
An FPGA-based Accelerator for Cortical Object
Classification

Mi Sun Park, Srinidhi Kestur, Jagdish Sabarad, Vijaykrishnan Narayanan, Mary Jane Irwin

Dept. of Computer Science and Engineering
The Pennsylvania State University

University Park, PA 16802
{mup183, kesturvy, sabarad, vijay, mji}@cse.psu.edu

Abstract—Recently significant advances have been achieved in
understanding the visual information processing in the human
brain. The focus of this work is on the design of an architecture
to support HMAX, a widely accepted model of the human visual
pathway. The computationally intensive nature of HMAX and
wide applicability in real-time visual analysis application makes
the design of hardware accelerators a key necessity. In this work,
we propose a configurable accelerator mapped efficiently on a
FPGA to realize real-time feature extraction for vision-based
classification algorithms. Our innovations include the efficient
mapping of the proposed architecture on the FPGA as well as
the design of an efficient memory structure. Our evaluation shows
that the proposed approach is significantly faster than other
contemporary solutions on different platforms.

I. INTRODUCTION

The functioning of the brain has long fascinated researchers.
Reverse engineering the brain is considered as one of the grand
challenges of engineering. The ability to reverse engineer
the brain promises computing systems that are capable of
cognitive functions. While current systems excel in several
applications, computer systems are still in infancy in cognitive
activities. There has been recent progress in such systems
that outperform humans in quiz competitions [1] and Chess
[2]. While these represent significant strides forward for such
cognitive systems, the size of systems deployed to support
these applications and the narrow domain of end applications
is a dampener for immediate wide-spread adoption.

In contrast, the ability to harness the significant advances in
understanding the human visual cortex provides an opportunity
to impact a variety of smart vision applications. There are vari-
ous biologically inspired recognition algorithms that have been
proposed including Convolutional Neural Networks (CNN),
Deep Belief Networks, and HMAX [3]. These biologically-
based models are robust to wide variations in scale, lighting,
pose, background clutter and are more suitable for general
purpose object classification with multiple classes than tradi-
tional computer vision approaches. In this work, we focus on
the HMAX algorithm [4] which is a widely accepted model
to abstract the behavior of the visual cortex. In the HMAX
model, a hierarchy of features is extracted by the two stages
of convolutional template matching and pooling operations.
At the S1 stage, the image is convolved with a Gabor filter to
extract information at different orientations at different scales.
The first pooling layer, C1 is used to improve invariance
to the input image through application of local maximum
operators. The second template matching stage, S2 is the
most computationally intensive portion of HMAX and applies
learned patches to convolve with the features extracted from
the C1 layer. The final pooling stage considers all scales and
orientation to extract a feature vector C2 that is then provided

to a classifier. HMAX has been shown to be more successful
in classifying objects from a large number of classes with
accuracies ranging around 70-80%.

The ability to classify objects in real-time has a variety of
end applications including security surveillance, remote elder
care monitoring and unmanned aerial vehicles. A key chal-
lenge is that most existing solutions for accelerating HMAX
have been either performed on platforms that are not amenable
for embedded systems either due to their low performance
or high power consumption. These efforts include the imple-
mentation of a CNS framework on GPUs and accelerators for
HMAX on FPGAs [5] [6] [7]. In this work, we choose a FPGA
platform to implement our design due to its configurable
nature as well as the ability to customize the underlying
architecture to the accuracy needs of the application. The
configurable nature of the FPGA is particularly useful due
to the different variants of HMAX and refinements to the
underlying HMAX model that are emerging in this active
research area in neurosciences [8]. Further, one can tune
the data bitwidth and the pipeline to trade-off the required
performance, power and accuracy needs of the classification
application.

This paper makes the following contributions towards ac-
celerating HMAX algorithms.

• An adaptable processing element (PE) that can be con-
figured either dynamically or statically is proposed. This
feature enables efficient support for different variants of
HMAX template matching (sparse and dense) as well as
different stages (S1 and S2).

• The PE design has been tuned to exploit the underlying
features of a Virtex-6 platform by mapping to an high-
speed pipelined DSP48E1 slice, and these PEs are tiled
through dedicated cascade chain.

• A 2D systolic array that can be dynamically configured to
support convolutions of different kernel sizes is proposed
(such as 4x4, 11x11, 16x16).

• A customized memory hierarchy is proposed to effi-
ciently access the template patches and the input image
and reduce the impact of costly memory accesses. We
also propose scheduling techniques for mapping template
patches when executing on multiple pipelines.

We have developed a prototype of the accelerator on a Xilinx
Virtex-6 FPGA and experimental results shows 31X and 2X to
107X speedups over existing GPU and FPGA implementations
respectively.

II. RELATED WORK

There has been a growing interest in designing systems
for cortically inspired recognition algorithms. Hardware ac-
celerators for CNN based visual recognition has been pro-978-3-9810801-8-6/DATE12/ c⃝2012 EDAA

posed [3] [9]. Several recent approaches to speedup brain-
inspired visual algorithms such as attention maximization
algorithms [10], saliency extraction [11] and retinal image
enhancement techniques [12] were proposed and implemented
on an FPGA. Prior works on accelerating HMAX on FPGA
platform and GPU platform [5] [7] [13] were also proposed.
However the existing solutions for accelerating HMAX are
not amenable for embedded systems either due to high power
consumption or their low performance, therefore we propose
an energy-efficient, high-performance FPGA-based accelerator
for HMAX which outperforms the prior works.

III. HMAX: A CORTICAL MODEL FOR OBJECT
CLASSIFICATION

HMAX is a biologically inspired model that mimics the
hierarchical feed-forward organization of the first few stages
of the visual pathway in primates. In its simplest version, the
model consists of four layers of alternating S (convolutional)
and C (pooling) computational units, referred as S1, C1,
S2 and C2. These stages extract a feature vector from a
grayscale image that can then be passed to a classifier for
object classification. With more understanding of the brain
and differences in modeling them, variants of the HMAX
model have emerged [8] [14]. The goal of this work is to
design an architecture to accelerate the most computationally
intensive stage, S2, of HMAX to achieve optimal performance.
Further, we recognize that a merged S2C2 system can reduce
memory access and propose an efficient architecture of the
combined S2C2 system. While not elaborated in this work,
our accelerator design also supports Gabor filter acceleration
(S1 layer) as mentioned in Section IV. We provide an overview
of the S2 and C2 layers that account for more than 90% of
the total execution time of the HMAX model while running
on CPU [5].

In the S2 and C2 stages, we can classify HMAX into two
variants - dense and sparse. The dense version is the base
model in [15] and the sparse version is the model which
employs sparsification [15]. The S2 features are calculated by
template matching every position and scale of the C1 pyramids
(referred as Xs) with a dictionary of pre-computed patches
(Pi), which is given by the following Gaussian Radial Basis
Function (GRBF).

R(Xs,Pi) = exp(−∥ Xs − Pi ∥2

2σ2α
) (1)

where α = (Mi/4)
2, Mi is the size of the patches (aka

prototypes) and σ is set to 1. The dense patches are of size
Mi x Mi x Nθ, where Mi={1,..4075} = {4, 8, 12, 16} and Nθ

is number of orientations (from 4 to 12), whereas the sparse
patches are of size Mi x Mi and each coefficient in the Mi x
Mi patch has a preferred orientation.

The C2 stage is a global max across scales for each of the
4075 pyramids, to obtain a single vector, each value of which
is response to a given patch. The C2 module stage contributes
to a massive reduction in the amount of data since it reduces
an entire image pyramid after S2 to a single element in C2.

To implement this algorithm in hardware, the exponential
computation can be moved after C2 to minimize the number
of exponential operations. This would require doing an across-
scales Global Min operation (instead of Global Max) in C2.
The exponential is then applied on this reduced data to obtain
the C2 feature vector.

IV. ARCHITECTURE OF HMAX ACCELERATOR

The proposed architecture supports multi-level configura-
bility to compute convolutions in both S1 and S2 layers, in
addition, it also supports S2 computations for both sparse and
dense patches.

At the lowest level of our architecture hierarchy is the
processing element (PE) depicted in Fig 1. This PE can be
dynamically configured at run-time to operate as a Gabor filter
(for S1) or a sparse, or a dense GRBF (for S2) filter. This
feature is supported by enabling or disabling the components
inside the PE. For example, configuring the PE to operate as
a Gabor filter, disables the n:1 multiplexer and the subtractor
in the PE as shown in the Fig 1. In the case of sparse
GRBF operation, all the components inside the PE are enabled,
the n:1 multiplexer selects the input pixel depending on
the precomputed dominant orientation. The subtractor is for
computing the Euclidean-distance between the C1 input pixel
and the patch as seen in equation 1. In addition, any component
inside the PE can also be undefined at compile-time, which
helps save resources.

Fig. 2. The hardware (4x4) primitive for HMAX
At the next level, we cascade the PEs in two-dimension

to form a 2D (4x4) systolic array (denoted as primitive,
henceforth and depicted in Fig 2). This primitive serves to
support convolution variants of different sizes required for
S1 and S2 operations. In addition to the benefits of the
regular systolic data flow, our design exploits the cascaded
DSP48E1 slices on the FPGAs for enhanced performance
of this primitive. Specifically, the multiply-accumulate part
of the PE was optimally pipelined to match the DSP48E1
structure. Further, each column of the array was mapped to
the column-wise cascaded DSP48E1 slices in an FPGA to
enhance resource utilization efficiency and reducing wiring
delays. Every clock cycle, the primitive receives 4 input pixels
and performs 16 multiply-accumulate operations with a set
of preloaded patch coefficients. In the next cycle, the input
pixels are shifted to neighboring PEs to the right, while the
multiplied values are passed to PEs in subsequent rows for
accumulation. We can also tile PEs to form a 2D primitive of
any size, however our choice of 4x4 was influenced by the
smallest patch size used in HMAX.

At the next level, the 4x4 systolic primitives form a reconfig-
urable convolution engine (RCengine) shown in Fig 3. that can
be configured either as 16 independent 4x4 convolutions, 4 8x8
convolutions, 1 12x12 convolution or 1 16x16 convolution.
The RCengine has three components which can be configured
at run-time to support these configurations. (1) It contains
programmable delay elements at the output of each 4x4 array
to introduce appropriate delays for accumulation at the adder
tree when composing them to operate as a larger size primitive.
(2) The number of inputs to the adder tree changes with the

Fig. 1. Processing Element in HMAX primitive

mode - 16 for 16x16, 9 for 12x12, 4 for 8x8 and 0 for 4x4.
(3) The configurable routing fabric (CR) which includes a
bank of multiplexers selects the appropriate pixels to feed
each 4x4 primitive. For example, in the 4x4 mode, all the
primitives operate on rows i to i+3 and so CR broadcasts
these values to all 4x4 arrays. In the 8x8 mode, the primitives
P1, P2 operate on rows i to i+3, while primitives P5, P6
operate on rows i+4 to i+7. The RCengine supports run-time
operations of all patch sizes up to 16 by computing with
zero-padded patch coefficients for some patch sizes which are
not multiple of 4. The output throughput is 16 pixels/cycle
for the patch sizes of (1x1, 2x2, 3x3, 4x4), 4 pixels/cycle
for (5x5, 6x6, 7x7, 8x8) and 1 pixel/cycle for patch sizes
between 9x9 and 16x16. Further, the reconfiguration latencies
of the RCengine are minimized to support iterative processing
of different set of patches. The RCengine (including the 256
patches coefficients) can be completely reconfigured in about
18 cycles for a different mode.

Fig. 3. S2C2 Accelerator

A. Memory Subsystems
Due to the large amount of data involved with HMAX

computations, the data movement is a significant contributor to
overall performance. In order to address this, we have designed
customized on-chip memory architectures for both the image
data and the prototypes by utilizing BRAMs on the FPGA.

1) Fast On-chip Image Memory (FOIM): In the S2C2
accelerator, the motivation for on-chip storage of image data
are two-fold :

• The RCengine requires access to 1 pixel each from up
to 16 consecutive rows of the C1 image every cycle
depending on the mode it is operating. Moreover, each
pixel can have up to 12 orientations. This makes the
required bandwidth much greater than what the external
interfaces (DDR memory/PCIe) can support.

• Since, the number of patches in the S2 stage is typically
high, and a single RCengine can process at most 16
patches (4x4 case) in one pass, the S2C2 accelerator
requires multiple passes to complete the GRBF compu-
tation on a single scale of the C1 image pyramid. This
implies there are large number of repeated accesses to
the same C1 image.

Our high-bandwidth and low-latency on-chip memory archi-
tecture addresses these bottlenecks. The FOIM utilizes bank-
interleaving to allow multiple reads per cycle. The rows of
the image are interleaved to up to 16 banks and each bank
has independent read/write ports. The FOIM also has multiple
columns where each column stores corresponding pixels of
different orientations.

Each cycle all columns of all the banks are read to allow
reading 16 pixels per cycle from 16 contiguous rows, (we
use 16 since it is the maximum size of patches). The FOIM
also handles the sliding window data access for convolutions
by implementing an intelligent address generator to emulate
raster scan order. The FOIM is reconfigured at run-time to
change the image size to support the different scales of the
C1 pyramid.

Each scale of the C1 pyramid is read repeatedly from the
FOIM to complete the processing of all the patches. The above
process is further repeated for all scales of the pyramid to
complete the S2 computation for one image.

2) Fast On-chip Coefficient Memory (FOCM): The S2
stage involves processing a large number of patches (up to
5000), multiple times (up to 11) for a single image and this
operation is repeated for each input image. This requires
initializing the RCengine pipeline with a new set of 256
patches before loading the image into the pipeline every
iteration. For optimal performance, we incorporate an on-chip
memory architecture to store the patches.

The FOCM employs bank-interleaving (with 4 banks) and
multiple columns (4 columns) to allow 16 reads per cycle.
This enables the initialization of the 256 coefficients for
the RCengine in just 16 cycles. Each iteration, the FOCM
initializes the RCengine pipeline with a unique set of patches.
This loading of patches into the FOCM is done once at
configuration time.

The FOCM not only minimizes the initialization latency of
the pipeline for each iteration, but also enables a high degree
of flexibility and data reuse. Any change in the number of
patches, distribution or the actual prototype coefficients can
be accommodated without having to modify the hardware.
The FOCM also generates a control header to the pipeline
before every iteration, which includes information on the mode
of operation, number of valid patches etc which are used to
configure the RCengine.

B. Architecture for Sparse and Dense HMAX
The overall architecture for the S2C2 accelerator as shown

in Fig 3, includes the FOIM as the high bandwidth image
memory and an S2C2 pipeline. The S2C2 pipeline includes a
RCengine module for the GRBF computation which has a CR
module to route data from the FOIM into each (4x4) primitive,
an FOCM to feed coefficients and handle per iteration control
and a C2 module to compute the C2 vector.

This architecture is for the Sparse S2 which can complete
processing all the orientations in one pass. However, in the
Dense S2, each individual orientation of each patch needs
to be applied independently on its corresponding orientation
of the C1 image and the results combined before computing
the C2 vector. So, the GRBF computation of img[θi] with
prototype[θi], must be repeated for all orientations (Nθ).

Also, the dense patches are essentially 3-dimensional arrays
and require much larger memory. In this case, we use the
FOCM to store only the 4x4 and 8x8 patches and fetch the
12x12 and 16x16 patches from DDR memory. A portion
of the FOCM memory space is used as a cache for these
patches. This is because, the 12x12 and 16x16 patches are not
used for the smaller pyramid levels (upper 4 scales). For the
remaining pyramid levels, the image sizes are relatively larger
and computation time is found to mask the DDR memory
access time.

1) Custom Instruction-set for S2C2: The accelerator in-
cludes an on-chip instruction queue to store accelerator spe-
cific instructions. As shown in Fig 4, for each iteration, the
S2C2 pipeline fetches an instruction from the queue, which
is basically a control command to configure the pipeline for
that particular iteration. It includes the mode of operation and
number of valid patches for the RCengine, level information
for C2 and additional bits for sparse/dense selection and ori-
entation selection for dense. The RCengine further configures
its internal primitive delay elements, adder tree and CR based
on the mode of operation. The entire reconfiguration process
for each iteration takes about 4 cycles.

The number of instructions in the queue is equal to the num-
ber of iterations. Once all instructions are executed, the next
C1 pyramid level is fetched and the same set of instructions are
re-executed. The instruction queue is hence implemented as a
circular FIFO buffer. However, as we move up the pyramid,
not all iterations need to be processed (for smaller images
many patches are not executed) and this is controlled by
configuration registers in the pipeline.

The instruction sequence is generated off-line in software
and loaded into the queue through the host interface, once
during configuration time. At run-time, there is no intervention
from software/host and the accelerator can independently
operate on streaming images.

V. OPTIMIZATIONS AND SYSTEM INTEGRATION

This section describes two architectural enhancements
which improve performance of the accelerator and integration

for scale (s = 0, s < 11, s + +)
for iterations (i = 0; i < 1000; p + +)

Load Instruction from Queue into S2C2 pipeline (4 cycles)
Load patch coefficients into RCengine (16 coeffs per cycles)
Read image from the FOIM into S2C2 pipeline (16 pixels per cycle)

end
end
Compute Exponential and Normalize and to obtain C2 vector

Fig. 4. Pseudo-code for S2C2 Accelerator

aspects of the system.

A. Multiple Pipelines - Sparse v/s Dense

The performance can be improved by instantiating multiple
parallel S2engines (aks pipelines) to perform the S2 compu-
tation as shown in Fig 5. Since all pipelines operate on the
same image data, the output bus from FOIM is broadcast to
all S2engines and so there is no resource overhead for image
data access.

Since the image is broadcast to each pipeline, the patches
operating on each pipeline must be unique. So, each S2engine
must have a dedicated FOCM. The patches can be partitioned
into multiple pipelines such that for each iteration, each FOCM
initializes its corresponding pipeline with a unique set of
patches. This partitioning and loading of patches into each
FOCM is done offline in software once at configuration time.

For Sparse HMAX, each pipeline operates on all orienta-
tions of a prototype simultaneously and hence each pipeline
is connected to its own C2 module and generates a C2 vector.
However, for Dense HMAX, each pipeline operates on a dif-
ferent orientation of the same C1 image. Hence, each prototype
must be partitioned such that individual orientations are loaded
into FOCMs of different pipelines. Another complication for
Dense version is that, a pipeline adder tree is required to
combine the outputs of the multiple S2engines and a common
C2 module is used on this combined S2 image to generate a
single C2 vector.

A simple partitioning mechanism would be to balance the
load on each pipeline and by operating each pipeline in the
same mode for each iteration. If not, the pipeline that operates
on smaller patch takes the longer time to complete the iteration
and becomes the critical path. This partitioning can be done
off-line as well.

Fig. 5. Optimized Overall System

B. Memory Optimization

In order to mask the initialization/load time for the FOIMs,
we duplicate the FOIM so as to implement a double-buffer
architecture. This allows pre-fetching the next C1 image while
the current one is being processed.

VI. EXPERIMENTAL RESULTS

We use the Dinigroup DNDualV6PCIe FPGA platform [16]
for prototyping our accelerator. The board has two Virtex-
6 SX475T FPGAs which can be used as compute devices.
The operating frequency of 100MHz for the FPGAs and
256x256 grayscale images are used in our experiments. We
have validated our S2C2 accelerator running on both the
FPGAs. In addition, the board power is measured with P440
Kill A Watt power meter. The static power consumption is
26.5 Watt, while the dynamic power of our S2C2 accelerator
running on both the FPGAs is 26.5 ∼ 27.5 Watt.

Our software system takes prerecorded video files (.avi)
or live video from a camera and generates video streams to
communicate with the hardware via USB, Ethernet or PCIe.
The software also preconfigures algorithmic and architectural
parameters such as image size, # of FPGAs or types of opera-
tions (sparse/dense or Gabor) and generates the configuration
data and instruction sequence required by the accelerator. The
software optimally partitions the patches to the FOCMs in
multiple pipelines to improve performance. In order to support
arbitrary-sized convolutions, the software also appropriately
zero-pads the coefficients for those cases where patch sizes
are not multiple of 4.

A. Performance

Fig. 6. Performance for various Bitwidth

Fig 6 shows the trade-off between performance and accu-
racy for various input bitwidth of the fixed-point implemen-
tation. Since a Xilinx DSP48E1 slice has an in-built 25x18
multiplier, for the GRBF computation we pass only 18-bits of
the subtracted value into one of the slice inputs for 24-bit and
20-bit cases to use minimum # of DSP48E1s. Each RCengine
uses 256 DSP48E1 slices for all cases. The error rate of
C2 feature vectors is compared to a floating-point MATLAB
implementation and the performance based on the maximum
frequency and the # of pipelines is shown. The performance is
higher for smaller bitwidths due to lower resource utilization
which allows more parallel pipelines and higher frequency.
We use 24-bit input images to maintain a high classification
accuracy in all other experiments. This results the classification
accuracy about 97% on 56 images set.

B. FPGA Resources
The performance of the accelerator depends heavily on the

number of pipelines, which further depends on the algorithm
parameters. We consider four separate algorithmic variants -
sparse or dense and different number of orientations (Nθ).
The table I shows the resource utilization for each variant.
The number of pipelines that can fit is primarily controlled
by the BRAMs and DSPs in Dense, whereas by LUTs and
BRAMS in Sparse. For Sparse, due to the significant use of

the n:1 multiplexer in each PE, LUTs resources rather than
DSPs are the major restriction on the number of pipelines we
can apply in a single FPGA.

For Dense, we undefined the multiplexers at compile-time
to improve the efficiency of hardware resources. This allows
up to 6 pipelines to be fit on a single FPGA. When Nθ is 4,
we use 4 pipelines so that we can compute all orientations of a
patch in one iteration. But, when Nθ is 12, we use 6 pipelines
and need 2 iterations to compute all orientations of a patch.

TABLE I
RESOURCE UTILIZATION ON VIRTEX6 SX475T

Slice Regs Slice LUTs BRAMs DSP48E1 # S2engines
Dense 4Θ 173,704 (29%) 134,700 (45%) 535 (50%) 1,024 (51%) 4

Dense 12Θ 256,672 (43%) 197,252 (66%) 803 (75%) 1,536 (76%) 6
Sparse 4Θ 275,336 (46%) 238,860 (80%) 723 (68%) 1,024 (51%) 4

Sparse 12Θ 279,968 (47%) 212,908 (72%) 746 (70%) 512 (25%) 2

1) Scalability: Fig 7 shows that performance scales well
with using multiple FPGAs, due to the optimized local mem-
ory applied in our architecture. The accelerator architecture on
each FPGA is identical and only the patches are partitioned
across pipelines on multiple FPGAs. This chart shows that
the design is scalable and more resources imply higher degree
of parallelism from the accelerator. The Sparse versions are
faster than Dense due to reduced amount of computations and
smaller number of orientations implies better performance.

Fig. 7. Performance Scaling with number of FPGAs

C. Influence of Double-Buffering
The performance improvement from introducing the double-

buffer architecture for FOIMs is listed in Table II. As shown,
the impact of the improvement on load latency is more in
Sparse versions due to reduced computations and higher for
larger Nθ due to increase in sample size. In addition, the
number of patches also matters, since the load latency can
occupy a significant portion of the total time when the # of
patches is small.

TABLE II
PERFORMANCE IMPROVEMENT WITH DUAL-FOIMS

Patch Dense 4Θ Dense 12Θ Sparse 4Θ Sparse 12Θ
4075 0.2% 0.6% 0.8% 1.2%
1024 3.7% 4.2% 3.7% 10.3%

D. Comparison with Related Efforts
In Table III, we compare the performance of our HMAX

S2C2 Accelerator with existing implementations. For the
Sparse case, we use the CNS framework [6] on a GPU for
comparison. The CNS (rev.372) numbers were obtained using
a single NVIDIA Tesla C1060 GPU running CUDA 3.0 at
1.3 GHz. This was hosted on a Linux machine with dual
quad-core Intel(R) Xeon(R) CPU running at 2.27Ghz and with
12GB RAM. We used the same set of patches on both the

TABLE III
COMPARISON OF HMAX IMPLEMENTATIONS

SPARSE 4Θ with 4075 prototypes (Frames Per Sec) DENSE 12Θ with 5000 prototypes (Frames Per Sec)
Telsla C1060 4 x Virtex5 2 x Virtex6 2 x Virtex6 Quad-core 4 x Virtex5 2 x Virtex6

GPU [6] SX240T [5] SX475T SX475T [7] Xeon CPU [5] SX240T [5] SX475T
2.8800 3.6100 90.3880 45.84 0.0045 0.0909 8.4996

GPU and the FPGA platforms. Our accelerator running on
two Virtex-6 FPGAs provides 31X speedup over the CNS
implementation on GPU for the Sparse 4Θ case. Further, the
power measurement shows that our FPGAs running at 27.5
Watt consumes around 85% less power compared to the GPU
running at TDP of 187.8 Watt [17].

We also compare our performance with two recent FPGA
accelerators [5] [7]. Our two-FPGA system outperforms their
Nallatech four-FPGA system and the similar work on the
Virtex6 SX475T by 25X and 2X respectively. Comparison
with [5] is reasonable since we use only 2 FPGAs compared
to their 4 FPGA system to offset the 2X more resources on
our Virtex6 device. In addition, our speedup over [7] is 2X,
although we used the same # of patches, the same frequency
and the same Virtex6 FPGA platform.

The significant performance improvements compared to
GPU and FPGA [5] implementations is due to the resource
efficient compute elements, high degree of coarse- and fine-
grain parallelism and efficient on-chip memory architectures.
While the acceleration approach in [7] is similar to ours,
our system benefits from custom instruction sets along-with
minimized load latencies. Further, our 2D systolic primitive
which utilizes cascaded DSP48E1 slices instead of logic
slices to realize the convolution engine, allows more parallel
pipelines on a single FPGA.

For the Dense case, we compare our results with CPU and
FPGA numbers from [5]. We configure our accelerator with
the same number of patches and 12 orientations. The table III
shows that our system provides a speedup of 2164X and 107X
respectively over the 3.2 GHz quad-core Xeon CPU and the
four-FPGA Nallatech system. This huge speedup over [5] for
dense S2C2 is specifically because their system relies heavily
on access to DDR memories and also due to lack of reuse. In
contrast, our system can operate 6 orientations simultaneously
and maximize reuse of the image data and patches from on-
chip memories.

VII. CONCLUSION

Neuromorphic vision algorithms can provide significant
improvements in accuracy and robustness of visual percep-
tion tasks such as attention, classification and recognition.
Owing to the huge computational demands imposed by these
algorithms, customized hardware accelerators are a neces-
sity to provide sustained performance at low power bud-
gets. In this paper, we have presented an energy-efficient,
high-performance FPGA-based accelerator for HMAX model,
which is widely accepted and applied in multiclass object
classification and recognition.

Our accelerator introduces an adaptable processing element
to support different stages of HMAX (S1 and S2) and variants
(sparse and dense). It includes a hardware primitive which has
a 2D systolic structure and can be dynamically configured for
Gabor or GRBF of varied sizes. A significant effort has been
put into designing efficient multiported on-chip memories to
provide low-latency and high bandwidth for access to both
image data and patches. Finally, the architecture is scalable to
multiple pipelines and devices to extract higher parallelism.

A detailed evaluation of the accelerator shows several
performance trade-offs with respect to bitwidths and FPGA
resources. Comparisons with existing works show that our
system provides large speedups over GPU (31X) and FPGA
implementations (2X to 107X). This accelerator provides real-
time throughput for most algorithmic variants and is the first
amenable solution for deployment in an embedded system.

ACKNOWLEDGMENT

This work was supported in part by the DARPA Neovision2
program and NSF awards 1147388, 0916887 and 0903432.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressly or implied, of the
Defense Advanced Research Projects Agency (DARPA) of the
U.S. Government.

REFERENCES

[1] “Ibm-jeopardy-dac2011-keynote.” [Online]. Available: http://www-03.
ibm.com/innovation/us/watson/

[2] “Ibm deepblue vs gary kasprov.” [Online]. Available: http://www.
research.ibm.com/deepblue/watch/html/c.shtml

[3] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dy-
namically configurable coprocessor for convolutional neural networks,”
in Proc. of the 37th annual International Symposium on Computer
Architecture, ser. ISCA ’10. New York, NY, USA: ACM, 2010, pp.
247–257.

[4] M. Riesenhuber and T. Poggio, “Hierarchical models of object recog-
nition in cortex,” Nature Neuroscience, vol. 2, pp. 1019 – 1025, Nov
1999.

[5] A. Al Maashri, M. DeBole, C.-L. Yu, V. Narayanan, and C. Chakrabarti,
“A hardware architecture for accelerating neuromorphic vision algo-
rithms,” in IEEE Workshop on Signal Processing Systems (SIPS), Oct
2011.

[6] J. Mutch, U. Knoblich, and T. Poggio, “CNS: a GPU-based framework
for simulating cortically-organized networks,” Massachusetts Institute
of Technology, Cambridge, MA, Tech. Rep. MIT-CSAIL-TR-2010-013
/ CBCL-286, February 2010.

[7] J. Sabarad, S. Kestur, M. Park, D. Dantara, and V. Narayanan, “A
reconfigurable accelerator for neuromorphic object recognition,” in Proc.
of Asia and South Pacific Design Automation Conference (ASP-DAC),
Jan 2012.

[8] J. Mutch and D. G. Lowe, “Object class recognition and localization
using sparse features with limited receptive fields,” Intl. J. Comput.
Vision, vol. 80, pp. 45–57, October 2008.

[9] C. Farabet, C. Poulet, J. Han, and Y. LeCun, “CNP: An FPGA-based
processor for convolutional networks,” in Field Programmable Logic
and Applications, 2009. FPL 2009. Intl Conf on, sept 2009, pp. 32 –37.

[10] S. Bae, Y. C. P. Cho, S. Park, K. M. Irick, Y. Jin, and V. Narayanan, “An
fpga implementation of information theoretic visual-saliency system and
its optimization,” Field-Programmable Custom Computing Machines,
Annual IEEE Symposium on, vol. 0, pp. 41–48, 2011.

[11] S. Kestur, D. Dantara, and V. Narayanan, “SHARC: A streaming model
for FPGA accelerators and its application to saliency,” in Proc. of Design
Automation and Test in Europe Conference (DATE), March 2011.

[12] S. Park, S. Kestur, K. Irick, and V. Narayanan, “Invited paper: Acceler-
ating neuromorphic vision on fpgas,” 2011.

[13] A. Nere, A. Hashmi, and M. H. Lipasti, “Profiling heterogeneous multi-
gpu systems to accelerate cortically inspired learning algorithms,” in
IPDPS, 2011, pp. 906–920.

[14] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust
object recognition with cortex-like mechanisms,” Pattern Analysis and
Machine Intelligence, IEEE Tran on, vol. 29, no. 3, pp. 411 –426, march
2007.

[15] J. Mutch and D. Lowe, “Multiclass object recognition with sparse,
localized features,” in Computer Vision and Pattern Recognition, 2006
IEEE Comp Soc Conference on, vol. 1, june 2006, pp. 11 – 18.

[16] “Dinigroup DNDualV6-PCIE4 documentation.” [Online]. Available:
http://www.dinigroup.com/new/DN-DualV6-PCIe-4.html

[17] “Nvidia tesla C1060 documentation.” [Online]. Available: http:
//www.nvidia.com/docs/IO/43395/BD-04111-001 v06.pdf

