = n1xA. Having this, the generic LIA
constraint additionally considering intervals (i.e. m1 < m2

and n1 < n2) can be deduced:

m2xB ≥ n1xA ∧ m1xB ≤ n2xA. (2)

Example 2: Applying Eq. (1) and Eq. (2) to the model in
Fig. 2 leads to the following encoding:

(xA ≥ 2) ∧ (5xA = 2xB)
∧ (xB ≥ 5) ∧ (3xB = 5xC)
∧ (xC ≥ 3) ∧ (2xC = xA)
∧ (xD ≥ 5) ∧ (5xC ≤ 3xD)

∧ (12xC ≥ 3xD)

Using these formulations most of the UML constraints can be
encoded. Beyond that, only the following special cases have
to be addressed separately:
• Infinite upper bounds

In fact, infinite upper bounds (i.e. associations
with m2 =∞ or n2 =∞) weaken the restrictions on
the number of objects derived from a class. Accordingly,
parts of the LIA constraints from Eq. (2) can be removed.
As an example, for the association depicted in Fig. 4(b)
with n2 = ∞, the term m1xB ≤ n2xA evaluates to
limn2→∞m1xB ≤ n2xA = m1xB ≤ ∞. This is always
true and, thus, the term can be omitted. Analogously,
this can be done for m2 =∞.

• Reflexive binary associations
Reflexive binary associations represent a special case of
binary associations. Their mapping to LIA constraints is
already covered by the encoding from Eq. (2). Note that
reflexive associations are only valid, if they define an n-
to-n relation or if they have infinite bounds.

• n-ary associations
Arbitrary n-ary associations (with n > 2) can be

mapped to LIA constraints in a recursive manner. To
illustrate this, consider the ternary association given in
Fig. 4(c). According to [13], this can be transformed to
equivalent binary associations by adding a helper class
(denoted by R) and the following OCL constraint (see
also Fig. 4(d)):
R->forAll(r,r’|

(r.ra=r’.ra and r.rb=r’.rb and r.rc=r’.rc)
implies r=r’

)

Further, n-ary associations with n > 3 can be transformed
accordingly applying this method recursively. From this
representation, the respective LIA constraints can be
derived. Note that the OCL constraint is not considered
in the LIA instance and, therefore, this may lead to
false positives. However, contradictions caused by such
an association will then be detected in the next debugging
step, where OCL constraints are inspected.

2) Analyzing the Result: Using the encoding introduced
above an LIA instance results, which can be passed to a
respective solve engine (e.g. [14]). Then, this solver tries to
determine an assignment to all variables xC satisfying all
constraints or to prove that no such assignment exists.

If the instance is satisfiable, the resulting values from the
xC-variables directly correspond to the number of objects
derived from class C ∈ C. These values can be used for
example to help consistency checkers pruning the search space
by initially setting a valid number of objects.

In contrast, if there is no solution to the LIA instance, the
associations cause the contradiction in the model. Then, a
technique called unsatisfiable core extraction is applied (see
e.g. [15]) in order to determine a set of contradiction can-
didates among all associations. This technique determines a
subset of the instance (a so-called unsatisfiable core), which
already is unsatisfiable. From this subset all occurring vari-
ables are extracted. Since each variable directly corresponds
to a class, the respective classes and therefore the respective
associations are obtained. These components, which are usu-
ally a very small subset compared to the overall model, explain
the contradiction and should be inspected in detail.

Example 2 (continued): Using an LIA-solver, the instance
from above is determined to be unsatisfiable. Applying un-
satisfiable core extraction leads to the following subset of the
instance:

(5xA = 2xB) ∧ (2xC = xA) ∧ (xC ≥ 3) ∧ (3xB = 5xC)

These are four clauses from the original instance. Extracting
all variables from them leads to xA, xB , xC and, hence, to the
classes A, B, and C as well as their UML constraints. That is,
the designer is pinpointed exactly to the components which are
responsible for the contradiction (according to the discussion
from Example 1).

B. Debugging OCL Constraints

If the debugging process passes the first step (i.e. if UML
constraints are excluded as a reason for the contradiction), the
OCL constraints are considered. Again, satisfiability solvers
are applied for this purpose.



More precisely, the complete UML model including its OCL
constraints is encoded as an instance of the satisfiability
problem using Bit-Vector logic (BV) [11]. To this purpose,
several formulations have been introduced in the past (see
e.g. [7], [8], [9]). However, since the model already has
been proven to be contradictory, the resulting BV instance is
unsatisfiable. Thus, each BV constraint representing an OCL
invariant is extended with additional logic allowing to disable
it. The number of OCL invariants to be disabled is restricted
to k, where the value of k is iteratively incremented (starting
from k = 1), until a satisfying solution for the instance
is determined. From this solution, k OCL invariants can
be determined whose deactivation resolves the contradiction.
These invariants represent a contradiction candidate.

1) Encoding: In order to encode the outlined idea, we use
the formulation introduced in [7], where a Boolean formula is
created representing all UML/OCL components and encoding
the consistency checking problem. If the given model is
consistent, the formula is satisfiable and a valid system state
can be obtained from the assignments to all variables. Other-
wise, the formula is unsatisfiable proving the non-existence of
such a system state. To keep the encoding of the debugging
formulation simple, we refer to [7] for a detailed description
of the encoding and simplify it as follows:

Given a UML model M with OCL constraints I, the
formula encoding the consistency checking problem is

fcon = Φmodel(M) ∧
∧
i∈I

Φinv(i),where

• Φmodel is a set of BV constraints representing all UML
components in a system state such as objects, attribute
values, and links, and

• Φinv is a set of BV constraints representing a given OCL
invariant.

As mentioned above, this formula is now extended by ad-
ditional logic allowing to deactivate invariants. Therefore, a
select variable si is introduced for each invariant i ∈ I. If si is
set to 0, then the invariant i is active. Otherwise (if si = 1), the
invariant is disabled. More formally, the resulting debugging
formulation is expressed as

focl = Φmodel(M) ∧
∧
i∈I

(si ∨ Φinv(i)) .

Therefore, if invariant i is causing a contradiction, the solve
engine can assign si = 1 and, thus, still finds a satisfying
solution. From the assignment to si, the respective invariant
can be deduced. Further, the number of disabled invariants is
restricted to k:

focl = Φmodel(M) ∧
∧
i∈I

(si ∨ Φinv(i)) ∧
∑
i∈I

si = k

2) Analyzing the Result: Using the encoding described
above, it is first attempted to obtain a satisfying assignment
for k = 1. If no solution exists, k is iteratively increased
by one until such an assignment is determined. Then, from
all select variables si1 , . . . , sik set to 1, a set of invariants
can be derived, which therefore is the minimal number of
contradiction candidates. Disabling all these invariants leads
to a valid system state, i.e. these invariants are responsible for
the contradiction.

TABLE I
EVALUATED BENCHMARKS

Model Classes Associations Invariants
PyQt4 631 757 736
Android 713 1153 373
Java6 2458 17995 2623

Example 3: Applying this approach to the model in Fig. 2,
the solver returns a satisfying assignment for k = 1, with
si1 = 1, and sij = 0 (j = 2, . . . , 6). That is, removing the
invariant i1 would resolve the conflict.
However, the conflict could be caused by other, correlated
invariants. Thus, further contradiction candidates should be
generated. In order to do so, previously found solutions are
excluded and the instance is solved again. Therefore, the
formula is extended to

focl ∧ (si1 ∧ . . . ∧ sik).

The correlation between contradiction candidates can provide
additional information to aid the designer in determining the
error in the model.

Example 3 (continued): Applying the extended formula,
three invariants for k = 1 are identified as contradiction
candidates: i1, i2, and i5. In fact, the conflict in the model is
caused by the conjunction of all three of them. (On the other
hand, it can be concluded, that the conflict is definitely not
caused by the remaining three invariants i3, i4, and i6, i.e. any
modification to these constraints cannot fix the conflict.) By
pinpointing the designer to these contradiction candidates, the
wrong invariant (namely i5 as discussed in Example 1) can be
identified.

VI. EXPERIMENTAL RESULTS

Experimental results are discussed in this section. To evalu-
ate the proposed approaches on large benchmarks, UML mod-
els with OCL constraints have been created by re-engineering
existing software libraries using introspection tools. Each class
in these libraries has been transformed to a UML class, while
methods have been used to generate UML associations. Class
attributes were built in a similar way. Further, OCL invariants,
that restrict the values of the attribute to be valid, have been
added. As respective software libraries, we used the Qt4
bindings for Python, the Android SDK, and all classes in the
java.* namespace of the Java6 SDK. An overview of the
resulting UML models is given in Table I listing the number
of classes, the number of associations, and the number of
invariants. All experiments were carried out on a 64-bit 3 GHz
Dual Core AMD processor with 3 GB main memory running
Linux 2.6.

In the first evaluation, UML debugging as introduced in
Section V-A has been considered. MathSAT4 [14] was applied
as the underlying LIA-solver. To generate UML-inconsistent
models, associations with arbitrary multiplicities have ran-
domly been injected to the benchmarks introduced above.
By this means, ten different instances to be evaluated have
been created. Debugging these instances with the proposed ap-
proach leads to a number of contradiction candidates as shown
in Table II (distinguished between the minimal, maximal, and
average number). That is, the numbers of classes and models to
be inspected can be reduced from some hundreds (thousands)
to no more than 1-2 dozens in just a few seconds (in around
half an hour).



TABLE II
RESULTS FOR DEBUGGING OF UML CONSTRAINTS

#contr. cand. Time (in CPU seconds)
Model min max avg min max avg
PyQt4 5 14 10.10 8.52 19.44 14.15
Android 3 15 9.90 6.31 19.73 11.65
Java6 5 18 11.00 2077.95 2276.48 2177.09

TABLE III
RESULTS FOR DEBUGGING OF OCL CONSTRAINTS

#contr. cand. Time (in CPU seconds)
Model min max avg min max avg
PyQt4 6 6 6 53.88 86.65 59.11
Android 6 6 6 7.52 10.27 8.60
Java6 6 6 6 2116.80 3807.14 3268.58

In the second evaluation, OCL debugging as introduced in Sec-
tion V-B has been considered. Here, we applied Boolector [11]
as the underlying BV-solver. By inverting three randomly
selected invariants per model, ten OCL-inconsistent models
have been generated. Thus, the contradiction candidates can be
found with k = 3. Nevertheless, as described in Section V-B,
we applied the approach starting from k = 1 performing
a full debugging run. The obtained results are summarized
in Table III. As can be seen, also in this step the majority
of invariants can be excluded for further consideration in a
very short time. In fact, instead of 736, 373, or 2623, only
6 invariants to be inspected remain for debugging in the
respective models. In each case, the injected errors have been
unveiled by the contradiction candidates.

VII. RELATED WORK

In the past, debugging techniques based on formal meth-
ods have been proposed in the domain of logic circuit
design [16] or the design modelling based on declarative
specifications such as Alloy [17] and KodKod [18]. However,
these approaches address languages and problems different
from UML/OCL and, thus, do not consider the two-staged
approach proposed in this work.

In the domain of UML/OCL design, only specific debugging
problems have been considered so far. For example in [19],
[20], it was checked why so called consistency rules [21] be-
tween different diagrams are invalid. This enables to examine
why e.g. a given object diagram is inconsistent with respect to
a given class diagram. In our approach, a broader problem is
considered. We aid the designer in determining reasons why a
model itself is inconsistent. This does not require any further
diagrams except of the model (i.e. the class diagram) itself
and helps not only to detect the error in a certain sceneario,
but in the overall design.

VIII. CONCLUSIONS

In this work, approaches for debugging inconsistent
UML/OCL models have been presented. Different solving as
well as debugging techniques are utilized in order to determine
contradiction candidates which pinpoint the designer to the
source of the error. By means of these contradiction candi-
dates large parts of the model can be excluded from further
consideration.

This was also demonstrated by an experimental evaluation.
Even for models with more than 2000 classes as well as nearly
18000 association and about 2500 invariants, a small number
of components to be inspected is automatically determined in
moderate run-time.

ACKNOWLEDGMENTS

This work was supported by the German Research Founda-
tion (DFG) (DR 287/23-1).

REFERENCES

[1] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage reference manual. Addison-Wesley Longman, Jan. 1999.

[2] Y. Vanderperren, W. Müller, and W. Dehaene, “UML for electronic
systems design: a comprehensive overview,” Design Automation for
Embedded Systems, vol. 12, no. 4, pp. 261–292, Aug. 2008.

[3] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
modeling with UML. Addison-Wesley Longman, Mar. 1999.

[4] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, Independence
and Consequences in UML and OCL Models,” in Tests and Proofs.
Springer, July 2009, pp. 90–104.

[5] A. D. Brucker and B. Wolff, “The HOL-OCL Book,” ETH Zurich, Tech.
Rep. 525, 2006.

[6] B. Beckert, R. Hähnle, and P. Schmitt, Verification of Object-Oriented
Software: The KeY Approach. Springer, Oct. 2007.

[7] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using Boolean satisfiability,” in Design,
Automation and Test in Europe, Mar. 2010, pp. 1341–1344.

[8] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: A
Challenging Model Transformation,” in Int’l Conf. on Model Driven
Engineering Languages and Systems, Oct. 2007, pp. 436–450.

[9] J. Cabot, R. Clarisó, and D. Riera, “Verification of UML/OCL Class
Diagrams using Constraint Programming,” in IEEE Int’l. Conf. on
Software Testing Verification and Validation Workshop, Apr. 2008, pp.
73–80.

[10] B. Dutertre and L. M. de Moura, “A Fast Linear-Arithmetic Solver for
DPLL(T),” in Int’l Conf. on Computer Aided Verification, ser. Lecture
Notes in Computer Science, T. Ball and R. B. Jones, Eds., vol. 4144.
Springer, Aug. 2006, pp. 81–94.

[11] R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver for
Bit-Vectors and Arrays,” in Tools and Algorithms for Construction and
Analysis of Systems, Mar. 2009, pp. 174–177.

[12] M. Soeken, R. Wille, and R. Drechsler, “Verifying Dynamic Aspects of
UML Models,” in Design, Automation and Test in Europe, Mar. 2011,
pp. 1077–1082.

[13] M. Gogolla and M. Richters, “Expressing UML Class Diagrams Prop-
erties with OCL,” in Object Modeling with the OCL, ser. Lecture Notes
in Computer Science, T. Clark and J. Warmer, Eds., vol. 2263, 2002,
pp. 85–114.

[14] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani,
“The MathSAT 4 SMT Solver,” in Int’l Conf. on Computer Aided
Verification, ser. Lecture Notes in Computer Science, A. Gupta and
S. Malik, Eds., vol. 5123, July 2008, pp. 299–303.

[15] R. Bruni, “Approximating minimal unsatisfiable subformulae by means
of adaptive core search,” Discrete Applied Mathematics, vol. 130, no. 2,
pp. 85–100, Aug. 2003.

[16] A. Smith, A. G. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis
and logic debugging using Boolean satisfiability,” IEEE Trans. on CAD,
vol. 24, no. 10, pp. 1606–1621, Oct. 2005.

[17] E. Torlak, F. S.-H. Chang, and D. Jackson, “Finding Minimal Unsat-
isfiable Cores of Declarative Specifications,” in Int’l Symp. on Formal
Methods, ser. Lecture Notes in Computer Science, J. Cuéllar, T. S. E.
Maibaum, and K. Sere, Eds., vol. 5014. Springer, May 2008, pp. 326–
341.

[18] R. V. D. Straeten, J. P. Puissant, and T. Mens, “Assessing the Kodkod
Model Finder for Resolving Model Inconsistencies,” in European Conf.
on Modelling Foundations and Applications, ser. Lecture Notes in
Computer Science, R. B. France, J. M. Küster, B. Bordbar, and R. F.
Paige, Eds., vol. 6698. Springer, June 2011, pp. 69–84.

[19] A. Nöhrer, A. Reder, and A. Egyed, “Positive effects of utilizing
relationships between inconsistencies for more effective inconsistency
resolution: NIER track,” in Int’l Conf. on Software Engineering, R. N.
Taylor, H. Gall, and N. Medvidovic, Eds., May 2011, pp. 864–867.

[20] A. Egyed, E. Letier, and A. Finkelstein, “Generating and Evaluating
Choices for Fixing Inconsistencies in UML Design Models,” in Int’l
Conf. on Automated Software Engineering, Sept. 2008, pp. 99–108.

[21] A. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh,
“Inconsistency Handling in Multperspective Specifications,” IEEE Trans.
on Software Engineering, vol. 20, no. 8, pp. 569–578, Aug. 1994.


