
Test Pin Count Reduction for
NoC-based Test Delivery in Multicore SOCs*

Michael Richter
Department of Computer Science

University of Potsdam, 14482 Potsdam, Germany
miricht@cs.uni-potsdam.de

Krishnendu Chakrabarty
Dept. of Electrical and Computer Engineering
Duke University, Durham, NC 27708, USA

krish@ee.duke.edu

Abstract—We present the first pin-count-aware optimization

approach for test data delivery over a network-on-chip (NoC). By

co-optimizing core test scheduling and pin assignment to access

points, the limited I/O resources provided by automated test

equipment (ATE) can be used more effectively. This approach

allows us to lower test cost by reducing test time for a given pin

budget, or by reducing the number of test pins without impacting

test time. To further improve resource utilization, we consider

the use of MISRs for compacting the test responses of embedded

cores. Experimental results for ITC’02 test benchmarks demon-

strate that pin-count-aware co-optimization leads to shorter test

times for a given pin-count budget and fewer pins for a given

test-time budget. The results also highlight the advantages of the

proposed use of output compaction.

I. INTRODUCTION

It has been predicted that the number and complexity of
cores in systems-on-chip (SOC) will continue to increase
rapidly in the next few years [1]. Consequently, on-chip
communication infrastructures will have to support higher
bandwidth and numerous parallel data streams. In addition,
reliability, delay and power issues will be more pronounced
due to increasing wire lengths (relative to feature sizes). The
ability of the current bus-based communication paradigm to
cope with these problems is limited; moreover, maintaining
a global synchronous clock for all cores of a large SOC is
becoming increasingly difficult [1]–[4].

A packet-switched network-on-chip (NoC) is an emerging
communication paradigm that promises to overcome the above
limitations. The cores of an NoC-based SOCs can be tested
using the NoC as the test-access mechanism, without the
need for dedicated test-access mechanisms and their associated
routing overhead.

Testing is typically carried out using automated test equip-
ment (ATE), which provide test input data and evaluate the test
responses. ATEs offer a limited number of tester channels that
can be used to send data to or receive data from the device-
under-test. Inefficient use of tester channels affects test cost in
several ways. First, test-time targets might be missed, resulting
in the need for more expensive ATEs that support more tester
channels. Second, since the total available ATE memory is

*This research was supported in part by the National Science Foundation under
grant no. CCF-0903392, and by the Semiconductor Research Corporation
under contract no. 1992. M. Richter worked on this project while at Duke
University; he is now with Intel Mobile Communications, Germany.

distributed among the different channels, test data volume may
exceed tester memory capacity, necessitating time-consuming
tester reloads, test set truncation (reducing test quality) or,
again, use of more expensive ATEs. Even if test time cannot
be reduced due to a bottleneck core, reducing the number of
required pins might facilitate multi-site testing, i.e., allow us
to test more SOCs in parallel on a single ATE. Therefore,
efficient utilization of tester channels is necessary to control
rapidly escalating test costs.

Research on optimization of dedicated test-access mech-
anisms (TAMs) has demonstrated that pin-count-aware test
schedule optimization can greatly reduce test time for a
given total number of pins [5], [6]. However, prior work
on test scheduling for NoCs invariably assumes that the
ATE interfaces with all access points using the full NoC
flit width (usually 32 bits) as shown in Figure 1(a). This
unnecessary restriction results in test schedules with inefficient
tester channel utilization.

We propose to distribute a given total number of test pins
(tester channels) to a set of access points, where an access
point typically is assigned a smaller number of pins than the
NoC’s flit width. The assignment of pins to access points is
done to derive a test schedule that minimizes the overall test
time. The overall approach is highlighted in Figure 1(b).

Compared with TAM-based scheduling, pin-count aware
NoC scheduling introduces additional constraints, e.g. link
contention and access-point-to-core dependent penalties for
delivery delay. This requires either to compute time-specific
schedules (as opposed to assignment only for TAM) or, at
least, to take delivery delay and assignment interdependence
into account. Hence, while classical TAM optimization ap-
proaches can be leveraged, they cannot be directly used.
Known heuristics for NoC-scheduling work on fixed flit-
widths only; given the typically huge number of possible
distributions of pins to access points, their direct application
is also infeasible.

We propose to use MISR-based output compaction to handle
test responses for embedded cores. This allows to use the same
tester channels for streaming test input data to the SOC and
for receiving the (short) MISR signatures, thus reducing the
number of required channels by a factor of two with negligible
impact on test time. Alternatively, our approach can be used
in conjunction with any scan-compatible core- or access-level

978-3-9810801-8-6/DATE12/©2012 EDAA

!"#$
&

!"#$
'

!"#$
()

!"#$
*

!"#$
+

!"#$
,

!"#$
-

!"#$
.

!"#$
/

'+

'+

'+

'+

!"#"$%
0"1$21345
677$88 0"321

9":1$# ;<=5$<21>
677$88 0"321

?$81 13<$@ (.-&/ 7A75$8
(.-&/)

(a) Full-width access points

!"#$
&

!"#$
'

!"#$
()

!"#$
*

!"#$
(

!"#$
+

!"#$
,

!"#$
-

!"#$
.

!"#$
/

'+

&

(/

()

()

(/'+

&

!"#"$%
0"12$# 3456$4$72$8

9::$;; <"=72

(.-&/)
>$;2 2=4$? (+&*. :@:6$;

(b) Pin-count-aware pin distribution

Fig. 1. Configuration and test time given 4 potential access points for d695
(128 tester channels)

test compression, as this kind of compression is transparent
to the scheduler. The particular advantage of signature-based
compaction is that it additionally reduces link contention.

The major contributions of this paper are:
1) an optimal co-optimization method for generating pin-

assignments to access points and test schedules that
guarantee minimum test times;

2) a heuristic solution to the co-optimization problem that
can be rapidly computed;

3) the use of output compaction to reduce either pin count
(for a fixed test time) or test time (for fixed pin counts).

We show that all four approaches – optimal co-optimization
and heuristic co-optimization with and without output com-
paction – significantly outperform the baseline approach of
assigning multiples of the NoC’s flit width to access points.

The rest of the paper is organized as follows. Section II
presents an overview of NoC basics and related prior work.
Section III describes details of the proposed test schedule
optimization technique and problem formulation. Section IV
highlights solution techniques based on integer linear program-
ming. Section V presents experimental results, and finally,
Section VI concludes the paper.

II. BACKGROUND

A network-on-chip consist of three basic components:
routers, links, and network adapters [4]. Routers are nodes that
route data according to a routing protocol. They are connected
through links made up by one or more logical or physical
channels. Network adapters decouple cores and routers by
translating between the core’s and router’s communication
protocol. Data streams are broken down into packets, which
contain information about their destination. Packets in turn are
made up of flits (flow-control units), which are the atomic units
transported between routers. The network topology describes
the logical layout of the NoC, i.e., it defines the links between
routers and the routers that cores are connected to. The path
a packet takes from sender to receiver is determined by the
routing algorithm. The most popular forwarding strategy is

wormhole switching, in which paths are set up by the header
flit and torn down by the tail flit of the packet routed. While a
path is active, no other packet can use links on that path (link

contention).This limitation can be mitigated if the NoC offers
virtual channels (VCs), i.e. provides several separate logic
channels over a shared physical channel. Maintaining VCs
requires independent buffer queues for each logic channel; the
associated buffers make VCs an expensive feature that most
current NoC do not offer [7].

Testing of the NoC infrastructure and its reconfiguration
in the presence of faults have been studied recently [8], [9].
Here we focus on the use of the NoC as the test-access
mechanism. A major challenge for efficient testing is to devise
scheduling algorithms that optimally use the given NoC for
test data transportation. Since test scheduling aims to increase
test parallelism in the presence of resource conflicts, it is an
NP-hard problem [10].

Scheduling algorithms proposed in the literature can be
classified into packet-centric and core-centric approaches.
The first packet-centric algorithm was presented in [11] and
subsequently extended to cope with power constraints [12],
[13]. Core-centric approaches can also handle precedence
constraints and shared BIST resources [10].

If the NoC can be driven faster than the test clock and
supports virtual channels, its bandwidth can be divided into
several distinct time slots to increase test parallelism [14].
To reduce power consumption, power-hungry cores can be
clocked at lower speeds, while small cores may be run at
faster clocks to improve flit utilization. The different core
clock speeds can also be used for time-sharing common links
between different cores [15]. Co-optimization of the test of
the NoC and the test of cores was presented in [16]. A
hybrid core-packet scheduling method encompassing power
and precedence constraints, as well as support for BISTed
cores and test preemption was described in [17].

A detailed test wrapper design for the reuse of functional
interconnects (NoC or buses) was presented in [18], [19]. In
contrast to classical TAM optimization, the number of bits in
a flit – and hence the parallel data width for a given NoC –
is fixed, as it is determined by performance requirements for
the functional mode. Sources of the resulting flit-bit under-
utilization are identified in [20].

In [21], flit utilization is increased by using varying parallel-
to-parallel load ratios during pattern transfer. Another wrapper
design, which achieves optimal flit utilization for all data
widths at the cost of additional flip-flops and a more complex
shift control logic, is outlined in [22]. It has not been shown,
though, how these approaches can be leveraged to lower test
time or test data volume. In [23], a scheduling algorithm is
introduced that chooses, for each core, one out of a number
of different possible parallel-to-parallel conversion configura-
tions. However, it makes the restrictive assumption that the
NoC supports a large number of different time slices – as
many as there bits in each flit.

To reduce the number of required ATE output channels and
the test input data volume, the use of input vector compression

has been proposed in [24]. In this approach, compressed test
data is transferred from the ATE to the network interface,
where it is decompressed before being sent over the NoC.
To the best of our knowledge, that is the only work aimed at
a reduced test pin count. The optimization approach described
in this paper can be combined with [24] for further reducing
test time. The overhead for on-chip decompression can be
minimized by re-using the CRC hardware on an NoC [25].

In [26], the NoC is divided it into several partitions that each
contain a single access point acting as test source and sink.
Partitions are created such that each access point can com-
municate with the routers in its partition without interfering
with other access points’ communication with their respective
cores. The problem of optimal partitioning with an optimal
ATE pin distribution, however, has not been addressed.

III. PIN-COUNT-AWARE TEST SCHEDULE OPTIMIZATION

Today’s typical NoC is based on a grid topology, imple-
ments dimension-order routing, and uses wormhole switching
without virtual channels [7]. We assume an NoC with de-

terministic wormhole routing and prevent link contention by
assuming that links cannot be shared between packets. Links
can only be shared if the NoC supports virtual channels (the
vast majority do not) and test data is sent in bursts of flits
(which would require buffering at the cores and the ATE
interface). We do not impose any further restrictions on the
routing algorithm or the network topology.

In this paper, we do not explicitly address the design of the
DfT components. We assume a DfT implementation in which
test output data is sent back to the access point that sends the
test stimuli (as in [19]). Furthermore, we create core wrappers
using the design wrapper algorithm [5] and add one additional
cycle each for header and tail flit generation.

Our goal is to find a partition of a total number of tester
pins to a given set of access points to allow a test schedule of
minimum length.

General test scheduling problem (GTS): Given an NoC-
based SOC having |C| cores, |A| access points, and P avail-
able test pins, determine a distribution of the P pins to the
|A| access points, and a start time and access point for the
test of each core such that no link contention occurs and the
overall test time is minimized. �

The decision version of GTS has been shown to be equiva-
lent to be NP-complete resource-constrained multiprocessor
scheduling problem [10]. The feasibility of a schedule has a
tight dependence on the time frames during which cores are
tested via different access points to prevent link contention.

To address SOCs with a higher number of cores, we also
investigated a more restricted problem. Consider the set L1 of
all links used for communication between an access point a1

and any of its assigned cores. Then only links in L1 will be
reserved at any time during test for testing cores assigned to
a1. Thus, no link contention can occur as long as the sets of
links L1, L2, . . . required for testing cores assigned to access
points a1, a2, . . ., respectively, are pairwise non-overlapping.
By restricting the construction of assignments to those that

ensure pairwise non-overlapping link sets, there is no need
to rely on the computation of exact start times to prevent
link contention. This restricted problem can be formulated as
follows.

Contention-free assignment problem (CFA): Given an
NoC-based SOC having |C| cores, |A| access points and P
available test pins, determine a distribution of the P pins to
the |A| access points, an assignment of the cores to the access
points such that the sets of links used for communication
between the access points and their assigned cores are pairwise
non-overlapping, and that the overall test time (under this
restriction) is minimized. �

Since CFA limits the search space, it might lead to higher
test times than GTS. The decision version of CFA is also NP-
complete, since the validity of any solution can be checked
in polynomial time, and the NP-complete multiprocessor

scheduling problem [27] can be reduced to it.
We present two different scheduling methods, called opti-

mal scheduling and contention-free assignment, that optimally
solve GTS and CFA, respectively. Any solution to CFA can
be easily converted into a test schedule by testing all cores
assigned to an access point in an arbitrary order. Since optimal
solutions to CFA are not guaranteed to be optimal solutions
for GTS, contention-free assignment is a heuristic for solving
GTS.

IV. ILP PROBLEM FORMULATIONS

By expressing our optimization problems as integer linear
programming (ILP) models, we can leverage ILP solvers to
solve them optimally.

A. Common data structures and variables

As basic input data, we have the set of access points A, the
set of cores C, the set of pin widths W available for access
points, and the number P of test (input) pins available. The
test length table TL encodes the number of cycles required to
shift test data in and out of the test wrapper of each core for a
given number of pins; the signature length table SL contains
number of cycles required to shift out the signature for a given
number of pins. In both cases, two additional cycles are added
to model header and tail flits.

Furthermore, a number of pre-computed tables encode the
properties of the NoC relevant for test schedule optimization.
The entries of the two-dimensional table PD (path delay)
correspond to the number of cycles required to set up a path
from the access point to the core (or vice versa). In line with
previous publications [11], we assume a delay of three cycles
per router (including the routers at both ends of the path).

We use a matrix x of binary variables (indicator variables)
to keep track of the assignment of cores to access points. A
core c is assigned to access point a if and only if xc,a = 1.
Each core is assigned to exactly one access point,

∀c ∈ C :
�

a∈A

xc,a = 1.

Similarly, a table p of binary variables represents the number
of (input) pins w assigned to each access point a. Each access

point must be assigned a number of pins and the sum of pins
assigned may not exceed the number of available pins P ,

�

a∈A,w∈W

w · pa,w ≤ P ; ∀a ∈ A :
�

w∈W

pa,w = 1.

The variable ctap (core time on access point) captures the
time required to test core c via access point a. Its definition
depends on whether MISR compaction is used (1a) or not used
(1b):

ctapc,a =
�

w∈W

pa,w · (TLc,w + SLw) + 2PDc,a (1a)

ctapc,a =
�

w∈W

pa,wTLc,w + 2PDc,a. (1b)

The total test time T is at least the maximum time required
for any access point to test all cores assigned to it, given the
number of pins assigned to it. We express this relationship as

∀a ∈ A, c ∈ C : tac,a ≥ ctapc,a − (1− xc,a) · M, (2)

∀a ∈ A : T ≥
�

c∈C

tac,a, (3)

where (2) is a set of helper inequalities. The term (1−xc,a)·M ,
with M as a value much larger than the expected maximum
test time, forces tac,a to zero if core c is not assigned to access
point a, and to the value ctap otherwise.

B. Solving the Contention-free Assignment Problem (CFA)

Link contention is captured by a table CT , which contains
a ‘1’ at position c, a, d, b if any packet between a and c
shares links with any packet traveling between b and d (in
any direction). The constraints

∀c, d ∈ C, c �= d; a, b ∈ A, a �= b with CTc,a,d,b = 1 :
x(c, a) + x(d, b) ≤ 1

ensure that, if testing core c through access point a and core
d through access point b causes link contention, at most one
of these assignments is chosen.

As all assignments that lead to link contention are forbidden
by the above constraints, the test time equals the maximum
time needed to test all cores assigned to one access point. The
inequalities (3) therefore define a lower bound on the test time.

C. Solving the General Test Scheduling Problem (GTS)

Optimal scheduling prevents link contention by assigning a
start time to every core such that link contention is prevented.
To that end, more fine-grained information about the timing
of link contention is necessary. This information is provided
by three four-dimensional tables. The tables contain timing
information for shared links when sending test data to the
cores (table TT), sending test signature data back from the
cores (SS), or sending test stimuli to one core while the other
is sending test signature data back (TS). Each entry at position
c, a, d, b corresponds to a pair (t1, t2), encoding the number
of cycles that elapse until a packet header reaches the first
contended link for the first and second core/access point pair,

respectively. Furthermore, decision variables stc,a encode the
start time of data transfer from the access point a to core c.

The goal of optimal scheduling is to minimize T subject to

T ≥ stc,a + ctapc,a − (1− xc,a)M, ∀a ∈ A, c ∈ C,

where M is a constant larger than the highest expected test
time, and ctapc,a a variable denoting the time required to test
c via access point a (cf. IV-A). The expression (1 − xc,a)M
forces the right hand side of the inequality to be below zero
if core c is not tested via access point a.

Note that the inequalities (3) still hold, but they are no
longer sufficient, as there might be forced idle times on access
points to prevent link contention. However, they are decisive in
helping the ILP solver to identify non-improving assignments
early.

We also define variables tlc,a,

tlc,a =
�

w∈W

pa,wTLc,w, ∀a ∈ A, c ∈ C,

which denote the time span required to test core c via access
point a depending on the number of pins assigned to a.

If there is a possible link contention between assignments of
cores c and d to a and b, respectively, and c and d are indeed
assigned to a and b, data transfers must be timed such that
packets from/to both cores do not overlap. Hence we need to
add constraints on the start times for assignments that can lead
to link contention. These constraints will only be activated if
the particular assignment is actually chosen. The later is true
if and only if xc,a = xd,b = 1.

Non-overlapping constraints can generally be expressed as

X1 ≥ Z2 ∨ Z1 ≥ X2,

were X1 (Z1) and X2 (Z2) are placeholders for terms that
express the first cycle that a packet from c (d) arrives at the
contended link and the last packet has cleared the contended
link, respectively. The compound constraint

xc,a + xd,b = 2 → (X1 ≥ Z2) ∨ (Z1 ≥ X2),

can be concisely expressed with the two linear inequalities

X1 + (3− xc,a − xd,b − o)M ≥ Z2, and
Z1 + (2− xc,a − xd,b + o)M ≥ X2,

where o is a binary variable only used for these two inequali-
ties, and M is a constant value guaranteed to be greater than
all possible values of Z2 and X2.

The formulation of X1, X2, Z1 and Z2 depends on the con-
sidered type of conflict (between test stimuli, test signatures,
or test stimuli and test signatures). For brevity, we only present
the formulation for conflicts between test stimuli and test
signatures. Considering the case without MISR, we define our
placeholders X1, X2, Z1 and Z2 as

X1 := stc,a + TSc,a,d,b[1],
X2 := stc,a + tlc,a + TSc,a,d,b[1],
Z1 := std,b + PDd,b + TSc,a,d,b[2],
Z2 := std,b + tld,b + PDd,b + TSc,a,d,b[2].

If a MISR is used, the timing for the packets transporting the
test signature changes, as the test signature is sent only after
all test data has been shifted out. Consequently, Z1 and Z2

have to be adjusted:

Z1 := std,b + tld,b + PDd,b + TSc,a,d,b[2],
Z2 := std,b + tld,b + PDd,b + TSc,a,d,b[2] + SLb.

Formulations for the other two conflicts types (between two
test input stimuli, and two test signatures) can be derived in a
similar way.

V. EXPERIMENTAL RESULTS

For our experiments, we used five SOCs from the ITC’02
SOC Test Benchmarks [28]. As the benchmarks were pub-
lished with dedicated TAM optimization in mind, no layout
information for NoCs is provided. Assuming a grid topology,
we therefore placed the cores in the grid in a left-to-right, top-
to-bottom fashion. In line with previously reported results, we
assumed XY-routing, a switching delay of three clock cycles
per router and an additional cycle for header and tail flits,
respectively. We assumed a flit width of 32 bits. We marked
four routers as possible access points – two to the left and two
to the right of the grid.

We run two types of experiments to address the following
two DfT scenarios: a) given an upper bound on the total
number of pins, the test time is to be minimized; b) given an
upper bound for the test time, the total number of required pins
is to be minimized. Finally, we computed optimal schedules
for different core placements for d696 and g1023 (10 and 14
cores, respectively) and compared them to schedules generated
for CFA.

A. Fixed Total Number of Pins

To evaluate pin-count-aware scheduling with and without
MISR compaction, we compare the resulting test time for the
traditional full-width approach, pin-count-aware scheduling,
and MISR-based pin-count-aware scheduling for 32+32 and
64+64 pins (input+output). In the full-width approach, this
implies choosing the single best or the best combination of
two access points, requiring 64 and 128 pins, respectively.
The schedules for full-width access points that we use as the
baseline are provably optimal. The pin-count-aware schedules
were allowed to use all four access points, as long as sum
of pin counts did not exceed the maximum number of pins.
Pin-count-aware scheduling is based on the contention-free
assignment heuristic.

Table I displays the duration of the shortest possible test
schedule for each of the three approaches given 64 ATE
channels, i.e. one full access point for the traditional, full-
width approach. In the second column (“Full-Width”), the
number of clock cycles of the shortest schedule for the full-
width (baseline) approach are given. Under the third and fourth
major headings, the absolute length (“Cycles”) as well as the
length relative to the full-width approach (“Rel.”) are given
for the pin-count-aware and the pin-count-aware schedules
with MISR, respectively. For all considered benchmarks, the

TABLE I
TEST CYCLES WITH 64 ATE CHANNELS

SOC Full-Width Pin-Aware P-A + MISR

Cycles Cycles Rel. (%) Cycles Rel. (%)

d695 37869 22195 58.61 12598 33.27
g1023 50397 17947 35.61 14815 29.40
p22810 543449 240178 44.20 151273 27.84
t512505 11100481 10446742 94.11 5228440 47.10
p93791 1224469 912781 74.55 467561 38.18

TABLE II
TEST CYCLES WITH 128 ATE CHANNELS

SOC Full-Width Pin-Aware P-A + MISR

Cycles Cycles Rel. (%) Cycles Rel. (%)

d695 18957 12568 66.30 10115 53.36
g1023 25181 14808 58.81 14814 58.83
p22810 271654 151203 55.66 139813 51.47
t512505 5550278 5228434 94.20 55228440 94.20
p93791 612143 467441 76.36 318531 52.04

pin-count-aware scheduling methods significantly reduce test
time (by 25%–65% for all but t512505). Employing output
compaction offers a substantial improvement both compared
to the full-width and the pin-count-aware scheduling without
compaction, bringing test times down by 50%-70% compared
to the full-width approach. For t512505, a single large bot-
tleneck core prevents significant improvements for pin-count-
aware scheduling without compaction. With compaction, more
pins can be used for data input, which allows to dedicate an
access point with 28 pins to the bottleneck core, thus reducing
test time by 50%.

The results for 128 test pins are shown in Table II. The
relative performance of the three scheduling methods is com-
parable to the observations made for 64 pins. The CPU times
for the test cases in Tables I-II using the FICOTMXPress solver
ranged from 0.3 to 247 seconds on a computer with a 3.0 GHz
Intel Xeon CPU with 9GB memory.

B. Minimum Pin Count

In the second set of experiments, we determined the min-
imum number of pins required to achieve a test time lower

than or equal to full-width scheduling. Table III lists the min-
imum number of pins for pin-count-aware scheduling without
(“Pin-Aware”) and with output compaction (“P-A + MISR”) to
match the test times corresponding to 64 pins with full-width
scheduling. Both pin-count-aware approaches allow a signif-
icant reduction of the number of pins. The required number
of pins for pin-count-aware scheduling without compaction
is in the range of 30%–75% of full-width scheduling; with
compaction the number of required pins falls to 20%–40% of
the full-width approach.

C. Optimal Schedules

To experimentally assess the quality of the heuristic method,
we created and compared both optimal schedules and sched-
ules based on contention-free assignment. For the comparison,

TABLE III
PIN COUNT TO MATCH 64 CHANNEL FULL-WIDTH TEST TIMES

SOC Pin-Aware P-A + MISR

Pins Rel. (%) Pins Rel. (%)

d695 38 59.38 19 29.69
g1023 20 31.25 11 17.19
p22810 26 40.63 13 20.31
t512505 40 62.50 20 31.25
p93791 48 75.00 24 37.50

TABLE IV
TEST LENGTH OVERHEAD OF PROPOSED HEURISTIC (IN %)

d695 g1023

Channels Avg. Median Max. Avg. Median Max.

64 1.48 0.83 5.57 6.28 6.29 14.35
64 +MISR1 12.12 13.37 24.77 0.90 0.01 12.22
1282 8.81 9.79 22.12 0.03 0.00 1.83
128 + MISR 3.15 2.35 12.25 0.87 0.00 12.11
1For g1023, 98 out of 100 runs finished within the limit of 180 min
2For g1023, 90 out of 100 runs finished within the limit of 180 min.

we used d695 and g1023 (11 and 14 cores, respectively). We
created 100 different NoCs for each of the two benchmarks
by randomly permuting the order in which cores are assigned
to routers. We then created schedules for 64 and 128 channels
without and with output compaction by MISR, i.e., for the
scenarios presented in Section V-A. The relative differences
of the test lengths for optimal and heuristic scheduling are
displayed in Table IV.

For both benchmarks, we show the average and the median
of the relative differences as well as the maximum differ-
ence encountered. For example benchmark g1023 with 64
ATE channels and no output compaction, the contention-free
assignment-based test schedules are on average 6.28% longer
than the optimal schedule.

CPU times for solving the CFA did not exceed 2.5 sec for
any configuration of the two SOCs. In contrast, the maximum
CPU time for optimal scheduling was 32 seconds for d695 and
292 seconds for g1023. Moreover, 12 of the 400 instances of
g1023 exceeded our run-time limit of 180 minutes.

VI. CONCLUSION

We have investigated the problem of minimizing test ap-
plication time for NoC-based test delivery. In particular, we
have proposed the use of test output compaction using MISR
and optimizing the test channel distribution to access points.
We have developed an ILP model that can be used to create
optimal solutions. To heuristically solve this problem for large
SOC instances, we introduced the more restricted contention-
free assignment problem. Experimental results for the largest
SOCs from the ITC 2002 Test Benchmarks demonstrate signif-
icant advantages of pin-count aware scheduling and test output
compaction.

REFERENCES

[1] International Technology Roadmap for Semiconductors (ITRS) 2009.
[Online]. Available: www.itrs.net/Links/2009ITRS/Home2009.htm

[2] L. Benini et al., “Networks on Chips: A New SoC Paradigm,” Computer,
vol. 35, pp. 70–78, 2002.

[3] P. P. Pande et al., “Performance Evaluation and Design Trade-Offs
for Network-on-Chip Interconnect Architectures,” IEEE Transactions on

Computers, vol. 54, pp. 1025–1040, 2005.
[4] T. Bjerregaard et al., “A Survey of Research and Practices of Network-

on-Chip,” ACM Comput. Surv., vol. 38, June 2006.
[5] V. Iyengar et al., “Test Wrapper and Test Access Mechanism Co-

Optimization for System-on-Chip,” Journal of Electronic Testing,
vol. 18, pp. 213–230, 2002.

[6] S. K. Goel et al., “Effective and Efficient Test Architecture Design for
SOCs,” Proc. Int. Test Conf, p. 529, 2002.

[7] E. Salminen et al. (2008, March) Survey of Network-on-Chip Proposals.
Tech. Rep. [Online]. Available: www.ocpip.org/socket/whitepapers

[8] P. P. Pande et al., “Design, Synthesis, and Test of Networks on Chips,”
IEEE Design & Test of Computers, vol. 22, no. 5, pp. 404–413, 2005.

[9] A. Dalirsani et al., “Structural Test for Graceful Degradation of NoC
Switches,” in Proc. IEEE European Test Symp, 2011, pp. 183–188.

[10] C. Liu et al., “Test Scheduling for Network-on-Chip with BIST and
Precedence Constraints,” in Proc. Int. Test Conf., 2004, pp. 1369–1378.

[11] E. Cota et al., “The Impact of NoC Reuse on the Testing of Core-Based
Systems,” in Proc. VLSI Test Symp, 2003, pp. 128–133.

[12] ——, “Power-Aware NoC Reuse on the Testing of Core-Based Sys-
tems,” in Proc. Int. Test Conf, 2003, pp. 612–621.

[13] ——, “Reusing an On-Chip Network for the Test of Core-Based
Systems,” ACM Trans. Des. Autom. Electron. Syst., vol. 9, pp. 471–499,
Oct. 2004.

[14] J. M. Nolen et al., “Time-Division-Multiplexed Test Delivery for NoC
Systems,” IEEE Design & Test of Computers, vol. 25, no. 1, pp. 44–51,
2008.

[15] C. Liu et al., “Power-Aware Test Scheduling in Network-on-Chip Using
Variable-Rate On-Chip Clocking,” in Proc. IEEE VLSI Test Symp, 2005,
pp. 349–354.

[16] ——, “Reuse-Based Test Access and Integrated Test Scheduling for
Network-on-Chip,” in Proc. Design, Automation and Test in Europe,
2006.

[17] E. Cota et al., “Constraint-Driven Test Scheduling for NoC-Based
Systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 25, no. 11, pp. 2465–2478, 2006.

[18] A. M. Amory et al., “Wrapper Design for the Reuse of Networks-on-
Chip as Test Access Mechanism,” in Proc. IEEE European Test Symp,
2006, pp. 213–218.

[19] ——, “Wrapper Design for the Reuse of a Bus, Network-on-Chip,
or Other Functional Interconnect as Test Access Mechanism,” IET

Computers & Digital Techniques, vol. 1, no. 3, pp. 197–206, 2007.
[20] A. van den Berg et al., “Bandwidth Analysis for Reusing Functional

Interconnect as Test Access Mechanism,” in Proc. IEEE European Test

Symp, 2008, pp. 21–26.
[21] M. Li et al., “An Efficient Wrapper Scan Chain Configuration Method

for Network-on-Chip Testing,” in Proc. IEEE Computer Society Annual

Symp. Emerging VLSI Technologies and Architectures, 2006.
[22] F. A. Hussin et al., “Optimization of NoC Wrapper Design Under

Bandwidth and Test Time Constraints,” in Proc. IEEE European Test

Symp., 2007, pp. 35–42.
[23] J. Li et al., “Channel Width Utilization Improvement in Testing NoC-

Based Systems for Test Time Reduction,” in Proc. IEEE Int. Symp.

Electronic Design, Test and Applications DELTA, 2008, pp. 26–31.
[24] J. Dalmasso et al., “Improving the Test of NoC-Based SoCs with Help of

Compression Schemes,” in Proc. IEEE Computer Society Annual Symp.

VLSI, 2008, pp. 139–144.
[25] V. Froese et al., “Reusing NoC-Infrastructure for Test Data Compres-

sion,” in Proc. VLSI Test Symp., 2010, pp. 227–231.
[26] A. M. Amory et al., “DfT for the Reuse of Networks-on-Chip as Test

Access Mechanism,” in Proc. IEEE VLSI Test Symp, 2007, pp. 435–440.
[27] G. Ausiello et al., Complexity and Approximation: Combinatorial Op-

timization Problems and Their Approximability Properties. Springer,
1999.

[28] E. J. Marinissen et al., “A Set of Benchmarks for Modular Testing of
SOCs,” in Proc. Int. Test Conf, 2002, pp. 519–528.

