
A Methodology for Automated Design of
Hard-Real-Time Embedded Streaming Systems

Mohamed A. Bamakhrama, Jiali Teddy Zhai, Hristo Nikolov and Todor Stefanov
Leiden Institute of Advanced Computer Science

Leiden University, Leiden, The Netherlands
Email: {mohamed, tzhai, nikolov, stefanov}@liacs.nl

978-3-9810801-8-6/DATE12/ c©2012 EDAA

Abstract—The increasing complexity of modern embedded
streaming applications imposes new challenges on system design-
ers nowadays. For instance, the applications evolved to the point
that in many cases hard-real-time execution on multiprocessor
platforms is needed in order to meet the applications’ timing
requirements. Moreover, in some cases, there is a need to run
a set of such applications simultaneously on the same platform
with support for accepting new incoming applications at run-
time. Dealing with all these new challenges increases significantly
the complexity of system design. However, the design time
must remain acceptable. This requires the development of novel
systematic and automated design methodologies driven by the
aforementioned challenges. In this paper, we propose such a novel
methodology for automated design of an embedded multiproces-
sor system, which can run multiple hard-real-time streaming
applications simultaneously. Our methodology does not need the
complex and time-consuming design space exploration phase,
present in most of the current state-of-the art multiprocessor de-
sign frameworks. In contrast, our methodology applies very fast
yet accurate schedulability analysis to determine the minimum
number of processors, needed to schedule the applications, and
the mapping of applications’ tasks to processors. Furthermore,
our methodology enables the use of hard-real-time multiprocessor
scheduling theory to schedule the applications in a way that
temporal isolation and a given throughput of each application are
guaranteed. We evaluate an implementation of our methodology
using a set of real-life streaming applications and demonstrate
that it can greatly reduce the design time and effort while
generating high quality hard-real-time systems.

I. INTRODUCTION

The increasing complexity of embedded streaming applica-
tions in several domains (e.g., defense and medical imaging)
imposes new challenges on embedded system designers. In
particular, the applications evolved to the point that in order to
meet their timing requirements, in many cases, the applications
need hard-real-time execution on multiprocessor platforms [1].
Moreover, in some other cases (e.g., software defined radio),
multiple applications have to run simultaneously on a single
multiprocessor platform with the ability to accept new incom-
ing applications at run-time [1]. The way to deal with these
new challenges is to design time-predictable architectures
which employ run-time resource management solutions. These
solutions must provide fast admission control, i.e., ability
to determine at run-time whether a new application can be
scheduled to meet all deadlines, and temporal isolation, i.e.,
ability to start/stop applications at run-time without affecting
other already running applications. Addressing all these new
challenges increases significantly the complexity of system de-
sign. However, the design time must remain acceptable, which
requires novel systematic, and moreover, automated design
methodologies driven by the aforementioned challenges.

Current practices in designing embedded streaming systems
employ Model-of-Computation (MoC)-based design [2], which

allows the designers to express important application proper-
ties, such as parallelism, in an explicit way. Also, the MoC-
based design facilitates analysis of certain system properties
such as timing behavior. In most current MoC-based design
methodologies [2], an application is typically modeled as
either a dataflow graph, e.g., Synchronous Dataflow (SDF) [3]
and Cyclo-Static Dataflow (CSDF) [4], or a process network,
e.g., Polyhedral Process Network (PPN) [5]. Although there is
a large diversity of design methodologies nowadays, most of
them do not consider systems running multiple applications
simultaneously. The problem of automated design of such
systems has been addressed in [6] and [7]. However, these
methodologies do not provide timing guarantees for each
application as they provide only best-effort services. Timing
guarantees are provided by other design approaches, e.g., [8]–
[10]. Nevertheless, most of the methodologies share the fol-
lowing two shortcomings. First, there is a lack of tools for
automated parallelization of legacy applications. It is common
knowledge that manually building a parallel specification of
an application is a tedious and error-prone task. Second,
the design methodologies rely on complex Design Space
Exploration (DSE) techniques to determine the minimum
number of processors needed to schedule the applications
and the mapping of tasks to processors. Depending on the
application and target platform complexity, DSE may take
considerable amount of time. Therefore, these two particular
shortcomings in combination may lead to a very long design
cycle, especially if we consider designing a system that runs
multiple applications simultaneously with guaranteed hard-
real-time execution. In this paper, we address these short-
comings and propose a novel methodology for automated
design of a multiprocessor embedded system that runs multiple
applications simultaneously and provides temporal isolation
and guaranteed throughput for each application.

A major part of the design methodology we propose is
based on algorithms from the hard-real-time multiprocessor
scheduling theory [11]. These algorithms can perform fast
admission and scheduling decisions for incoming applications
while providing timing guarantees and temporal isolation. So
far, these algorithms received little attention in the embedded
streaming community because they typically assume indepen-
dent periodic or sporadic tasks. In contrast, modern embedded
streaming applications are usually specified as graphs where
nodes represent tasks and edges represent data-dependencies.
Recently, it has been shown that embedded streaming appli-
cations modeled as acyclic CSDF graphs can be scheduled
as implicit-deadline periodic tasks [12]. This enables applying
hard-real-time multiprocessor scheduling algorithms to a broad
class of streaming applications.

A. Paper Contributions
We devise a methodology for the automated design of an

embedded Multiprocessor System-on-Chip (MPSoC) that runs
a set of automatically parallelized hard-real-time embedded
streaming applications. One of the main contributions is that
our methodology does not require DSE to determine the mini-
mum number of processors needed to schedule the applications
and the mapping of applications’ tasks to processors. We
realize our methodology as an extension to the Daedalus
design flow [13]. The extended flow, named DaedalusRT,
accepts a set of streaming applications (specified in sequential
C) and derives automatically their equivalent CSDF graphs
and PPN models. The automated derivation of CSDF graphs
is another main contribution of this paper because it enables
fast schedulability analysis in DaedalusRT. The derived CSDF
graphs are used in such analysis which applies hard-real-time
multiprocessor scheduling theory to schedule the applications
in a way that temporal isolation and a given throughput of each
application are guaranteed. The PPN models are used for the
generation of the parallel code that runs on the processors of
the target multiprocessor system. We evaluate the DaedalusRT

flow and demonstrate that it can greatly reduce the designer
effort while generating high quality systems.
B. Scope of Work

The methodology, we propose, considers as an input a set of
independent streaming applications specified as Static Affine
Nested Loop Programs (SANLP) [5] without cyclic depen-
dencies. We assume that the applications process periodic
input streams of data. The target hardware platform is a tiled
homogeneous MPSoC with distributed memory.

The remainder of this paper is organized as follows: Sec-
tion II gives an overview of the related work. Section III
introduces the preliminary material. Section IV presents the
proposed methodology and DaedalusRT design flow. Section V
presents the results of an empirical evaluation of DaedalusRT.
Finally, Section VI ends the paper with conclusions.

II. RELATED WORK

Several design flows for automated mapping of applications
onto MPSoC platforms are surveyed in [2]. These flows use
DSE procedures to determine the number of processors and
the mapping of tasks to processors. In contrast, in the design
flow proposed in this paper, we replace the complex DSE with
very fast and accurate schedulability analysis to determine
the minimum number of processors, needed to schedule the
applications, and the mapping of tasks to processors. In
addition, our design flow generates hard-real-time systems and
derives the CSDF model used in the analysis in an automated
way.

PeaCE [8] is an integrated HW/SW co-design framework for
embedded multimedia systems. Similar to our approach, it also
uses two MoCs. In contrast, however, it employs Synchronous
Piggybacked Dataflow (SPDF) for computation tasks and Flex-
ible Finite State Machines (fFSM) for control tasks. PeaCE
uses DSE techniques and HW-SW co-simulations during the
design phase in order to meet certain timing constraints. In
contrast, we avoid these iterative steps by applying hard-real-
time multiprocessor scheduling theory to guarantee temporal
isolation and a given throughput of each application running
on the target MPSoC.

CA-MPSoC [9] is an automated design flow for mapping
multiple applications modeled as SDF graphs onto Commu-

Fig. 1. A SANLP program with its PPN and CSDF representations.
nication Assist (CA) based MPSoC platform. The flow uses
non-preemptive scheduling to schedule the applications. In
contrast, we consider only preemptive scheduling, because
non-preemptive scheduling to meet all the deadlines is known
to be NP-hard in the strong sense even for the uniprocessor
case [14]. Moreover, we consider a more expressive MoC,
namely the CSDF model.

An automated design flow for mapping applications mod-
eled as SDF graphs onto MPSoCs while providing timing
guarantees is presented in [10]. The flow requires the designer
to specify a sequential implementation (in C) of each actor
in an SDF graph. The generated implementation uses either
Self-Timed or Time-Division-Multiplexing (TDM) scheduling
to ensure meeting the throughput constraints. In contrast, our
design flow starts from sequential applications written in C,
and consequently, the code realizing the functional behavior of
the PPN processes is automatically extracted from the initial
C programs. Moreover, we schedule the tasks as implicit-
deadline periodic tasks, which enables applying very fast
schedulability analysis to determine the minimum number of
required processors. Instead, [10] applies DSE techniques to
determine the minimum number of processors and the map-
ping. Finally, our methodology supports multiple applications
to run simultaneously on an MPSoC, while the work in [10]
does not support multiple applications.

III. PRELIMINARIES
In this section, we provide a brief overview of the PPN and

CSDF models, hard-real-time scheduling of CSDF, and the
Daedalus flow. This overview is essential for understanding
the contributions presented in Section IV.
A. PPN and CSDF

Both of the PPN [5] and CSDF [4] are parallel MoCs, in
which processes/actors communicate only explicitly via FIFO
channels. The execution of a PPN process is a set of itera-
tions. This set of iterations is represented using the polytope
model [15] and is called process domain, denoted by dprocess.
Accessing input/output ports of the PPN process is represented
as a subset of the process domain, called input/output port
domain. Compared to PPN processes, accessing input/output
ports of CSDF actors is described using repetitive produc-
tion/consumption rates sequences. Another key difference is
that synchronization in PPN is implemented using blocking
reads/writes, while in CSDF it is implemented explicitly using
a schedule. It has been shown in [16] that a non-parametrized
and acyclic PPN is equivalent to a CSDF graph where the

production/consumption rates sequences consist only of 0s
and 1s. A ’0’ in the sequence indicates that a token is not
produced/consumed, while a ’1’ indicates that a token is
produced/consumed. Below, we use an example to illustrate
both PPN and CSDF models.

Consider the sequential C program given in Fig. 1(a). The
equivalent PPN model that can be derived using the pn
compiler [5] is shown in Fig. 1(b). For the implementation
of process snk shown in Fig. 1(c), its process domain is given
as dsnk = {(w, i, j) ∈ Z3 | w > 0 ∧ 1 ≤ i ≤ 10 ∧ 1 ≤ j ≤ 3}.
Reading tokens from input port IP1 to initialize function
argument in1 of snk is represented as input port domain
dIP1 = {(w, i, j) ∈ Z3 | w > 0 ∧ 1 ≤ i ≤ 10 ∧ 1 ≤ j ≤ 2}.
The equivalent CSDF graph has the same topology as the
PPN model in Fig. 1(b). The CSDF actor snk corresponding
to process snk is shown in Fig. 1(d). The execution of actor
snk is represented using consumption rates sequences. Reading
tokens from input port IP1 is described as the consumption
rates sequence [1, 1, 0].

B. Hard-Real-Time Scheduling of Applications Modeled as
Acyclic CSDF Graphs

Below, we summarize the main theoretical results proved in
[12]. Let G be a consistent and live CSDF graph with periodic
input streams. Let N be the set of actors in G, and E be the set
of communication channels in G. The authors in [12] proved
the following:
Theorem 1. For any acyclic G, a periodic schedule S exists
such that every actor nj ∈ N is fired in a strictly periodic
manner with a constant period λj ∈ ~λmin, where ~λmin is given
by Lemma 2 in [12], and every communication channel eu ∈
E has a bounded buffer capacity given by Theorem 4 in [12].

Theorem 1 states that the tasks of any application modeled
as an acyclic CSDF graph can be scheduled as implicit-
deadline periodic tasks. This result enables using a wide
variety of hard-real-time multiprocessor scheduling algorithms
to schedule the applications. The result extends trivially to
multiple applications. Let Υ = {G1, G2, · · · , GN} be a set
of applications. Then, a super task set ΓΥ can be formed
by the union of all the individual task-sets representing the
applications. That is:

ΓΥ =
⋃
Gi∈Υ

ΓGi (1)

ΓGi is given by Corollary 2 in [12] as ΓGi = {τ1, τ2, · · · , τK}.
τj ∈ ΓGi

is a task represented by a 3-tuple 〈µj , λj , φj〉, where
µj is the Worst-Case Execution Time (WCET) of the task, λj
is the task period, and φj is the task start time. Each task τj
corresponds to an actor nj ∈ N . Corollary 2 states also that it
is possible to select any hard-real-time scheduling algorithm
for asynchronous sets of implicit-deadline periodic tasks to
schedule ΓΥ. Once a scheduling algorithm is selected, we
derive the minimum number of processors needed to schedule
the applications (See Equations 5, 6, and 7 in [12]), and the
mapping of tasks to processors. Deriving the minimum number
of processors is based on computing the utilization factors of
the tasks. The utilization of a task τj is Uj = µj/λj . Similarly,
the utilization of a task-set ΓGi

is UΓGi
=

∑
τj∈ΓGi

Uj . The
practical applicability of the aforementioned theoretical results
will be demonstrated in Section IV.

(a) Initial Daedalus design flow

(b) DaedalusRT design flow

Fig. 2. Comparing the initial Daedalus and DaedalusRT flows.
C. Daedalus Flow

Daedalus [13] is a flow for automated design of embedded
streaming systems. An overview of Daedalus is shown in
Fig. 2(a). The flow consists of three main phases. The Par-
allelization phase is realized using the pn compiler [5] which
takes a single application (in the SANLP form) as an input
and produces the PPN model of the application. The Design
Space Exploration (DSE) phase is realized using Sesame [17]
which takes the PPN model of the application as an input and
generates a Pareto-optimal set of design points. A design point
is a tuple consisting of platform and mapping specifications.
The System Synthesis phase is realized using ESPAM [13]
which takes as an input the PPN model of the application
together with the platform and mapping specifications, and
produces an implementation of the system. ESPAM supports
several back-ends such as Xilinx Platform Studio (XPS) for
FPGA synthesis.

IV. PROPOSED METHODOLOGY AND ITS REALIZATION
In this section, we present our design methodology and its

realization, i.e., the DaedalusRT design flow.
A. Overview

Our methodology is based on the initial Daedalus method-
ology. However, it differs in the following aspects: 1) support
for multiple applications. The initial Daedalus flow supports
only a single application, whereas our DaedalusRT flow sup-
ports multiple applications, 2) replacing the complex DSE
with very fast yet accurate schedulability analysis to deter-
mine the minimum number of processors needed to schedule
the applications, and 3) using hard-real-time multiprocessor
scheduling algorithms providing temporal isolation to schedule
the applications.

An overview of our DaedalusRT flow is shown in Fig. 2(b).
The DSE phase of Daedalus is replaced with the analysis
model derivation (described in Sec. IV-B) and analysis (de-
scribed in Sec. IV-C) phases. Note that this replacement is
possible only under the assumptions described in Sec. I-B.
In the analysis model derivation phase, the CSDF graphs
equivalent to the PPN models are derived. The derivation
phase uses WCET analysis to determine the WCET of each
actor. Determining the WCET can be done through either static
code analysis or exact measurements on the target platform.
After that, the CSDF models are analyzed to determine the
platform and mapping specifications. In our methodology, we
use CSDF as an analysis model, and PPN for code generation.
As mentioned in Sec. III-A, [16] shows that a PPN has an
equivalent CSDF graph. However, the authors in [16] do

Algorithm 1: Procedure to derive the CSDF model
Input: A PPN
Result: The equivalent CSDF graph

1 Derive the topology of the CSDF graph;
2 foreach CSDF actor in the CSDF graph do
3 Derive process variants for its corresponding PPN process;
4 Derive a repetitive pattern of process variants;
5 foreach input/output port of the CSDF actor do
6 foreach process variant in the derived pattern in line 4 do
7 Generate consumption/production rate;

not provide any procedure for deriving the equivalent CSDF
automatically. Thus, a procedure for automatic derivation of
the equivalent CSDF constitutes a major contribution of this
paper.
B. Deriving the Analysis Model (CSDF)

The procedure to derive a CSDF graph from its equivalent
PPN is depicted in Algorithm 1. It consists of two main steps,
namely 1) topology derivation (line 1 in Algorithm 1) and 2)
consumption/production sequence derivation for input/output
ports of each CSDF actor (line 3-7 in Algorithm 1). Deriving
the topology of the CSDF graph is straightforward. That
is, the nodes, input/output ports, and edges in the CSDF
graph have one-to-one correspondence to those in the PPN.
Below, we discuss the second step which derives the con-
sumption/production rates sequences for the input/output port
of a CSDF actor.

The second step consists of three sub-steps. In the first
sub-step (line 3 in Algorithm 1), for the PPN process cor-
responding to each CSDF actor, we find the access pattern of
the PPN process to its input/output ports. To realize this, we
introduce the notion of process variant, which captures the
consumption/production behavior of the process.
Definition 1 (Process Variant). A process variant v of a PPN
process is defined by a tuple 〈dv, ports〉, where dv is the variant
domain, dv ⊆ dprocess, and ports is a set of input/output ports.

For example, consider process snk shown in Fig. 1(c).
One of the process variants is 〈dv, {IP1,IP3}〉, where dv =
{(w, i, j) ∈ Z3 | w > 0∧1 ≤ i ≤ 10∧1 ≤ j ≤ 2}. According
to Definition 1, for all iterations in domain dv during the
execution of process snk, this process always reads data from
input ports IP1 and IP3.

The infinite repetitive execution of a PPN process is initially
represented by an unbounded polyhedron. (e.g., see dsnk in
Sec. III-A). Therefore, we project out dimension w which
denotes the while-loop from all the domains because it is
irrelevant for the subsequent steps. As a result, the execution
of a PPN process is represented by a bounded polyhedron.
Algorithm 2 applies standard integer set operations to the
domains to derive all process variants of a PPN process.
The basic idea is that, each port domain bound to a process
function argument is intersected with all other port domains.
The intersected domain (line 13 in Algorithm 2) and the
difference between two port domains (lines 14 and 15 in
Algorithm 2) are then added to the set of process variants.
In this way, all process variants are iteratively derived.

Consider process snk in Fig 1(c). Its process function
snk(in1, in2) has two arguments represented as a set
A = {in1,in2}, which is the input to Algorithm 2. The
port domains bound to in1 are dIP1 and dIP2, while the port
domain bound to in2 is dIP3. These port domains are illus-
trated in Fig. 3(a) , surrounded by bold lines. Following the

Algorithm 2: Procedure to derive process variants of a process
Input: A: the set of process function arguments
Result: V : a set of process variants

1 V ← ∅;
2 foreach a ∈ A do
3 foreach dport bound to a do
4 Project out dimension w in dport;
5 y ← 〈dport, {port}〉;
6 if V = ∅ then
7 V ← {y};
8 else
9 T ← V ;

10 foreach v ∈ V do
11 dintersect ← v.dport ∩ y.dport;
12 if dintersect 6= ∅ then
13 xintersect ← 〈dintersect, {v.ports} ∪ {y.ports}〉;
14 xdiff1 ← 〈v.dport − y.dport, {v.ports}〉;
15 xdiff2 ← 〈y.dport − v.dport, {y.ports}〉;
16 T ← T ∪ {xintersect};
17 if xdiff1.dport 6= ∅ then
18 T ← T ∪ {xdiff1};
19 if xdiff2.dport 6= ∅ then
20 T ← T ∪ {xdiff2};
21 else
22 T ← T ∪ {y};

23 V ← T ;

24 foreach v ∈ V do
25 if |input ports in v.ports| 6= |input arguments in A| then
26 V ← V \ v;

(a) Port domains (b) Variant domains

Fig. 3. Domains of process snk in Fig. 1(c).
procedure described in Algorithm 2, we start with projecting
out dimension w in the port domains, which yields:

in1 : d′IP1= {(i, j) ∈ Z2 | 1 ≤ i ≤ 10 ∧ 1 ≤ j ≤ 2}
d′IP2= {(i, j) ∈ Z2 | 1 ≤ i ≤ 10 ∧ j = 3}

in2 : d′IP3= {(i, j) ∈ Z2 | 1 ≤ i ≤ 10 ∧ 1 ≤ j ≤ 3}
Algorithm 2 produces the set of process variants V = {v1, v2}
shown below:
v1 = 〈dv1, {IP1, IP3}〉
dv1 = d′IP1 ∩ d′IP3 = {(i, j) ∈ Z2 | 1 ≤ i ≤ 10 ∧ 1 ≤ j ≤ 2}
v2 = 〈dv2, {IP2, IP3}〉
dv2 = d′IP2 ∩ d′IP3 = {(i, j) ∈ Z2 | 1 ≤ i ≤ 10 ∧ j = 3}

Process variant domains dv1
and dv2

are also illustrated in
Fig. 3(b). Process snk reads data from input ports IP1 and
IP3 in domain dv1, whereas it reads data from input ports IP2
and IP3 in dv2.

In the second sub-step (line 4 in Algorithm 1), we find
a one-dimensional, repetitive pattern of the process variants
derived in the first sub-step. To find the repetitive pattern, we
first project out dimension w in the process domain dprocess
to obtain domain d′process. Then, we build a sequence of the
iterations in d′process according to their lexicographic order, see
the arrows in Fig. 3(b). Next, we replace each iteration in
the sequence with the process variant to which the iteration
belongs.

For example, for process snk, the sequence of the iterations

Fig. 4. Suffix tree for the sequence of process variants

in d′snk is: (1, 1), (1, 2), (1, 3), (2, 1), ..., (10, 3) (see the arrows
in Fig. 3(b)), where d′snk = {(i, j) ∈ Z2 | 1 ≤ i ≤ 10 ∧ 1 ≤
j ≤ 3}. The corresponding sequence of the process variants
of process snk is:
Ssnk = {v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2,

v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2}
Since the length of the derived sequence is equal to |d′process|,

in general, the derived sequence might be very long. Thus,
we express the sequence using the shortest repetitive pattern
covering the whole sequence. This shortest repetitive pattern
can be found efficiently using a data structure called suffix
tree [18]. A suffix tree has the following properties: 1) A
suffix tree for a sequence S of length L can be built in O(L)
time [18], 2) Each edge in the suffix tree is labeled with a
subsequence starting from character S[i] to character S[j],
where 1 ≤ i ≤ j ≤ L, and 3) No two edges out of a node
in the tree can have labels beginning with the same character.
Now, we construct a suffix tree for the sequence of process
variants. Then, we search the tree for the shortest repetitive
pattern that covers the whole sequence S. To find this pattern,
for every path starting from the root to any internal node, we
concatenate the labels on the edges. This concatenation results
in a subsequence Ssub which occurs k times in the original
sequence S. Finally, we select the subsequence Ssub with the
largest occurrence k that satisfies: |Ssub| × k = |S|.

Consider the sequence of the process variants of process
snk. The constructed suffix-tree is illustrated in Fig. 4 (due
to space limitation, we only show a part of the suffix tree).
The root node is marked with shadowed circle and the leaf
nodes are marked with solid circles. The edges are labeled with
the subsequences consisting of process variants. The shortest
repetitive pattern that covers the whole sequence of process
variants is {v1, v1, v2}, surrounded by a dashed line in Fig. 4.

In the last sub-step (lines 5-7 in Algorithm 1), a consump-
tion/production rates sequence is generated for each port of a
CSDF actor. This is done by building a table in which each
row corresponds to an input/output port, and each column
corresponds to a process variant in the repetitive pattern
derived in the second sub-step. If the input/output port is in
the set of ports of the process variant, then its entry in the
table is 1. Otherwise, its entry is 0. Each row in the resulting
table represents a consumption/production rates sequence for
the corresponding input/output port.

Considering process snk, the consumption/production rates
sequences of CSDF actor snk are generated as follows:

Repetitive pattern
v1 v1 v2

Input/output ports
IP1 1 1 0
IP2 0 0 1
IP3 1 1 1

We see that the consumption/production rates sequences for
the ports are the same as the ones shown in Fig. 1(d).

TABLE I
APPLYING THE SCHEDULABILITY ANALYSIS TO Υ

App. G1 G2
Task src filter1 filter2 snk src filter1 filter2 snk

WCET (µ) 5 8 25 4 3 15 15 3
Period (λ) 18 27 27 18 10 15 15 10
Uj

5
18

8
27

25
27

4
18

3
10

15
15

15
15

3
10

UΓGi

15+16+50+12
54

= 93
54
≈1.72 9+30+30+9

30
= 78

30
=2.6

UΓΥ
93
54

+ 78
30

= 1167
270
≈4.32

MOPT dUΓΥ
e=5

MPEDF min{x : B is x-partition of ΓΥ ∧ Uy ≤ 1∀y ∈ B} = 5

Mapping P1 P1 P2 P1 P3 P4 P5 P3

C. Analysis Phase - Deriving the Platform and Mapping
Specifications

After deriving the CSDF graphs, it is possible to apply the
analysis from [12] to schedule the CSDF actors as periodic
tasks. For a set of applications Υ = {G1, G2, · · · , GN}, a
super task set ΓΥ can be found according to Equation 1.
Upon deriving ΓΥ, we can select any hard-real-time schedul-
ing algorithm [11] for asynchronous sets of implicit-deadline
periodic tasks to schedule the actors. Once a scheduling
algorithm, denoted A, is selected, we derive the minimum
number of processors needed by A to schedule the tasks, and
the mapping of tasks to processors under A. The mapping is
necessary for partitioned and hybrid schedulers [11] and can be
derived, for example, using bin packing allocation. For global
schedulers [11], the mapping is optional and serves as an initial
mapping. Finally, the PPNs generated in the parallelization
phase are updated with the buffer sizes found by Theorem 4
in [12] and the schedule information (indicated with the dashed
line in Fig. 2(b)).

For example, let Υ be a set of applications consisting of
two instances G1 and G2 of the example application shown in
Fig. 1(b). Consider that G1 and G2 will run simultaneously on
the same platform. For the purpose of illustrating the analysis,
consider also that G1 and G2 have different WCETs. Table
I illustrates how we apply the analysis presented in Section
III-B to determine the minimum number of processors needed
to schedule the applications and the mapping of tasks to
processors.

The WCET (µ) row shows the WCET of each actor
measured in time-units. This row together with the CSDF
graphs are the inputs to the analysis phase. Then, the analysis
proceeds by computing the periods (λ) according to Lemma 2
in [12]. Afterwards, the utilization of the tasks, task-sets, and
super task-set is computed (i.e., Uj , UΓGi

, and UΓΥ
). Once the

utilization factors have been computed, we compute the num-
ber of processors needed to schedule the applications under
different algorithms. For instance, if we select the scheduling
algorithm A to be an optimal one (e.g., Pfair algorithms [11]),
then Υ can be scheduled to meet all the deadlines on 5
processors. If we select A to be a partitioned algorithm (e.g.,
Partitioned Earliest-Deadline-First (PEDF) [11]), then Υ can
be scheduled to meet all the deadlines also on 5 processors.
Suppose that A is PEDF, then we derive the mapping of
tasks to processors by applying first-fit allocation to ΓΥ. The
resulting mapping is shown in the mapping row in Table I,
where Pi denotes the ith processor in the platform.

V. EVALUATION RESULTS

We evaluate the DaedalusRT design flow by performing
an experiment to synthesize a system running a set of real-
life streaming applications. In this experiment, we illustrate
the total time/effort needed to build the system using our

TABLE II
EXECUTION TIMES FOR THE PHASES OF DAEDALUSRT AND [10] FLOWS

DaedalusRT [10]
Num. of applications 3 1

Phase Time Automation Time Automation
Parallelization 0.48 sec. Yes < 3 days No

WCET analysis 1 day No 1 day No
Deriving the CSDF 5 sec. Yes 5 min. No

Deriving the platform/mapping 0.03 sec. Yes 1 min. Yes
System synthesis 2.16 sec. Yes 16 sec. Yes

Total ∼ 1 day - ∼ 4 days -
Total (excl. WCET analysis) ∼ 7.67 sec. - ∼ 3 days -

design flow and the throughput resulting from strictly periodic
scheduling. We use three applications which are synthesized to
run simultaneously on the same platform. The first application
is an edge-detection filter (Sobel operator) from the image
processing domain, the second application is the Motion JPEG
(M-JPEG) video encoder from the video processing domain,
and the third application is the M-JPEG video decoder. We
used Xilinx Platform Studio (XPS) back-end to synthesize the
platform. The synthesized platform consists of tiles intercon-
nected via an AXI crossbar switch. Each tile in turn consists
of a MicroBlaze processor that has its own program, data, and
communication memories.

The second and third columns in Table II list the total time
needed to execute the DaedalusRT flow phases and the automa-
tion of the different phases. The experiment was conducted
on a machine with Intel Core 2 Duo T9400 processor with 4
GB of RAM running Ubuntu 11.04 (64-bit). The very short
time of 0.03 seconds needed for deriving the platform/mapping
specifications, see row 7 in column 2, confirms the following
advantage of our methodology; the complex DSE is replaced
with very fast schedulability analysis.

We also compare our flow to the flow presented in [10] as
shown in Table II. The flow in [10] is selected as it is the
only related flow which provides detailed information about
its execution time to allow direct comparison. We compare
both flows under the assumption that the input to both of
them is a sequential application written in SANLP form. The
authors in [10] reported the execution times of the different
phases of the flow when synthesizing a platform running a
single application (M-JPEG decoder). In our case, we report
the execution times for synthesizing three applications (sobel,
M-JPEG encoder and decoder) that run simultaneously on the
platform. It can be seen from Table II that our flow outper-
forms [10] significantly. The reasons are: 1) Our flow provides
the benefit of automatic parallelization, as well as automatic
derivation of the analysis model, and 2) Our flow performs
the analysis to derive the platform/mapping in around 30
milliseconds for a set of three applications. Such fast analysis
is the key to handle the growing number of simultaneously
running applications on a single platform.

Now, we demonstrate the quality of the generated system.
Table III compares the throughput (i.e., rate) guaranteed by our
flow, denoted by R, with the maximum achievable throughput
resulting from self-timed scheduling, denoted by Rmax, for the
sink actor. The most important column in the table is the last
one which shows the ratio of the guaranteed throughput by our
flow to the maximum achievable counterpart. It can be seen
that our flow guarantees an optimal or near-optimal throughput
in all the cases. Since the set of applications is known at
design-time, a schedule table can be built for each application
at design-time using offline scheduling algorithms [11]. The
guaranteed throughput, column 2 in Table III, is achieved using

TABLE III
GUARANTEED THROUGHPUT VS. MAXIMUM ACHIEVABLE THROUGHPUT

Application R Rmax R/Rmax

Sobel 1/125 8.474584× 10−3 0.94

M-JPEG encoder 1/126386 7.912× 10−6 1.0
M-JPEG decoder 1/140113 7.137× 10−6 1.0

a platform consisting of 7 processors running 17 tasks with
a mapping that mixes tasks from different applications on the
same processor. The maximum achievable throughput, column
3 in Table III, is computed assuming unlimited resources.

If the set of applications is unknown at design-time or
changes at run-time (i.e., by accepting new applications), then
an online scheduling algorithm must be used. We implemented
a run-time scheduler based on the PEDF algorithm and eval-
uated its overhead. The worst-case overhead of the scheduler
for the set of applications considered in this experiment is
30 µs when it is executed on a Xilinx MicroBlaze processor
running at 100 MHz. Such low overhead affirms the viability
of our methodology. It is important to note that this overhead
depends on the specifics of the scheduler implementation and
might vary between implementations.

VI. CONCLUSIONS

We present a novel methodology for the automated design
of an MPSoC running a set of hard-real-time streaming
applications. We show that this methodology replaces the
complex DSE with very fast schedulability analysis. More-
over, this methodology provides automatic derivation of the
analysis model. We implement the methodology in the form
of the DaedalusRT design flow and evaluate it using a set
of real streaming applications. Evaluation results show that
the methodology reduces significantly the design time and
effort while synthesizing systems that achieve near-optimal
throughput.

ACKNOWLEDGMENTS

This work is supported by CATRENE/MEDEA+ TSAR
project and the STW NEtherlands STreaming (NEST) project.

REFERENCES

[1] L. Karam et al., “Trends in multicore DSP platforms,” IEEE SPM, 2009.
[2] A. Gerstlauer et al., “Electronic System-Level Synthesis Methodologies,”

IEEE TCAD, 2009.
[3] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proc. IEEE, 1987.
[4] G. Bilsen et al., “Cyclo-Static Dataflow,” IEEE TSP, 1996.
[5] S. Verdoolaege et al., “pn: A Tool for Improved Derivation of Process

Networks,” EURASIP J. Embedded Syst., 2007.
[6] J. Castrillon et al., “Trace-based KPN composability analysis for mapping

simultaneous applications to MPSoC platforms,” in DATE, 2010.
[7] A. Kumar et al., “Multiprocessor systems synthesis for multiple use-cases

of multiple applications on FPGA,” ACM TODAES, 2008.
[8] S. Ha et al., “PeaCE: A hardware-software codesign environment for

multimedia embedded systems,” ACM TODAES, 2007.
[9] A. Shabbir et al., “CA-MPSoC: An automated design flow for predictable

multiprocessor architectures for multiple applications,” JSA, 2010.
[10] R. Jordans et al., “An Automated Flow to Map Throughput Constrained

Applications to a MPSoC,” in PPES, 2011.
[11] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for

multiprocessor systems,” ACM Comput. Surv., 2011.
[12] M. Bamakhrama and T. Stefanov, “Hard-real-time scheduling of data-

dependent tasks in embedded streaming applications,” in EMSOFT, 2011.
[13] H. Nikolov et al., “Systematic and Automated Multiprocessor System

Design, Programming, and Implementation,” IEEE TCAD, 2008.
[14] K. Jeffay et al., “On non-preemptive scheduling of periodic and sporadic

tasks,” in RTSS, 1991.
[15] P. Feautrier, “Automatic parallelization in the polytope model,” in The

Data Parallel Programming Model. Springer-Verlag, 1996.
[16] E. Deprettere et al., “Affine Nested Loop Programs and their Binary

Parameterized Dataflow Graph Counterparts,” in ASAP, 2006.
[17] A. Pimentel et al., “A systematic approach to exploring embedded

system architectures at multiple abstraction levels,” IEEE TC, 2006.
[18] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica, 1995.

