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Abstract—In an energy harvester powered wireless sensor
node, the energy harvester is often the only energy source,
therefore it is crucial to configure the microcontroller and the
sensor node so that the harvested energy is used efficiently. This
paper presents a response surface model (RSM) based design
space exploration and optimisation of a complete wireless sensor
node system. In our work the power consumption models of
the microcontroller and the sensor node are defined based on
their digital operations so that the parameters of the digital
algorithms can be optimised to achieve the best energy efficiency.
In the proposed technique, SystemC-A is used to model the
system’s analogue components as well as the digital control
algorithms implemented in the microcontroller and the sensor
node. A series of simulations are carried out and a response
surface model is constructed from the simulation results. The
RSM is then optimised using MATLAB’s optimisation toolbox
and the results show that the optimised system configuration
can double the total number of wireless transmissions with fixed
amount of harvested energy. The great improvement in the system
performance validates the efficiency of our technique.

I. INTRODUCTION

Wireless sensor networks (WSNs) have attracted a great
research interest in recent years. Since wireless sensor nodes
can provide information from previously inaccessible locations
and from previously unachievable number of locations, many
new application areas are emerging, such as environmen-
tal sensing [1], structural monitoring [2] and human body
monitoring [3]. Although wireless sensor nodes are easy to
deploy, the lack of physical connection means they must
have their own energy supply. Because batteries have limited
lifetime, it has become widely agreed that energy harvesters
are needed for long-lasting sensor nodes [4, 5]. The idea is to
use energy harvester to capture small amounts of energy from
the environment and use the generated energy to power the
nodes in wireless sensor networks.

Vibration-based energy harvesters are used in many com-
mercial applications since mechanical vibrations are widely
present [6]. Most of the reported vibration energy harvester
designs are based on a spring-mass-damper system with
a characteristic resonant frequency. These devices normally
have a high Q-factor and generate maximum power when
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their resonant frequency matches the dominant frequency of
the input ambient vibration. Consequently, the output power
generated by the microgenerator drops dramatically when
there is a difference between the dominant ambient frequency
and the microgenerator’s resonant frequency. Tunable micro-
generators, which can adjust their own resonant frequency
through mechanical or electrical methods to match the input
frequency, are therefore more desirable than the fixed fre-
quency microgenerators [7]. A wireless sensor node powered
by tunable energy harvester typically has the following key
components (Fig. 1): a microgenerator which converts am-
bient environment vibration into electrical energy, a power
processing circuit which regulates and stores the generated
energy, an actuator used for the frequency tuning mechanism, a
digital controller that monitors and retunes the tunable energy
harvesting system based on vibration measurements from an
accelerometer, and the wireless transceiver or transmitter.

Fig. 1. Block diagram of a tunable energy harvester powered wireless sensor
system

Hardware description languages, such as VHDL-AMS and
SystemC-A, have been used to model energy harvesters in
recent years [8, 9]. HDLs with mixed signal and multi-domain
capabilities are suitable for energy harvester modelling be-
cause an energy harvester is a mixed-physical-domain system.
But none of the existing works includes the sensor node
with its power consumption and wireless transmission block
into the model. Therefore the inherent link between energy
generation and energy consumption of the system is missing
in the model and such model reduces the optimization search
space. Our focus is to consider both the energy generation
and consumption models. The proposed technique models the
complete system (Fig. 1) including the analogue mechanical,



magnetic and electrical power storage and processing parts, the
digital control of the microgenerator tuning system, as well
as the power consumption models of sensor node. We have
identified three system configuration parameters that can in-
fluence the energy consumption efficiency. A response surface
based design space exploration and optimisation technique has
been developed so that not only the energy harvester design
parameters but also the sensor node operation parameters can
be optimised in order to achieve the best system performance.

II. RESPONSE SURFACE MODELLING

Response surface models are constructed from a data set
extracted from either physical experiments or computer ex-
periments (simulations) [10]. Due to space limitations, only
two major steps of the methodology are given below, namely
the formation of an approximated mathematical model by
fitting the response under study in terms of design parameters
using regression analysis (Section II-A) and the design of
a series of experiments or simulations based on design of
experiments (DOE) methodology (Section II-B). Discussions
of the statistical assessment of the goodness of fit and the fitted
model reliability are omitted in this paper.

A. Response Surface Mathematical Model

Suppose there is a dependant variable(s) (y ∈ Rn) where
n is the number of observations, believed to be affected
by a vector of independent variables (a ∈ Rk) where k is
the number of independent variables, then the relationship
between the dependent variable(s) and independent variables
can be expressed as:

y = f(a1, a2, ..., ak) + ε (1)

where ε represents the model errors, a1, a2, ..., ak are indepen-
dent variables and f() is called system function that relates
dependant variable to independent variables. In most cases, the
exact behaviour of the system function is unknown especially
in engineering problems, so the system function f() may be
approximated by an empirical model as:

y = ŷ(a1, a2, ..., ak) + ε (2)

where ŷ are a low order polynomials or a multi-dimensional
splines, and this is called the response surface model. The
independent variables or design parameters in equation (2)
(i.e a1, a2, ..., ak) are expressed in their corresponding physical
units and must be converted to a dimensionless quantities with
zero mean and the same standard deviation before proceeding
with further RSM analysis such as regression. These new
quantities are called coded variables (i.e x1, x2, ..., xk) of orig-
inal design variables (parameters). The transformation process
between natural representations and coded representations is
achieved via equation (3):

x =
a− [amax + amin]/2

[amax + amin]/2
(3)

where amax and amin are the maximum and minimum value
in the range of that specific design parameter. Now the ap-
proximated function ŷ is expressed in term of coded variables

(x1, x2, ..., xk) and how to choose such a model ŷ determines
the success of applying RSM methodology. Typically, most
engineering problems ŷ can be approximated by a quadratic
multi-variable polynomials as follows:

ŷ = β0 +

k∑
i=1

βixi +

k∑
i=1

βiix
2
i +

∑∑
i<j

βijxixj (4)

where β0, βi, βii, βij are the coefficients of the intercept,
linear, quadratic and interaction in the regression model re-
spectively, xi, xj are the design parameters in their coded
format. The coefficients of the polynomial in equation (4)
are determined through n simulation runs for the SystemC-A
energy harvester model. The design points of the n runs are
determined using DOE technique based on D-Optimal criteria.
Using matrix notation, equation (4) can be written as:

ŷ = Xβ (5)

where Xn×p is n × p design matrix, p is the number of
coefficients in the approximated polynomial, n is the number
of simulation runs. βp×1 are the unknowns parameters need to
be solved. The difference between the observed values y and
fitted values ŷ for the ith observation εi = yi− ŷi is called the
residual for that specific observation. The sum of the squares
of the residuals (SSE) is defined as:

SSE =

n∑
i=1

ε2 =

n∑
i=1

(yi − ŷi)2 (6)

Combining equations (5 and 6) and differentiating with
respect to β lead to:

∂SSE

∂β
=

n∑
i=1

(
∂

∂βi
(yi −Xβ)2

)
(7)

Solving equation (7) for each βi using least square method
(LSM) will lead to an accurate model ŷ that satisfy the
condition of minimum residuals (i.e best fit).

B. D-Optimal Experimental Design

In the design matrix Xn×p, each specific run is represented
by a single row and each column contains a specific design
parameter that varies in each row based on predefined de-
signed points. How to choose the predefined design points
efficiently is called design of experiments (DOE) methodology.
There are different types of design of experiments, such as
full factorial, central composite design (CCD), Box Behnken
designs (BBD) and computer generated designs, such as D-
optimal design [10]. Because D-optimal DOE explores design
parameters space efficiently with minimum number of run that
enable model construction with good accuracy [11], it has be
used for the study in this paper. The algorithm of D-optimal
criterion optimise the feasible potential design points to form a
subset of D-optimal points that will be used in simulation runs.
This optimisation is based on maximizing the determinant of
XX ′, where XX ′ is called information matrix [11].



III. SYSTEM DESCRIPTION

Fig. 2 shows the diagram of a wireless sensor node sys-
tem powered by tunable energy harvester [12]. The wireless
sensor node has a temperature sensor and a 2.4GHz radio
transceiver. Once activated, the measured data is transmitted
to another transceiver which is connected to a PC’s USB
port. The microgenerator converts the input vibration into
electrical energy. The generated AC voltage is rectified by
a diode bridge and stored in a 0.55F supercapacitor as an
example. The supercapacitor acts as the energy source for
the microcontroller that controls the frequency tuning of the
microgenerator and for the sensor node. In order to tune
the resonant frequency of the microgenerator to match the
frequency of the vibration source, the microcontroller uses two
input signals, one from the microgenerator and one from the
accelerometer. The detailed tuning algorithms are presented
in Section IV-C. The microcontroller also provides energy for
the accelerometer and the actuator so that these devices can
be turned off when not in use. Table I lists the type and make
of the system components.

Fig. 2. System diagram of a tunable energy harvester powered wireless
sensor system

TABLE I
SYSTEM COMPONENTS POWERED BY THE ENERGY HARVESTER

Component Type Make
Microcontroller PIC16F884 Microchip
Accelerometer LIS3L06AL STMicroelectronics
Linear actuator 21000 Series Haydon

Size 8 stepper motor
Sensor node eZ430-RF2500 Texas Instruments

Three parameters have been identified to influence the
power consumption of the system: the microcontroller clock
frequency, the watchdog timer wakeup time and the wireless
node transmission time interval. There are system performance
trade-offs between increasing and decreasing each of these
parameters therefore optimisation is needed. The optimisation
aim is to maximise the number of wireless transmissions with
the given amount of harvested energy. Descriptions of each
parameter are given below:

1) The microcontroller clock frequency defines how fast
the tuning control algorithm runs. High clock frequency
means faster command execution but the microcontroller
will consume more power. To determine the frequency
of input signals, the microcontroller uses a timer/counter
to measure the time period of the input signals, therefore

the total time needed to finish the counter loop is fixed
and higher clock frequency means higher consumed
energy. Low clock frequency can save energy but the
measurement of the input vibration frequency will be
less accurate leading to less effective tuning control
algorithm.

2) The watchdog timer wakes up the microcontroller pe-
riodically to check if the microgenerator resonant fre-
quency matches the input vibration frequency. To in-
crease the watchdog timer’s wakeup time will reduce
the power consumption of the microcontroller but longer
wakeup time means the response to input frequency
change will be slower.

3) The transmission time interval determines the number
of transmission in certain time period. The time interval
should be chosen so that the sensor node is making
as many transmission as possible without depleting the
energy storage, i.e consuming more energy than the
harvester can generate.

IV. SYSTEM COMPONENT MODELS

A. Tunable microgenerator

The tunable microgenerator is based on a cantilever struc-
ture [12]. The coil is fixed to the base, and four magnets (which
are located on both sides of the coil) form the proof mass. The
tuning mechanism uses magnetic force to change the effective
stiffness of the cantilever which leads to a change of resonant
frequency. One tuning magnet is attached to the end of the
cantilever beam and the other tuning magnet is connected to
a linear actuator. The linear actuator moves the magnet to
the calculated desired position so that the resonant frequency
of the microgenerator matches the frequency of the ambient
vibration. Detailed description of the microgenerator model
can be found in [9]. The control algorithm is modelled as a
SystemC digital process as described in Section IV-C.

B. Sensor node behaviour and power consumption model

The eZ430-RF2500 wireless sensor node from Texas Instru-
ments has been used in the system. The on-board controller
is the MSP430F2274 and is paired with the CC2500 multi-
channel RF transceiver, both of which are based on low-
power design. The sensor node (Fig. 3) monitors the envi-
ronment temperature as well as the supercapacitor voltage.
Once activated, it transmits the temperature and voltage values
through the radio link. Transmissions do not involve receiving
acknowledgements. A program has been developed for the
sensor control module to configure the sensor node in an
energy-aware manner, namely that its transmission interval
should depend on the available energy on the supercapacitor.
The sensor node behaviour is summarised in Table II. The
transmission interval when the supercapacitor voltage is above
2.8V, i.e more energy stored, has been chosen as one parameter
for optimisation. Although it is desirable to have as many
transmissions as possible during a fixed time period, it may
not always be the case that the transmission interval should
be set as small as possible. This is because if the transmission



is so frequency that the sensor node uses more energy than
the harvester can generate, the supercapacitor voltage will
drop below 2.8V and the transmission interval will increase
in order for the energy storage to recover. Other factors such
as frequency tuning also uses stored energy and therefore will
affect how much energy is available for the sensor node.

Fig. 3. Block diagram of the sensor node

TABLE II
SENSOR NODE BEHAVIOUR BASED ON SUPERCAPACITOR VOLTAGE

Supercapacitor voltage Wireless transmission interval
Below 2.7V No transmission
Between 2.7 and 2.8V Every 1 minute
Above 2.8V Every 5 seconds (parameter for optimisation)

In order to characterise the power consumption model of the
sensor node, we measured the current draw of the sensor node
during each transmission. The results are listed in Table III.

TABLE III
CURRENT DRAW OF THE SENSOR NODE

Operation Time Current
Sleep mode N/A 0.5µA
Wake-up 1 ms 4.5 mA
Sensing 1.5 ms 13.4 mA
Transmission 2 ms 26.8 mA

The supply voltage was kept at 2.8V. So during each
transmission lasting 4.5 ms, the sensor node consumes 227
µJ of energy and the equivalent resistance of its energy
consumption model is:

Rnode =

{
167 Ω when in transmission
5.8 MΩ when in sleep (8)

C. Tuning algorithms and power consumption models

In order for a energy harvester powered wireless sensor node
(Fig. 2) to work autonomously, all the system components
need to be powered by the harvested energy. The pseudo code
of the tuning algorithm is shown in Algorithm 1. Standard Sys-
temC modules were used to model the digital control process
and in the experimental verification the control algorithm was
implemented in a PIC16F884 microcontroller. As can be seen
in Algorithm 1, a watchdog timer wakes the microcontroller
periodically and the microcontroller first detects if there is
enough energy stored in the supercapacitor. If there is not
enough energy, the microcontroller goes back to sleep and
waits for the watchdog timer again. If there is enough energy,
the microcontroller will then compare the frequency of the
microgenerator signal, which is close to the input vibration

frequency, to the microgenerator’s resonant frequency. When
a difference is detected between the vibration frequency and
the resonant frequency, the microcontroller retrieves the new
desired position of the tuning magnet from a look-up table and
begins a tuning process by controlling the actuator to move
the tuning magnet to the new position. The watchdog timer
and the microcontroller’s clock frequency have been chosen
as parameters for optimisation. Because these two parameters
determine how much energy the microcontroller consumes and
how quickly the system can response to the input vibration
frequency change.

Algorithm 1 Harvester tuning control algorithm
1: repeat
2: Energy generation while waiting for watchdog timer:

320 seconds (parameter for optimisation)
3: if Enough energy stored in the supercapacitor

(Vs ≥2.6V, where 2.6V is the minimum voltage for
the actuator to start) then

4: Turn on Timer1 (clock frequency as parameter for
optimisation)

5: repeat
6: Measure microgenerator period
7: until 8 cycles have been measured
8: Turn off Timer1
9: Calculate input vibration frequency from 8 measure-

ments
10: Find optimum position (8-bit) of tuning magnet

through look-up table which has been pre-obtained
and stored in the microcontroller memory

11: if Current position of tuning magnet matches opti-
mum position (the accuracy is 1/28) then

12: Goto 2
13: else
14: Perform coarse-grain tuning (Algorithm 2)
15: end if
16: Measure the phase different between the accelerom-

eter signal and the microgenerator signal
17: if The phase difference is less than 100µs then
18: Goto 2
19: else
20: Perform fine-grain tuning (Algorithm 3)
21: end if
22: end if
23: until Forever

Algorithm 1 contains two subroutines: coarse-grain tuning
(Algorithm 2) and fine-grain tuning (Algorithm 3). The coarse-
grain tuning measures the frequency of the microgenerator
output and moves the actuator to the optimum position ac-
cording to a predefined lookup table. However, the coarse-
grain tuning alone cannot generate the best performance and
a fine-grain tuning algorithm is needed. This is because the
measurement of the frequency of the microgenerator signal
does not represent the input vibration frequency accurately
enough and, in addition, there may also be a phase difference



between the input vibration and the microgenerator motion that
prevents the microgenerator from working at the resonance.
The fine-grain tuning takes another input, the raw vibration
data from the accelerometer and moves the actuator to mini-
mize the phase difference between the microgenerator signal
and the accelerometer signal so that the microgenerator is
working as resonance. It can be seen that the fine-grain tuning
algorithm requires more calculation (thus more energy) than
the coarse-grain tuning and additional energy is consumed
by the accelerometer (see Table IV). Therefore it is not so
energy efficient to use only the fine-grain tuning algorithm as
the proposed two-subroutine method. In the two-subroutine
method, the coarse-grain tuning moves the actuator to the
approximate resonant position and the fine-grain tuning finds
the exact resonance.

Algorithm 2 Coarse-grain tuning algorithm
1: repeat
2: Send the optimum position as 8-bit control signal to the

actuator
3: The actuator moves tuning magnet
4: Wait 5 seconds for the microgenerator signal to settle

down
5: Compare the current position and optimum position
6: until Current position of tuning magnet matches optimum

position

Algorithm 3 Fine-grain tuning algorithm
1: repeat
2: Send the direction of movement that can reduce phase

difference to the actuator
3: The actuator moves tuning magnet by 1 step
4: Wait 5 seconds for the microgenerator signal to settle

down
5: Measure the phase of the accelerometer signal
6: Measure the phase of the microgenerator signal
7: Calculate the phase difference
8: until The phase difference is less than 100µs

To tune the resonant frequency of the microgenerator ef-
fectively, the system incorporates a microcontroller, a linear
actuator and an accelerometer. These three components need
to be powered by the energy harvester in order to make an
autonomous system. To characterise the power consumption
models of these components, current measurements have been
taken and power/energy consumptions have been calculated
(Table IV). According to the current and voltage values
together with their operational times, the equivalent resistances
for the power consumption models of these devices have been
obtained.

V. OPTIMISATION RESULTS

For a wireless sensor node, it is desirable to make as
many transmissions as possible during a fixed time period.

TABLE IV
POWER CONSUMPTION MODELS OF THE SYSTEM COMPONENTS

Component Operation Current Power Req Energy
(action) time(ms) (mA) (mW) (Ω) (mJ)

Accelerometer 153 5.1 13.2 509 2.02
Actuator
(1 step) 5 312 811 8.33 4.06

(100 steps) 500 156 405 16.7 203
Microcontroller

(Coarse-grain tuning) 149 1.9 5.0 1.38k 0.745
(Fine-grain tuning) 325 5.1 6.5 250 2.11

However, there are other components in the system which also
consume the harvested energy as shown in Table IV. Therefore
it is important to configure different system parameters in
a holistic manner so that the best overall efficiency can be
achieved. As described in Section III, three parameters which
affect the energy generation and consumption of the wireless
sensor node system have been chosen for optimisation. The
optimisation aim has been chosen as to maximise the number
of transmissions during one hour. The acceleration level of
the input vibration is fixed as 60mg and the input frequency
changes by 5Hz every 25 minutes (Fig. 5). The value ranges
of each parameter and their coded variable symbols are listed
in Table V. Each of the three coded variables has three
values [-1 0 1] which is the minimum number required to
generate a quadratic approximation [10]. The full factorial
design requires 27 (33) simulations while the D-optimal design
only requires 10 simulations. As explained in Section II-B,
the D-optimal design points are obtained and 10 simulations
have been carried out with the corresponding parameters. The
MATLAB response surface toolbox has been used to generate
the quadratic equation and the response surface model is:

ŷ(x1, x2, x3) = 484.02− 121.79x1 − 16.77x2 − 208.43x3

+ 120.98x21 + 106.69x22 − 69.75x23

− 34.23x1x2 − 121.79x1x3 + 32.54x2x3 (9)

TABLE V
SYSTEM PARAMETERS FOR OPTIMISATION

Description Value range Coded symbol
Microcontroller 125k - 8M x1

clock frequency(Hz)
Watchdog timer 60 - 600 x2

wakeup time(sec)
Transmission 0.005 - 10 x3

time interval(sec)

The fitted model in equation (9) reflects the effects of each
design parameters as well as the interactions effects between
design parameters. Fig. 4 plots each single design parameter
against the total number of transmissions while holding the
other two parameters constant (green solid lines). Fig. 4 also
shows the design space of the system parameters (red dash
lines).

Two algorithms from the MATLAB optimisation toolbox
have been used to maximise the number of transmission, i.e
maximise equation (9). The chosen algorithms are Simulated



Fig. 4. Design space exploration

Annealing and Genetic Algorithm, both of which are capable
of global searching. The optimisation results, together with
the original design, are listed in Table VI. It can be seen
that both of the optimised design greatly improved the system
performance. The total number of transmissions doubled with
the optimised designs. To demonstrate the effect of RSM opti-
misation on the real system in physical domain, the SystemC-
A model is simulated using the optimised parameters. Fig. 5
shows the simulated supercapacitor voltage of the original and
Simulated Annealing optimised designs. We show the wave-
forms of the supercapacitor voltage because it can represent
both the energy generation and consumption of the system.

TABLE VI
OPTIMISATION RESULTS

Original Simulated Genetic
design Annealing Algorithm

Microcontroller 4M 8M 125k
clock frequency(Hz)

Watchdog timer 320 60 600
wakeup time(sec)

Transmission 5 0.005 3.065
time interval(sec)

No. of transmissions 405 899 894

Fig. 5. Supercapacitor voltage of original and optimised designs

VI. CONCLUSION

This paper highlights the importance of energy consumption
in an energy harvester powered wireless sensor node system.
The identified design parameters are investigated using re-
sponse surface model based design space exploration and opti-
misation. We use SystemC-A to model the system’s analogue
components as well as the digital processes and MATLAB to
generate and optimise the response surface model. As demon-
strated by the optimisation results, the proposed technique
leads to an efficient optimisation process by combining the
power of SystemC-A in modelling multi-domain systems and
the power of MATLAB in computation.
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