
Co-Design Techniques for Distributed Real-Time Embedded
Systems with Communication Security Constraints

Ke Jiang, Petru Eles, Zebo Peng
Department of Computer and Information Science, Linköping University

{ke.jiang, petru.eles, zebo.peng}@liu.se

Abstract—In this paper we consider distributed real-time embed-
ded systems in which confidentiality of the internal communication
is critical. We present an approach to efficiently implement
cryptographic algorithms by using hardware/software co-design
techniques. The objective is to find the minimal hardware overhead
and corresponding process mapping for encryption and decryption
tasks of the system, so that the confidentiality requirements for
the messages transmitted over the internal communication bus
are fulfilled, and time constraints are satisfied. Towards this,
we formulate the optimization problems using Constraint Logic
Programming (CLP), which returns optimal solutions. However,
CLP executions are computationally expensive and, hence, efficient
heuristics are proposed as an alternative. Extensive experiments
demonstrate the efficiency of the proposed heuristic approaches.

I. INTRODUCTION

In the last years, more and more distributed embedded
systems (DiES) have been shipped and deployed, especially in
safety or reliability critical areas, e.g., automotive electronics
and medical control. For example, it is common to find tens
of embedded processors (Electronic Control Units or ECUs) in
modern vehicles, which are connected by a set of communica-
tion infrastructure, e.g., CAN [1] or Flexray [2].

Security is not only a concern for the engineers developing
general purpose systems, but is also coming into the scope of
the embedded system designers. Although seriously neglected,
the need of providing secure embedded systems, especially
secure DiES, is emerging rapidly. Moreover, the adoption of new
interfaces, e.g., Wi-Fi, dramatically increases potential security
threats [3], [4]. Therefore, designing robust DiES against mali-
cious snooping on internal communication becomes a pressing
topic. Nevertheless, currently the internal communication of
automotive electronic systems is completely unencrypted [5].

The most important component of security in the context of
DiES is confidentiality. The internal communication of DiES
needs to be protected against malicious eavesdropping due to
e.g. privacy concerns [6]. In this paper, we will focus on achiev-
ing confidentiality protection of the internal communication of
DiES under real-time constraints using reconfigurable hardware,
i.e. Field-Programmable Gate Arrays (FPGAs).

Previous work on DiES networks mainly focused on protocols
and applications, while potential security risks were seriously
overlooked. Take the automotive area, for example. Most of
the works, e.g., [7], [8], [9], on communication security dealt
with external communication, e.g., vehicle to vehicle (V2V) and
vehicle to infrastructure (V2I) communication. Works consider-
ing security of internal communication, e.g., [5], [6], [10], are
rare. Wolf et al [5] presented feasible attacks and an abstract
cryptographic architecture for automotive networks without
studying the actual resource constraints. In [6], the authors
described four practically implemented attack scenarios, and
bring forward the necessity of applying cryptography to protect
the internal bus communication. In [10], the authors proposed a

software technique providing the best system-affordable security
protection for internal communication, which might be lower
than the required level if the system does not have sufficient
resources. Schaumont et al [11] presents a cryptographic co-
processor architecture, but internal communication security and
real-time requirements were not analyzed.

Researchers have widely explored the use of reconfigurable
hardware in computer systems, especially in embedded systems,
to realize hard-to-implement applications, e.g., the use of FPGA
in fault-tolerance [12] and cryptography implementation [13],
[14]. But to the best of our knowledge, this is the first work
that deals with real-time DiES design problems with an extra
dimension of security using FPGA.

The rest of the paper is organized as follows. Section II
introduces related backgrounds. Sections III and IV present
our system model and an illustrative example, respectively. We
formulate the problems in Section V. The proposed techniques
and experimental results are presented in Section VI and VII
respectively. We conclude the work in Section VIII.

II. PRELIMINARIES

A. Confidentiality requirement of internal communication
The internal communication of DiES is usually carrying

important system status or control messages that are critical
to the functional correctness. Moreover, the new wireless in-
terfaces, e.g., Wi-Fi and GSM which are usually connected to,
and cooperate with the internal communication infrastructures
to achieve better reliability and performance, do open up the
systems to the outside world and, thus, create the window for
potential malicious attacks. Therefore, protecting the internal
communication is indispensable for securing the whole system.

Cryptography can be utilized to protect security attributes.
However, it requires extra computational overhead. This makes
securing the DiES difficult, since the system very often have
limited computational capacity and have to function under
stringent timing constraints. In order to keep the internal com-
munication secret to unauthorized parties, even if the messages
were captured, we need to introduce confidentiality protection
for the communication by message encryption.

B. Iterated block ciphers
Cryptography can, by its nature, be divided into two cat-

egories, public-key and symmetric-key cryptography. Block
ciphers, one type of symmetric-key cryptography, are widely
used for encrypting critical information. In this paper, we will
focus on arguably the most widely adopted branch of block
ciphers, i.e. the iterated block ciphers (IBCs). IBCs are suitable
for use in embedded systems because of their high throughput
rate and suitability for hardware implementations. In this paper,
we assume the use of Advanced Encryption Standard (AES),
which is a standardized IBC originally known as Rijndael [15],

978-3-9810801-8-6/DATE12/ c©2012 EDAA



for encrypting and decrypting the messages, but the techniques
are also applicable if other IBCs are required explicitly.

The WCET of an encryption or decryption task of message
mi in IBCs is a linear function of the number of rounds, as in
Eq. 1.

WCETedi
= wI(edi) + rI(edi) ∗ xi (1)

where, edi is the encryption or decryption task for message
mi, and Iedi

is the implementation of edi that can be software
or FPGA. xi is the number of rounds, and (wI(edi), rI(edi))
depend on Iedi

. The more rounds are used, the longer time
the procedure takes and the closer the output is to a random
bitstream, which implies more difficult to break. For correct
message transmission, the same number of rounds is used by
an encryption and decryption (E/D) process pair.

C. Reconfigurable hardware
It is common to implement some functions or part of the sys-

tem in hardware when designing embedded systems to enhance
performance or meet constraints. FPGAs can be reconfigured
for different purposes, and are rapidly stepping into embedded
system design because of their flexibility. The characteristics
of FPGAs seem to match well with the core operations of
iterated block ciphers, i.e. bit-substitution, XOR and lookup
table operations. And due to the fact that the life cycle of
cryptographic algorithms is significantly lower than the life time
of most DiESs (which might easily be used for 20 years), we
can always flash the FPGAs with up-to-date algorithms when
needed without changing the hardware. Furthermore, FPGA
implementations can exploit the potential parallelism of IBCs.

III. APPLICATION AND SYSTEM MODEL

In this work, we capture an application S as a directed acyclic
process graph G(V,E,M) that is mapped to an execution plat-
form constituted of a set of computation nodes interconnected by
a communication bus. V is the set of non-preemptible processes,
and E contains the edges of the graph. An edge ei ∈ E from vs
to vt indicates that vt depends on vs in the execution flow. The
mapping from the processes to processing resources is given by
a function F : V → P , where P = {p1, p2, ..., pn} is the set of
computation nodes (the bus is also considered as a computation
node). The node that process vi is mapped to for execution
can be traced by F (vi). A processor, which runs software, can
cooperate and share memory with FPGA coprocessors. They
together form a computation node. mi ∈M indicates a message
that is to be sent over the bus. The messages in M need to be
protected by encryption, and are depicted as black dots on the
edges in the process graphs. The application must complete its
execution before an end-to-end delay D, known as the global
deadline.

Fig. 1 depicts an application graph and its mapping on the
execution platform. The hatched area beside each embedded
processor represents the attached FPGA unit. Additionally,
Xilinx [16] has shipped FPGA devices that allow modifica-
tion of only a part of the gate array (called partial dynamic
reconfiguration capability, abbr. as PDR). This capability offers
even more flexibilities to the system designers, since such
PDR enabled FPGAs can have part of the device reconfigured
at runtime, while the rest keeps operational. Meanwhile, the
FPGAs without PDR capability can only be reconfigured offline.
We will consider both kinds of FPGAs in this work.

Since the AES decryption performs similar operations as the
encryption, but in reverse order, (and replaces several inner

Fig. 1. A simple application

operations, e.g., SHIFTROWS, with their inverse operations), the
required amount of FPGA area and the execution times of AES
E/D processes are roughly the same. Therefore, we assume that
the area overhead of implementing one E/D process in FPGA
is 1 unit. Consequently, the extra hardware overhead introduced
into the whole system is the total FPGA units added.

In this example, V = {v1, v2, v3, v4, v5}, E =
{e1, e2, e3, e4, e5}, and M = {m1,m2,m3,m4}. Process
{v1, v5}, {v2, v4} and {v3} are mapped to the ECU on computa-
tion nodes p1, p2 and p3 respectively. The communication mes-
sages {m1,m2,m3,m4} are transferred over the bus, denoted
as p4. The worst case execution times (WCETs) of the processes
are {60, 180, 50, 140, 150}, and the worst case transmission
times (WCTTs) of the messages are assumed to be 20 time
units. The system is constrained by a global deadline D of 600
time units.

IV. MOTIVATIONAL EXAMPLES

In order to make the internal communication confidential,
we need to encrypt the messages before sending, and decrypt
them after receiving on another node. The E/D processes can be
implemented in hardware or software. However, implementing
all cryptographic operations in software very likely cannot
provide sufficient protection and at the same time, satisfy the
imposed time constraints.

Let us consider the system in Fig. 1. Assuming that all the
messages are plaintext (no E/D operations were performed),
the corresponding schedule is shown in Fig. 2(a). The end to
end delay is 490 units and, as can be observed, we have some
time slacks that can be used to perform E/D operations on the
messages. The WCETs of E/D processes are determined by the
function in Eq. 1. In this system, the designated rounds xi is 10
for all messages, and (wI(edi), rI(edi)) of software and FPGA
implemented E/D processes are (4, 10) and (2, 4) respectively.

If we do not introduce FPGA units into the system, we have
to carry out all E/D tasks in software on the ECUs. In this case,
in order to satisfy the deadline of 600, we can only encrypt the
messages with 3 rounds, which is not a satisfactory solution.
The schedule can be found in Fig. 2(b). A simple approach that
tries to reach the required number of 10 rounds, while respecting
all constraints, is to add new FPGA units for all E/D tasks. This
leads to an end-to-end delay of 594, and hardware overhead of
8. Fig. 2(c) illustrates the corresponding schedule.

If we look closer at the schedule in Fig. 2(c), we can find
that the encryption operations of m2 and m4 can share the
same FPGA unit. The same goes for decryption operations of
m1 and m2. In addition, we can save one extra FPGA unit by
implementing the encryption operation of m1 in software. By
this, we save three FPGA units without sacrificing the protection
level, as can be observed in Fig. 2(d). With this solution, the
system is able to encrypt all messages with the required 10
rounds, assisted by 5 FPGA units. In fact, this is the optimal
solution, and is the solution that we are interested in, if FPGAs
with static configuration are used.



Fig. 2. Schedule of different solutions

Solutions Rounds HW overhead Schedule
No E/D 0 0 Fig.2(a)
Software 3 0 Fig.2(b)
Straight-forward 10 8 Fig.2(c)
Static configuration 10 5 Fig.2(d)
PDR enabled 10 4 Fig.2(e)

TABLE I
RESULTS OF DIFFERENT SOLUTIONS

Furthermore, if we use PDR enabled FPGA, we can also
achieve the same level of security using even less hardware
area. The reconfiguration time ρ is assumed to be 60 units, and
the schedule is illustrated in Fig. 2(e). This solution is what we
want to achieve if PDR-enabled FPGAs are used. The FPGAs
on p1 and p2 only undertake E/D processes of the same kind
(all are encryptions, or all are decryptions), so they do not need
to be reconfigured at run time. While, the FPGA unit on p3
must be reconfigured dynamically (depicted as red rectangles),
since it is shared by both kinds of cryptographic operations.
The numbers of achieved rounds and hardware overheads of
the above solutions are listed in Table I.

V. PROBLEM FORMULATION

The application is modeled as a process graph G(V,E,M)
that is mapped to an execution platform as stated in Section III.
The WCETs and WCTTs of ordinary processes and messages
are known. The values of software and FPGA implemented
wI(edi) and rI(edi) are given. The hardware cost implied by
an E/D process is considered to be 1 unit. The application is
constrained by an end-to-end delay D, and is required to meet
a specific confidentiality protection level, that is given by the
set X = {x1, x2, ..., xn}. As previously mentioned, xi is the
number of rounds the chosen IBC uses for encrypting message

Fig. 3. The updated process graph

mi. Different messages can have different security demands
reflecting their importance.

We are interested in finding the minimal total number of
FPGA units N which need to be added into the system, so
that the system reaches the designated confidentiality protection,
and, at the same time, the real-time and resource constraints
are satisfied. Therefore, the objective is to find the appropriate
implementation for all E/D processes and the corresponding
system schedule that lead to the minimal hardware overhead. In
this paper, we consider two different FPGA resources, i.e. FPGA
with static configuration and with PDR capability. Therefore,
two solutions to the above problem are proposed in the next
section.

VI. PROPOSED TECHNIQUES

In order to make the system more flexible to be scheduled and
analyzed, we explicitly represent the message E/D operations as
independent processes. Such new processes are mapped to the
same computation nodes as their parents (the predecessor of an
encryption task, or the successor of a decryption task), and can
both be allocated on the ECU or an FPGA unit. Fig. 3 represents
the updated application corresponding to the one in Fig. 1. For
example, the encryption operation of message m1 is explicitly
captured as ce1, and can be mapped to the ECU or an FPGA
unit on p1.

We first formulate the design optimization problem using
constraint logic programming (CLP). CLP allows a user to for-
mulate the problem as a process of constraint satisfaction using
a set of clauses containing the constraints. Then the program is
passed to the solver that tries to find the optimal solution using
various methods, such as branch and bound search. However,
solving CLP problems is computationally expensive. Therefore,
we also propose heuristic approaches as an alternative, which
can be employed for large designs. As mentioned previously, we
consider two FPGA techniques, FPGA with static configuration
and FPGA with PDR capability.

A. FPGAs with Static Configuration

1) CLP formulation:
a) Dependency constraints: This set of constraints cap-

tures the structure of the process graph, i.e., a process can only
start its execution after all its predecessors terminate.

∀vi ∈ V and ∀vj ∈ Predecessors(vi),
StartT ime(vi) ≥ StartT ime(vj) +WCET (vj) (2)

b) Implementation constraints: An E/D process is imple-
mented either in software, or in FPGA.

swedi
+

U∑
j=1

hwj
edi

= 1 (3)

where, swedi
, hwj

edi
∈ {0, 1}. edi is implemented in software

if swj
edi

= 1, or on the jth FPGA unit of F (edi) if hwj
edi

= 1.
U is a constant number that gives finite number of constraints.



c) Execution time constraints: The non-E/D processes and
messages have fixed WCETs and WCTTs. The WCETs of
E/D processes depend on their implementations and number of
encryption rounds as in Eq. 1.

d) Resource sharing constraints: The encryption and de-
cryption processes on the same computation node cannot share
the same FPGA unit. This is formulated as

∀pi ∈ P and ∀j ∈ {1, ..., U},∑
ces∈{All E on pi}

hwj
ces ∗

∑
cdt∈{All D on pi}

hwj
cdt

= 0 (4)

e) Schedulability constraints: This set includes the schedu-
lability related constraints. First, processes on different ECUs or
FPGA units can run in parallel, while the execution of those on
the same ECU or FPGA unit must not overlap with each other.
And second, as all dependencies have been successfully defined,
the deadline constraint can be directly formulated as follows.

StartT ime(vlast) +WCET (vlast) ≤ D (5)
Optimization objective: If a potential FPGA unit on pi

is assigned with at least one E/D process, the corresponding
FPGA areas have to be added into the system. Therefore, the
optimization objective is to find the minimal number N of
FPGA units that need to be added into the system, so that all
constraints are satisfied. This can be represented as Eq. 6.

N =
∑
∀pi∈P

U∑
j=1

N ′j (6)

where, N ′j =

{
0, if

∑
∀edk on pi

hwj
edk

= 0

1, otherwise.
2) Heuristic:
The CLP solver returns the optimal solution satisfying the

constraints outlined above, if a solution exists. In this section,
we propose a heuristic approach which solves the problem
efficiently, and handles large designs. Our heuristic can be
divided into two parts, resource allocation and list scheduling
[17]. The former controls the outer co-design problem of FPGA
allocation and resource sharing. The latter handles the system
scheduling. The pseudocode is shown in Alg. 1.

We first detect the tasks on the critical path of application
S (line 2 of Alg. 1). Then FindBestECU(S) returns the ECU
carrying the most number of critical (on the critical path) soft-
ware implemented encryption tasks (or decryption tasks) (line
3). If two ECUs have the same number of critical encryption or
decryption tasks, the one with the longest total partial critical
path (PCP) length [17] of the critical tasks is chosen. After that,
all encryption or decryption tasks on ECU best are moved to a
new FPGA unit (line 5-7). As, in this case, an FPGA unit can
only be configured for encryption or decryption processes, the
function MoveToFPGA(ed) checks whether ed and each FPGA
unit belong to the same computation node, and whether the
unit is for the same type of operation, i.e. for encryption, or for
decryption.

If there is no software implemented critical E/D task, the
algorithm tries to find the critical E/Ds on FPGAs, and save them
into a list edList (line 9). IF edList is empty, it means that no
E/D task is left on the critical path. Hence, the application cannot
further be accelerated by hardware implementation of E/D tasks
and, thus, the heuristic is terminated. Otherwise, we sort edList
in descending order of their PCP lengths, and try to allocate each
E/D task ed ∈ edList in an appropriate implementation (line
14-27). Fig. 4 is an illustrative example for line 14-27.

Fig. 4. An illustrative example

The task graph in Fig. 4(a) is part of a bigger system. The
WCET of vt is 100 time units, and WCTT of the messages is 10
time units. (wI(edi), rI(edi)) of software and FPGA implemented
E/D processes are set as (4, 10) and (2, 4) respectively. mi,mj

and mk are received at time 490, 500 and 510 respectively.
In order for the system to meet the global deadline, vt must
finish its execution before 700 time units. Currently, all the three
decryption processes cdi, cdj and cdk are on the critical path,
and are allocated on the same FPGA unit leading to the schedule
in Fig. 4(b). As can be noticed, vt finishes at time 716, which
means that the global deadline will be violated. The algorithm
tries to move cdi back to the ECU that it originally belongs
to. This will lead to an end-to-end delay no longer than the
delay sl of the previous system, so the algorithm keeps the
current system, and breaks from the inner loop (line 15-17).
The schedule can be found in Fig. 4(c). In another case, if vt
must finish before 680 time units, reallocating cdi will not give
a feasible solution, so the algorithm tries to allocate the next
process cdj in edList on an FPGA unit that it was not be
mapped to before (line 19), e.g., a new FPGA unit possibly or
another existing FPGA unit on the same computation node that
is free for cdj . This leads to the schedule in Fig. 4(d). Then,
the algorithm breaks from the inner loop (line 21). Otherwise,
it moves cdj back to the FPGA unit which it was mapped to
Algorithm 1 Heuristic for FPGA with static configuration

1: while (sl = ListScheduling(S)) > D do
2: detect the tasks on the critical path of S
3: best = FindBestECU(S)
4: if best 6= null then
5: for each ed on best do
6: MoveToFPGA(ed)
7: end for
8: else
9: save the critical E/D tasks on FPGA into edList

10: if edList is empty then
11: return S cannot satisfy the deadline
12: end if
13: sort edList in descending order of PCP length
14: for each ed in edList do
15: move ed back to the original ECU
16: if (ListScheduling(S) ≤ sl) then
17: break
18: else
19: MoveToFPGA(ed) in SKIP mode
20: if ListScheduling(S) < sl then
21: break
22: else
23: move ed back to the previous FPGA
24: release the FPGA if one was added in line 19
25: end if
26: end if
27: end for
28: end if
29: end while



previously, and release the FPGA unit if a new one was added
into the system (line 23-24). The algorithm continues until the
system can be scheduled within the global deadline, and returns
the solution. Or, it terminates when edList is empty, which
means that the system cannot satisfy the deadline constraint
while achieving the designated confidentiality protection.

We have two settings that help avoid deadlocks. Each E/D
process has a history list keeping track of the FPGAs that it
has been implemented on. If it needs to be moved to FPGA in
SKIP mode, it avoids being moved to an FPGA unit that is
in its history list. And we ignore the E/D tasks that have been
moved too many times, and keep them in the ECU or FPGA
where it appears the most times. The length of the history list
and the value of maximal moves can be tuned for each problem
size to reach the best performance.

B. Partial Dynamic Reconfiguration

PDR enabled FPGAs allow reconfiguring a portion of the
circuit, while the other parts remain functional. In this case,
different types of cryptographic operations, i.e. encryption and
decryption processes, can share the same FPGA unit, if there is
enough time for reconfiguring in between. The PDR capability
increases the flexibility of resource sharing, thereby reducing
the hardware overhead.

1) CLP formulation:
The CLP formulation for the PDR enabled FPGAs is to

some extent similar with the previous case. In this section, we
only focus on the constraints that differ, namely, the resource
sharing and reconfiguration constraints. The E/D processes can
be implemented on the same FPGA unit. Hereby, the unit needs
to be reconfigured if a process is of different kind with the
previous one. We define a new kind of tasks, called the PDR
tasks, to capture the reconfiguration procedures of the FPGAs.
The WCET of the PDR tasks can be 0 or ρ. A PDR task is
an empty task if its WCET is 0, or a valid task otherwise. ρ
is a constant value given by the designer specifying the partial
dynamic reconfiguration time of his FPGA implementation.
• Partial dynamic reconfiguration:

The FPGA units must be reconfigured on the fly to support
resource sharing between encryption and decryption oper-
ations. These constraints can be formulated as follows.

∀pi ∈ P and ∀fpj ∈ {all potential FPGA units on pi},
∀eds ∈ {all E/D tasks on pi},
edt is the previous task of eds and hwfpj

edt
= 1

WCET (r
fpj
eds

) =

0, if

{
hw

fpj
eds

= 0

hw
fpj
eds

= 1 and E(eds) = E(edt)

ρ, if hwfpj
eds

= 1 and E(eds) 6= E(edt)
(7)

where, rfpj

eds
is the PDR task for eds on potential FPGA

unit fpj , and E(eds) =

{
0, if eds is an encryption task
1, if eds is a decryption task.

• PDR dependencies:
The executions of E/D tasks and PDR tasks on the same
FPGA unit cannot overlap with each other. An E/D task
can only start its execution after the module has been
successfully reconfigured, which is already captured by
dependency constraints.
Optimization objective: The objective is to minimize the

total number of FPGA units that must be added into the system

as the previous static configuration approach.
2) Heuristic:
The structure of our proposed heuristic for PDR enabled

FPGAs is similar to that of Alg. 1. We also try to guide the
resource distribution by analyzing the E/D tasks on the critical
path. But when looking for the ECU best (line 3), the algorithm
counts the number of critical E/D processes of both encryption
and decryption, since the E/D tasks can share the same FPGA
unit by dynamically reconfiguration. If an E/D task ed needs
to be moved to FPGA (the MoveToFPGA(ed) function), the
algorithm only checks whether ed and each FPGA unit belong
to the same computation node. In addition, we insert a set of
new tasks capturing the reconfiguration operations when we
schedule the application. In order to avoid deadlocks, the ideas
of maximal moves and history lists are reserved from the static
configuration approach.

VII. EXPERIMENTAL RESULTS

We have performed experiments on six sets of applications
having 10, 15, 20, 40, 80 and 120 processes (excluding E/D
tasks) that are mapped to 2, 3, 4, 7, 10 and 15 processors re-
spectively. All experiments were performed on a Linux machine
having a four-core Intel Xeon CPU with 2.66GHz frequency
and 8GB RAM. In our experiments, we set (wI(edi), rI(edi))
in software and FPGA as (4, 10) and (2, 4) respectively.
The messages are assumed to have the same confidentiality
requirement of 10 E/D rounds. The CLP experiments were
implemented in the ECLiPSe constraint programming system
[18], and were carried out with a timeout setup of 1800 seconds.

A. FPGA with Static Configuration

Due to the fact that the CLP formulation does not scale even
for middle-sized systems, we also compare our heuristic with
a greedy straight-forward approach. This approach repeatedly
assigns a new FPGA unit to take over the E/D tasks from the
ECU that currently has the most number of encryption or de-
cryption tasks. It terminates when the system can be scheduled
within the deadline, that is, a solution is found. Otherwise, it
terminates when there is no software implemented E/D process
left, which means that the system cannot be protected with the
designated requirements, while satisfying the time constraints,
using this greedy approach.

For each set of applications, we have performed experiments
on 20 individual applications that have the same number of
non-E/D processes and similar number of bus communications.
The average execution times (AETs) of CLP optimization, our
heuristic and the greedy approach are presented in Fig. 5, in
which the y-axis is in logarithmic scale. For the AET calculation
of CLP, we only considered those experiments which terminated
before the timeout (for example, in the case of application size
20, only 5 out of 20 CLP runs finished before the timeout).
Starting from size 40, no CLP experiment terminated before
the timeout.

When comparing the results obtained by two approaches, we
calculate the average additional hardware expenditure (AAHE)
of one approach over the other. This is formulated as

AAHE =
1

n
(
∑
∀i∈n

H ′i −Hi

Hi
) ∗ 100% (8)

where, Hi and H ′i are the obtained results with the two
approaches for the same application, and n is the number of
valid experiments, i.e. both approaches found solutions. Fig. 6



Fig. 5. Optimization time with static configuration Fig. 6. Results with static configuration (1) Fig. 7. Results with static configuration (2)

Fig. 8. Optimization time with PDR Fig. 9. Results with PDR (1) Fig. 10. Results with PDR (2)

presents the AAHE of our proposed heuristic over CLP and of
the greedy approach over CLP. Fig. 7 depicts the AAHE of the
greedy approach over our proposed heuristic for all application
sizes. As can be observed, our heuristic approach provides close
results to the optimum. For example, on the largest application
size, 20, where CLP did not fail in all experiments, our heuristic
only requires about 11% extra FPGA units compared to the
optimal solutions. In the meantime, our heuristic approach saves
significant amount of FPGA units compared with the greedy
straight-forward method.

B. Partial Dynamic Reconfiguration
We have conducted the same set of experiments as those in

static configuration considering FPGAs with PDR capability.
The AET comparison of the CLP and heuristic approach can be
found in Fig. 8. Starting from application size 40, no execution
time is presented for the CLP formulation, since there is no
experiment finished within the timeout.

We use the same analytical method, (Eq. 8) as before, to
compare the quality of results. In Fig. 9, we compare the
optimal solutions obtained by CLP with the results returned
by our heuristic approaches for both FPGA techniques. The
experiments that CLP failed to find the optimum within the
timeout setup are ignored. The hardware saving using PDR
enabled FPGA over static configured FPGA for all application
sizes is illustrated in Fig. 10. It can be observed that our heuristic
performs quite well comparing with the optimal results obtained
from CLP, and achieves large FPGA units saving compared with
static configured FPGAs.

VIII. CONCLUSION

In this paper, we have presented our optimization techniques
for protecting the confidentiality requirements of internal com-
munication using iterated block ciphers. We investigated the
problem in two different FPGA techniques which are FPGA
with static configuration and PDR capability. We proposed
heuristic approaches for solving the problems. The time effi-
ciency and result quality of our heuristics were demonstrated
from extensive experiments. This work can be employed in the
design of any distributed real-time embedded systems where the
internal communication security is essential.

REFERENCES

[1] “CAN in Automation (CiA),” http://www.can-cia.org/.
[2] “FlexRay,” http://www.flexray.com/.
[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,

D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Ex-
perimental Security Analysis of a Modern Automobile,” in The IEEE
Symposium on Security and Privacy, May 2010.

[4] T. Zellar and N. Mayersohn, “Can a virus hitch a ride in your car?” New
York Times, March 13, 2005.

[5] M. Wolf, A. Weimerskirch, and C. Paar, “Secure In-Vehicle Communica-
tion,” in Embedded Security in Cars, 2006, pp. 95–109.

[6] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN
networks–practical examples and selected short-term countermeasures,”
Reliability Engineering & System Safety, vol. 96, no. 1, pp. 11 – 25,
2011, special Issue on Safecomp 2008.

[7] M. Raya and J.-P. Hubaux, “Securing vehicular ad hoc networks,” Journal
of Computer Security, vol. 15, no. 1, pp. 39–68, 2007.

[8] B. Parno and A. Perrig, “Challenges in Securing Vehicular Networks,” in
Proceedings of Workshop on Hot Topics in Networks (HotNets-IV), Nov.
2005.

[9] P. Golle, D. Greene, and J. Staddon, “Detecting and correcting malicious
data in VANETs,” in VANET ’04: Proceedings of the 1st ACM interna-
tional workshop on Vehicular ad hoc networks. New York, NY, USA:
ACM, 2004, pp. 29–37.

[10] K. Jiang, P. Eles, and Z. Peng, “Optimization of message encryption for
distributed embedded systems with real-time constraints,” in 14th IEEE
Symposium on Design and Diagnostics of Electronic Circuits and Systems,
ser. DDECS ’11, april 2011, pp. 243–248.

[11] P. Schaumont and I. Verbauwhede, “Domain-specific codesign for embed-
ded security,” Computer, vol. 36, no. 4, pp. 68 – 74, april 2003.

[12] A. Lifa, P. Eles, Z. Peng, and V. Izosimov, “Hardware/software optimiza-
tion of error detection implementation for real-time embedded systems,”
in Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, ser. CODES/ISSS ’10.
ACM, 2010, pp. 41–50.

[13] A. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An Fpga-Based Performance
Evaluation of the AES Block Cipher Candidate Algorithm Finalists,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 9,
no. 4, pp. 545 –557, aug. 2001.

[14] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim, “A comparative study of
performance of aes final candidates using fpgas,” in Proc. Cryptographic
Hardware and Embedded Systems Workshop, ser. CHES 2000. Springer-
Verlag, 2000, pp. 125–140.

[15] The design of Rijndael: AES–the advanced encryption standard. Springer,
2002.

[16] “Xilinx,” http://www.xilinx.com/.
[17] P. Eles, Z. Peng, P. Pop, and A. Doboli, “Scheduling with Bus Access

Optimization for Distributed Embedded Systems,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 8, no. 5, pp. 472–491, 2000.

[18] Constraint Logic Programming using ECLiPSe. Cambridge University
Press, 2006.


