
Virtual Platforms: Breaking New Grounds

Rainer Leupers

RWTH Aachen University, leupers@ice.rwth-aachen.de

Grant Martin

Tensilica Inc, gmartin@tensilica.com

Roman Plyaskin, Andreas Herkersdorf

TU Munich, herkersdorf@tum.de

Frank Schirrmeister

Cadence Design Systems Inc, franks@cadence.com

Tim Kogel

Synopsys Inc, tim.kogel@synopsys.com

Martin Vaupel

Robert Bosch GmbH, martin.vaupel@de.bosch.com

Abstract—The case for developing and using virtual platforms

(VPs) has now been made. If developers of complex HW/SW

systems are not using VPs for their current design, complexity of

next generation designs demands for their adoption. In addition,

the users of these complex systems are asking either for virtual or

real platforms in order to develop and validate the software that

runs on them, in context with the hardware that is used to deliver

some of the functionality. Debugging the erroneous interactions

of events and state in a modern platform when things go wrong is

hard enough on a VP; on a real platform (such as an emulator or

FPGA-based prototype) it can become impossible unless a new

level of sophistication is offered. The priority now is to ensure

that the capabilities of these platforms meet the requirements of

every application domain for electronics and software-based

product design. And to ensure that all the use cases are satisfied.

A key requirement is to keep pace with Moore´s Law and the

ever increasing embedded SW complexity by providing novel

simulation technologies in every product release. This paper

summarizes a special session focused on the latest applications

and latest use cases for VPs. It gives an overview of where this

technology is going and the impact on complex system design and

verification.

I. MORE REAL VALUE FOR VIRTUAL PLATFORMS

VPs are popular vehicles for various design tasks, such as
early embedded SW development and HW platform
architecture optimization. However, creating a VP from scratch
for a new HW platform still means a huge investment of time,
money, and manpower. Complex technologies have to be
mastered, many platform components have to be modeled from
scratch, and professional VP tools have a price tag, too.
Enabling new applications and extending a typical VP´s
lifetime would imply a higher return of investment. In turn, this
requires R&D on various new technologies. We sketch three
different routes here that, in our view, promise new
opportunities for advanced VP use cases.

1. System-level power estimation

The design of new HW platforms, in particular in the
telecom domain, is frequently driven by tight power
consumption constraints. While VPs are already partially in use
for post-silicon power optimizations, true electronic system

level (ESL) power estimation is getting more and more
attention [1]. However, it is also known that power estimation
without at least some gate-level and layout information is
highly speculative at best. We therefore envision technologies
as illustrated in Fig. 1, where abstract power models are first
created and calibrated based on low level circuit information
and afterwards are used stand-alone for accurate, yet very fast,
power evaluation of different design points.

Fig. 1: High-level power model design methodology

This requires enhancements of current abstract processor
simulators (e.g. [2]) as well as careful characterization of the
key circuit parameters that determine the power estimation at
higher levels.

2. Multicore SW verification

With the increasing number of processor cores inside SoC
platforms, SW verification and debugging become pressing
issues. We need to manage detection of new types of bugs in
parallel SW applications as well as the complexity of
debugging on dozens of cores simultaneously. VPs provide a
great debug infrastructure due to maximum observability and

978-3-9810801-8-6/DATE12/©2012 EDAA

controllability. They should be extended towards
systematically catching concurrent SW bugs. For instance, this
can happen by means of an assertion mechanism that monitors
SW event traces (e.g. shared memory accesses) and reports
hazardous inter-process communication behavior.

3. Need for (simulation) speed

Simulation speed might well evolve as the key limiting
factor for VP use. Multi/Manycore system complexity is still
skyrocketing, and (quoting Lisa Su´s DAC 2011 keynote)
transistor counts are increasing faster than simulation tool
speed. In the long term, this will prohibit some of the
traditional VP use cases. Unfortunately, unlike in previous
times, there is no universal turbocharger for ESL simulation in
sight. We may thus expect that the need of keeping pace with
Moore´s Law will lead to VPs that adopt a blend of different
approaches currently under investigation in research [3]:
abstract/hybrid processor and NoC simulation, sampling based
simulation, parallel and/or distributed simulation, just to name
a few.

II. CONFIGURABLE PROCESSOR-CENTRIC VIRTUAL

PLATFORMS – NEW DOMAINS AND NEW USES

VPs and processor-centric design have gone together for
many years. Configurable processors emphasize the need for
virtual prototyping in both early design space exploration,
where applications are partitioned and individual
heterogeneous processors are configured with structural
parameters and application-oriented instruction extensions, and
in verification of back-end software development. Starting
with proprietary C/C++ system modeling approaches, support
for virtual prototyping has migrated to the use of SystemC as
the modeling integration infrastructure, linking to C++ based
instruction set simulation technology in both cycle-accurate
and just-in-time host-compiled-code fast functional simulation
forms. This base SystemC infrastructure has been integrated
into a variety of commercial ESL virtual prototyping tools,
which promotes interoperability with models of other IP and
advanced analysis capabilities.

The applications for such virtual prototyping have grown in
lock-step with the application of configurable, extensible
processor technology. The domains of audio, video, and
network processing were relatively early uses. More recently,
wireless applications for both base stations and user equipment
have pushed the envelope on heterogeneous multi-core
simulations. Just the baseband subsystem for LTE can require
a few to more than a dozen processors, ranging from highly
application-specific engines to complex DSPs.

It is not possible to sit still with VPs. The growth in the
number of cores in systems and the growth in the amount of
software running on these cores demand frequent refreshes of
technology. What was effective in fast-functional compiled-
code simulation technology when first introduced – for
example, running at 50 MIPS for simulating complex
instruction extensions – becomes too slow when divided
among ten processors rather than used for one. In addition,
specific use-cases – such as mixes of peripherals with memory-
mapped registers, some of which have side effects on writing
(which is infrequent) and some of which are polled frequently,

may require finer granularity in direct memory access methods
to achieve good performance. The heuristics used to control
interpretation vs. compilation of hot code regions, the use of
different compilers with different speed of compilation vs.
speed of compiled code tradeoffs, and the use of multiple tasks
and processors for compilation, all need upgrading as demand
for performance increases, along with many other
improvements for speed.

The need for more speed when using commercial ESL tools
requires refreshes of integration and the capabilities supported
in such integration. This can be an extensive many-month
exercise, but given the importance of commercial virtual
prototyping tools to many users, is again triggered by the
increase in performance required for their platforms and use
cases. This also triggers demand to support OSCI TLM-2.0
standards even when existing integrations support an
equivalent set of transaction level modeling capabilities. The
attractions of a standard for interoperability such as TLM-2.0,
even though late in arriving, mean that more models will be
built to this standard over time, increasing the desirability of
supporting the TLM-2.0 ecosystem.

One extremely interesting use case for virtual prototyping
technology with configurable processors could be called
―virtual prototyping without SystemC Tears, virtual
prototyping without commercial ESL $$$‖. This is a way of
using configurable processor SystemC modeling technology to
build subsystem VPs, with one processor or many, and drawing
on a library of components such as memories, routers, arbiters,
DMAs, and memory mapped peripherals. The technology has
several intriguing characteristics:

 It does not require the modeler to know anything
about SystemC or C++.

 It is interpreted, creating a SystemC subsystem model
on the fly.

 It uses a very simple script-like notation to specify the
subsystem.

 It uses inference to interconnect components.

 It can model a variety of interconnect structures.

 It can be easily integrated into an Eclipse based IDE
to allow rapid subsystem model creation and software
mapping to the heterogeneous set of processors.

 It can output a full static SystemC model of the
subsystem, that can be developed further to
incorporate IP from other sources and more complex
interconnect models.

This technology has some constraints – it is limited to IP
from one configurable processor vendor, and adding a new
component to the interpreter requires a tedious set of 31 distinct
steps. However, it is being evolved to add standard APIs that
will greatly reduce the effort of adding new components to the
library, thus extending its range of application further.

A final area of continued exploration and development is the
evolution of ISS technology to allow simulations to run on
multiple cores – ―use multicore to design multicore‖ [4].

III. ARCHITECTURE-LEVEL HARDWARE/SOFTWARE DESIGN

SPACE EXPLORATION FOR MULTICORES

Extensive design space exploration requires scalable and

accurate simulation methods and tools in order to keep up with

the growing complexity of multiprocessor VPs. Conventional

performance estimation methods, e.g. employing instruction set

simulators (ISS), cannot satisfy the increasing requirements on

the performance of ESL simulations. In order to speed up the

exploration at the architecture and system level, it is essential to

define a sufficient amount of simulation events and raise the

abstraction level of the models. At the same time, higher levels

of abstraction introduce new challenges in the accurate

modeling of the components’ timing behavior since micro-

architectural details, such as instruction pipelining or out-of-

order execution, are partially (or completely) abstracted.

Addressing the trade-off between performance and accuracy,

trace-driven simulations accelerate the design space exploration

by eliminating unnecessary details in the models [5, 6]. The

idea behind this method is to capture and abstract the behavior

of processing elements in the form of application traces. The

collected trace data describe interactions between processing

elements and are used to predict the system’s behavior in

different environments in a shorter time. The traces can be

defined at different levels of detail depending on the points of

interests in design space exploration. At the architecture level,

the application traces capture the interaction between VP

components while abstracting the internal events of the

processing elements. The challenge is in generating a

representative set of meaningful traces that cover realistic

scenarios for the exploration. The proposed workflow of our

approach consists of two steps shown in Fig. 2. In the first step,

the application traces are obtained during a pre-evaluation

phase by executing the target code on a reference cycle-

accurate simulator which incorporates all necessary micro-

architectural details. The simulator generates a trace consisting

of bus accesses observed during the execution of the code and

the time intervals between them.

Fig. 2: Generation and simulation of abstracted traces for

architecture-level design space exploration

Generated once, the application traces can be reused

multiple times during the design space exploration. The traces

are simulated at the architecture level in a trace-driven VP

which contains abstracted models of the processing elements.

These models reproduce the application workload captured in

the traces and stimulate the models of shared resources and

interconnect. Due to the abstraction of internal processing,

trace-driven simulation performs faster compared to full cycle-

accurate model, achieving reported speedup factors of up to

174x [7]. The simulation performance is limited by the speed of

system-level models of shared components (e.g. caches or on-

chip interconnect) as well as by the performance of the

simulation engine employed for the management of simulation

events. In addition, the performance of trace-driven simulations

is constrained by the IO-bandwidth of the hard disk which is

used for storing and fetching the traces.

Along with the target applications, the traces can abstract the

workload of the target operating system. By means of a high-

level scheduler, the designer can perform more comprehensive

design space exploration. The scheduler manages the execution

of traces on the underlying core models, allowing for

evaluation of various application mappings and scheduling

policies at a higher level of abstraction [5].

The abstraction of functionality in the trace-based

simulations requires a separate trace to be generated for each

input applied to the target application. One way to tackle this

problem is to reduce the granularity of traces. The trace can be

sliced into smaller parts or atomic traces, according to the

control flow graph of the target code (Fig. 3).

Fig. 3: Fine-granular atomic traces capturing the execution of

basic blocks of the target code

The original trace can be reconstructed by concatenating the

atomic traces according to the control flow of the target

application, which can be changed at simulation run-time in

this setup. The concatenation of atomic traces requires the

values of target branch addresses which define the next traces

to be executed. For this purpose, fast, untimed, functional

simulation can be employed in order provide the control flow

information (Fig. 3).

In advanced out-of-order processors, the timing of basic

blocks is not static but strongly context-dependent. In order to

address different execution patterns of the same basic block,

more than one atomic trace per basic block has to be

considered. This approach requires run-time evaluation of the

simulation context in order to determine which atomic trace of

the block has to be executed [7]. The use of multiple atomic

traces per basic block allows for accurate reconstruction of the

processor’s behavior at higher simulation speeds than in

conventional ISS´s.

IV. VIRTUAL PLATFORMS AND THEIR ECOSYSTEM

To understand VPs and their eco-system it is important to
understand the design flow they are enabling. Fig. 4 shows an
abstract system development flow starting from system
modeling through hardware software partitioning leading into
the three pillars of hardware development, software
development and hardware/software integration. The hardware
development flow re-uses as much IP as possible, generates
new RTL from high-level Transaction Level Models (TLM)
and then leads into the traditional EDA flows of SOC and
Silicon Realization. The software flow equally re-uses as much
IP as possible and implements from C and C++ using
compilers the actual software stacks starting with firmware
enabling operation systems through drivers, middleware and
applications.

Fig. 4: An abstract system-development flow

For the center pillar of HW/SW integration, various
techniques are in use today.

Virtual prototypes for software development are available
pretty early in a project and are representing fully functional
software models of systems on chip (SoCs), boards, I/Os and
user interfaces. They execute unmodified production code, and
they run close to real-time with virtualized external interfaces.
They offer high system visibility and control, including multi-
core debug. The speed of VPs will degrade to the single-digit
MIPS range or even lower if users choose to mix in more
timing-accurate models of the hardware, which is an approach
often used for architectural analysis.

Variations of virtual platforms are so-called software
development kits (SDKs) like the iPhone SDK. While SDKs
offer most of the advantages of the standard virtual prototypes,
their accuracy is often more limited because they may not
represent the actual registers as accurately as virtual prototypes
but instead allow programming toward higher-level application
programming interfaces (APIs) and often require re-
compilation of the code to the actual target processor after
users have verified functionality on the host machine on which
the SDK executes.

Prior to VPs and SDKs, system-level models may exist at a
level of abstraction at which decisions about hardware and
software have not been made. They typically use descriptions
like UML or proprietary languages like MatLab.

Later areas of software and hardware integration use the
register transfer level (RTL) used for hardware development.
Because RTL takes time and effort to implement and integrate,
design teams can be very hesitant to change the hardware
architecture once RTL is available, unless major defects have
been found.

After simulation confirms that the RTL is reasonably stable,
emulation and acceleration provides a vehicle for hardware-
assisted software development. It differs from FPGA
prototypes in that it enables better automated mapping of RTL
into the hardware together with faster compile times, but the
execution speed will be lower and typically drop to the single-
MIPS range or below.

Available later in the design flow, but still well before
silicon, FPGA prototypes can serve as a vehicle for software
development and integration as well. They are fully functional
hardware representations of SoCs, boards and I/Os. They
implement the ASIC RTL code and often run in the speed
range of 10s of MIPS, with all external interfaces and stimulus
connected. Due to the complexity and effort of mapping the
RTL to traditional FPGA prototypes, it is not really feasible to
use them before RTL verification has stabilized.

Finally, after the actual silicon is available, early prototype
boards using first silicon samples can enable software
development on the actual silicon. Once the chip is in
production, very low-cost development boards can be made
available. At this point, the prototype will run at real-time
speed and full accuracy. Software debug is typically achieved
with specific hardware connectors using the JTAG interface
and connections to standard software debuggers.

At least ten different characteristics determine the
applicability of the chosen prototyping approach and the
models it is built from. They include time of availability in a
project, execution speed, accuracy, bring-up cost, production
cost, replication cost, debug insight into hardware, debug
insight into software, execution control and availability of
system interfaces to include the system environment for
analysis and verification.

From Fig. 4 it becomes clear that various interfaces and
connections can enable different use models for VPs.
Architects for the hardware and software portions and their
partitioning will appreciate executable representations of the
system models which were used to make the initial design
decisions. As a result, connections to high-level representations
and hybrid execution can make sense for VPs to allow
verification as well as performance analysis.

VPs for software development increasingly are becoming

part of the verification flow for hardware. Low-level software

often will be a required part of test benches for hardware

verification, ensuring correctness of the HW/SW interface.

But more and more also the higher level functions can become

part of hardware verification flows. For that purpose, hybrids

of VPs with all RTL based integration techniques are

becoming more popular. They allow users to optimize the

balance between the advantages of the different techniques,

specifically as it relates to the ten characteristics of

prototyping approaches mentioned above.

V. SOFTWARE-DRIVEN VERIFICATION

It is common knowledge that functional RTL verification
consumes up to 70% of the total HW development time. Two
major factors among that budget are the effort to create the
testbench and the time for debugging of detected issues. Using
SW running on VPs for functional verification adds value in
both areas: First, VPs can be used as directed stimuli generators
as well as reference models in RTL testbenches. Second, VPs
can accelerate the debugging of detected issues. Despite the
obvious advantages, so far only a few companies are
successfully deploying SW Driven Verification (SDV). The
slow adoption is mainly due to the high effort to establish this
flow, which in turn is caused by the previous lack of standards
in both the VP domain as well as the verification domain.
Recently the standards in both areas are maturing and with that,
a SDV flow can be established with little effort from standard
building blocks.

The release of the TLM-2.0 standard in 2007 was inflection
point for the broad adoption of VPs. Since then all IP vendors
and EDA tool providers have migrated their proprietary model
interfaces to TLM-2.0. By now, users can compose VPs from a
broad range of Loosely Timed (LT) off-the-shelf components
[8] and reap the benefits of VPs for early SW development and
HW/SW integration.

On the verification side, the consolidation of vendor specific
verification methodologies into the Universal Verification
Methodology (UVM) fosters the broad availability of
Verification IP (VIP) with standard SystemVerilog transaction-
level interfaces. In addition, the modular structure of state-of-
the-art testbenches enables the deployment of Loosely Timed
SystemC models and VPs as reference models as well as for
stimuli generation.

Fig. 5: Software Driven Verification Testbench

As depicted in Fig. 5, there are two main use models for

SDV. The left side depicts the usage of a VP as a reference
model in a SV testbench. By that, the creation of an additional
SV reference model is not needed any more, which greatly
reduces the testbench development effort. As an additional

benefit, the development and testing of the testbench itself can
start early, long before the actual Device Under Test (DUT)
becomes available. This enables the parallel creation of the
DUT and the testbench and thus reduces the overall time to
market.

The right side of Fig. 5 illustrates the usage of a VP as a
stimuli generator for the DUT. As soon as an RTL block
becomes available, it can replace its transaction-level model in
the VP. Knowing that real Software and system scenarios are
used greatly increases the confidence in the verification.
Furthermore, the simulation speed is much faster, given that
most of the system is simulated at the transaction-level.

The SVD use-models are based on the integration of VPs
into SystemVerilog (SV) based verification environments. This
setup relies heavily on existing testbench infrastructure like
TLM-to-pin conversion with drivers and monitors as well as
scoreboards for the smart comparison of the from the Loosely
Timed reference and from the timed DUT. In addition the
availability of the SystemC TLM-2.0 standard for VPs and the
UVM verification standard enables the creation of highly
reusable Transaction Level Interfaces (TLI) between the VP
and the rest of the SystemVerilog testbench. Based on these
off-the-shelf components it is very little effort to set up a SDV
environment. As a result, we are starting to see a growing
adoption of SDV.

VI. VIRTUAL PLATFORMS FOR AUTOMOTIVE

While ―hard‖ automotive applications have much in
common with consumer electronics, the differences w.r.t.
technical characteristics and constraints, development
processes, and supply chains have to be taken into account
before exploiting new methodologies in this domain, such as
VPs. Hard automotive, in this context, means the focus on
control-flow oriented, real-time, safety-critical applications
such as engine control or electronic stability programs ESP™ -
in contrast to, for example, infotainment systems.

Fig. 6: Automotive ECU generation lifecycle

Similar to consumer devices, the user perceptible
functionality of today’s automotive electronic control units
(ECUs) is mainly defined by highly complex embedded
software; and the challenges of this complexity make the use of
VPs for system and software development attractive throughout
the lifecycle of an ECU generation (Fig. 6): (1) In the System
definition and partitioning phase models can aid
communication between disciplines and companies and serve
as executable specifications. (2) Before HW is available (―pre-
silicon‖) development can be accelerated by parallelizing the
SW-development, adapting the SW tooling (e.g. debugger and

compiler), and preparing HW bring-up. (3) During the lifetime
of a generation (―post-silicon‖), where the advantages of virtual
over real HW such as scalability, improved distribution, or
automation and replication capabilities can be exploited. While
better observability and controllability are properties of VPs for
all kinds of applications (notably involving Multicore µCs), in
the context of automotive safety requirements (e.g. as stated in
ISO26262 [9]) they seem particularly appealing for code
coverage measurements and fault injection. In contrast to the
consumer electronics business, this phase spans several years
during which the tool environment has to be stable. Many
variants are developed and maintained which have to be
supported by the VP environment by means of a robust variant
and version handling mechanism as well as by a scriptable
model assembly methodology.

Fig. 7: Virtual Prototypes in the automotive context

The above use cases in combination with the involved
(AUTOSAR [10])-SW layers (see Fig. 7) inflict a tremendous
diversity of requirements on the used VPs w.r.t. complexity (IP
blocks, µCs, ECUs, networks of ECUs), accuracy and
simulation speed (i.e. abstraction level), and maturity, which
should be handled optimally by the same tool environment. On
the other hand, the automotive supply chain becomes more
diverse and fragmented, meaning that the models used by the
different players must be able to interact seamlessly regardless
of which tool was used to create them and which is used to
integrate and execute them. In addition, these cyber-physical
systems interact heavily and in hard real-time with their
physical environment by means of a multitude of directly
attached sensors and actuators in addition to communicating to
other ECUs over networks. As a consequence, purely
electronic (digital and analog) VPs are not sufficient: they have
to interact seamlessly with existing simulation environments
specializing in e.g. hydraulic, mechanical, electrical, and
behavioral properties. The same holds for the sophisticated

legacy SW-tool chains and existing development processes,
where the new methodology has to fit into in order to preserve
the considerable investments made.

VPs will find wide-spread use in automotive, only if (1) the
above issues are addressed and (2) the cost of modeling is
bearable, which can only be accomplished by establishing open
automotive modeling standards that guarantee the
interoperability of models and tools within the whole
ecosystem.

VIII. CONCLUSIONS

We have summarized the state-of-the-art, current trends, and
future needs in the domain of virtual prototyping. VPs remain
an extremely interesting and fast developing topic, in terms of
both academic research and new business directions. VPs are
also an excellent example of an EDA domain, where academia
and industry have shown a very fruitful collaboration in the
past two decades. In order to continue this success story, the
research community should address the fundamental technical
issues, such as speed, abstraction, parallelization, reuse, and
interoperability. At the same time, advanced use cases
(including system optimization and verification) and new
applications domains (such as automotive) offer fresh
perspectives and provide ESL vendors with new marketing
opportunities.

REFERENCES

[1] C.W. Hsu, J.L. Liao, S.C. Fang et al.: PowerDepot: Integrating IP Based
Power Modeling with ESL Power Analysis for Multi-Core SoC Designs,
DAC, 2011

[2] T. Kempf, M. Doerper, T. Kogel et al.: A Modular Simulation
Framework for Spatial and Temporal Task Mapping onto
Multiprocessor SoC Platforms, DATE, 2005

[3] R. Leupers, O. Temam (eds.): Processor and System-on-Chip
Simulation, Springer, 2010

[4] R. Leupers, L. Eeckhout, G. Martin, F. Schirrmeister, N. Topham, X.
Chen: Virtual Manycore platforms: Moving towards 100+ processor
cores, DATE, 2011

[5] R. Plyaskin, A. Masrur, M. Geier, S. Chakraborty, A. Herkersdorf:
High-level timing analysis of concurrent applications on MPSoC
platforms using memory-aware trace-driven simulation, 18th IEEE/IFIP
International Conference on VLSI and System-on-Chip (VLSI-SoC),
Madrid, Spain, September 27-29, 2010

[6] H. Lee, L. Jin, K. Lee, S. Demetriades, M. Moeng, and S. Cho: Two-
phase trace-driven simulation (TPTS): a fast multicore processor
architecture simulation approach, Softw. Pract. Exper., vol. 40, no. 3,
pp. 239-258, 2010.

[7] R. Plyaskin, A. Herkersdorf: Context-aware compiled simulation of out-
of-order processor behavior based on atomic traces, 19th IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC),
Hong Kong, October 3-5, 2011

[8] www.tlmcentral.com

[9] www.iso.org

[10] www.autosar.org

