
Time Analysable Synchronisation Techniques
for Parallelised Hard Real-Time Applications

Mike Gerdes, Florian Kluge and Theo Ungerer
University of Augsburg, Germany

Email: {gerdes,kluge,ungerer}@informatik.uni-augsburg.de

Christine Rochange and Pascal Sainrat
University of Toulouse, France

Email: {rochange,sainrat}@irit.fr

Abstract—In this paper we present synchronisation techniques
for hard real-time (HRT) capable execution of parallelised
applications on embedded multi-core processors. We show how
commonly used software synchronisation techniques can be
implemented in a time analysable way based on the proposed
hardware primitives. We choose to implement the hardware
synchronisation primitives in the memory controller for two
reasons. Firstly, we remove pessimism in the WCET analysis
of parallelised HRT applications. Secondly, we enable that the
implementation of synchronisation techniques is mostly inde-
pendent of the chosen instruction set architecture (ISA) which
allows to use the existing ISAs without enhancements. We analyse
the presented synchronisation techniques with the static worst-
case execution time (WCET) analysis tool OTAWA. In summary,
our specifically engineered synchronisation techniques yield a
tremendous gain on the WCET of parallelised HRT applications.

I. INTRODUCTION

For a long time research in parallel applications and archi-
tectures was bound to the domain of high-performance com-
puting. With the upcoming of multi-core processors, paralleli-
sation became also important in other domains, namely desk-
top end-user systems and embedded systems as well. However,
embedded systems have different needs and must fulfil other
requirements than high-performance systems. Today’s HRT
applications in the automotive, avionic or machinery industry
are executed on single-core processors. The new trend of using
multi-cores in safety-critical domains sparks off research on
running HRT tasks in parallel with other tasks to execute
mixed-critical application workloads. Our research goes even
one step further: we target multi-core execution of parallelised
HRT tasks without sacrificing timing guarantees.

In this paper, we focus on the timing predictability of
synchronisation in parallelised HRT applications using the
static WCET analysis tool OTAWA [1]. The contributions of
this paper are as follows: we show that specifically engineered
software synchronisation techniques, busy-waiting as well as
blocking synchronisation methods, are timing analysable. We
assess these synchronisation primitives and their hardware
respectively software implementation with respect to their
impact on the WCET, and the possible gain for the WCET of
parallelised HRT applications.The presented synchronisation
techniques can be implemented independently of the ISA, as
the logic for the hardware synchronisation primitives is nested
in the memory controller.

Moreover, we present WCET analysis results for two dif-
ferent parallelised applications: a data parallel application,
namely matrix multiplication, and a multi-stage producer-
consumer application, that is IFFT (Integer Fast Fourier Trans-
formation). Both applications have been implemented with
different synchronisation primitives to depict their impact on
the application’s WCET.

In Section II we present related work for real-time syn-
chronisation and WCET analysis of parallel HRT applications.
Section III illuminates the implemented HRT capable hard-
ware and software synchronisation techniques. In Section IV
we show by a static WCET analysis the gain in the WCET for
parallelised HRT applications achieved with the proposed HRT
capable hardware and software synchronisation techniques.

II. RELATED WORK

Monchiero et al. [2] present an augmented global memory
controller, the Synchronisation-operation Buffer (SB), to re-
duce contention for busy-waiting synchronisation primitives
in future mobile systems with complex Network-on-Chips
(NoCs). Their main focus is on reducing contention, and there-
fore enabling an efficient use of busy-waiting synchronisations
like spin locks. However, the goal of synchronisation buffers
is to decrease the average-case execution time by speeding up
slow synchronisation primitives, while also enabling a fine-
grained synchronisation. Contrarily, we focus with our aug-
mented memory controller on implementing WCET-efficient
HRT capable synchronisation primitives, while also reducing
WCET overestimation.

Anderson [3] introduces queuing spin locks using unique
IDs in shared memory multiprocessors with cache coherence.
The approach is similar to ticket locks established in [4] by
Mellor-Crummey and Scott despite that the ticket locks are
implemented with the fetch-and-increment (F&I) primitive.
We also implemented ticket locks with the F&I primitive,
but with focus on assuring fairness between HRT threads
without requiring a specific bus arbitration. In [5] Molesky et
al. present an arbitration for a bus, the Deferred Bus theorem,
which is the baseline for the bus arbitration we are using to
assure fairness of spin locks [6]. Molesky et al. show that
their Deferred Bus enables synchronisation mechanisms for
mutual exclusion with linear waiting, and bounded semaphores
for predictable synchronisation in multiprocessor real-time
systems. Though, the use of ticket locks is more flexible978-3-9810801-8-6/DATE12/ c©2012 EDAA



concerning the bus arbitration, which is also the reason why
ticket locks are used in the Linux Kernel since version 2.6.25
(January 2008) as a fair spin lock mechanism.

Further spin lock implementations, which also allow timing
predictability in shared memory multiprocessors, like e.g.
MCS locks [4] or CLH locks [7], require a cache coherence
protocol or, for MCS locks, a complex allocation and pointer
arithmetic in local memory on non-cache-coherent systems.
However, we do not use a cache coherence protocol, because
it would need complex hardware and/or software solutions,
which hinder a WCET analysis or even render it impossi-
ble [8]. Also, queued spin locks are introduced to reduce
the overhead and contention of busy-waiting synchronisation
primitives to improve the average-case execution time. But in
our case—for a tight WCET analysis—we focus on reducing
the WCET overestimation introduced from (slower) synchro-
nisation primitive accesses on shared resources.

For parallelised HRT applications, it is not possible to
duplicate all shared resources, because doing so would lose
the mandatory requirement of communication between the
threads of a parallelised application. Hence, it is essential to
assert time bounding access to shared resources, as well as an
upper bound to waiting time introduced by the execution of
synchronisation primitives. Only very few publications have
been targeting WCET analysis of parallel HRT applications
so far. Gustavsson et al. [9] present the chain of a possible
static WCET analysis of multi-core architectures. They use
timed automata to model the various components of a multi-
core architecture, including private and shared caches, but also
software-level shared resources like spin locks. The WCET of
the parallel program is then derived by model checking.

In [10], the basic principles of analysing the worst-case
waiting times in synchronisation functions are introduced.
The idea is to determine all the paths on which a thread
holds any system-level or application-level synchronisation
variable. Their estimated WCETs are combined to compute
the worst-case waiting times at synchronisation points. In [11]
we present first results on the static WCET analysis of an in-
dustrial, parallel HRT application. They consider a limited set
of synchronisation functions based on test-and-set. The grain
of the parallelism in their application is coarser than in the
programs we consider here so that the cost of synchronisations
compared to the computation time is relatively smaller.

III. HARD REAL-TIME CAPABLE
SYNCHRONISATION TECHNIQUES

We use a WCET model of a HRT capable multi-core
processor [12] for the WCET analysis in this paper. The
modelled multi-core processor features a configurable number
of HRT capable cores. We consider in this paper that only
HRT threads are executed concurrently, one per core. Also, the
memory controller and interconnect cannot isolate concurrent
accesses of different cores. Besides, a partitioning of global
memory would impede the use of a global address space, and
hence narrow down the programmability for users. Therefore,
we have chosen to allow shared resources. Interferences are

Fig. 1. Overview of our multi-core processor, stressing the embedded
hardware synchronisation primitives in the real-time memory controller.

handled by an upper bounding of accesses to shared resources
like a real-time capable bus [6] as interconnect to memory and
cores, as well as a real-time capable memory controller. As
local memories we use scratchpad memories for each core,
namely a data scratchpad (DSP) and a dynamic instruction
scratchpad (D-ISP) [13], but no caches for the HRT threads.
However, we allow caches to be used by non-hard real-time
(NHRT) threads. Fig. 1 depicts an overview of our multi-
core processor [12]. It is binary compatible with the Infineon
TriCore architecture, which is widely used in the automotive
and construction machinery domains.

A. Hardware Synchronisation Support

To support synchronisation methods in parallel applications,
the hardware needs to provide atomic operations. We focus
on well known read-modify-write (RMW) operations [14]
like test-and-set (TAS) and fetch-and-increment/decrement
(F&I/F&D) and on their use in a HRT capable multi-core
processor. We decided to implement the logic for the RMW
operations in the memory controller (see Fig. 1) for two
reasons: Firstly, with this approach we can leave the TriCore
ISA untouched. For our atomic operations we reuse the swap
instruction of the TriCore ISA and the needed logic is placed
in the memory controller. The swap operation is usually used
in the single-core TriCore to atomically swap a data register
value with a memory word. As we do not need the data
which is usually swapped by the swap instruction for our
hardware synchronisation primitives we use it to encode the
corresponding RMW operations. In the memory controller
we can then decode the data value to identify a TAS, a
F&I, or a F&D operation. The swap instruction is reused
for simplification reasons in this paper, however, it should be
assured that the reused instructions are not generated by the
compiler. Hence, the advantage of this approach is that we
do not lose the generality of our approach as it is possible to
reuse instructions of other ISAs for RMW operations in the
memory controller as well.

Secondly, this approach allows assuring atomicity while also
achieving a tight time bound when the logic is embedded in
the memory controller. Other possibilities to achieve atomicity,
e.g. by locking the interconnect are not advisable for a tight
WCET analysis [10]. Contrarily, with our implementation of
synchronisation logic in the memory controller, we reduce this
overhead for concurrent, atomic accesses in HRT systems.



1) Test-and-Set (TAS): The test-and-set primitive is imple-
mented in the memory controller by first loading the lock
value val ∈ {0, 1} from memory address addr. Subsequently,
the memory controller stores a ’1’ at addr. These operations
are executed atomically. Then, the loaded lock value val is
returned to the thread issuing a test-and-set, where val = 0
signals that the lock is free and the thread got the lock, whereas
val = 1 signals that the lock is held by another thread.

2) Fetch-and-Increment/Decrement (F&I/F&D): F&I/F&D
operations need to be initialised with a software construct in
the RTOS as follows. The upper two bytes of the four byte
memory word are used to store an upper limit value lim,
whereas the lower two bytes are used for the actual count.
At runtime, if e.g. the memory controller recognises an F&I
instruction, it loads the four byte word from memory. Then,
it sends the lower two bytes, the actual count, as fetched
value to the core issuing the F&I instruction. After that it
checks if the lower two bytes are equal to the initialised upper
limit lim, i.e. if the counter count would overflow lim when
being incremented. If this is not the case, count is incremented
and stored back together with lim. The same holds for F&D,
but with lim = 0 when decrementing. Otherwise, if F&I
increments so that count > lim (or F&D decrements so that
count < 0) the lower two bytes of the store back value count
are set to lim for F&I (or respectively lim = 0 for F&D).
Also, as we need to manipulate the loaded value and store
the incremented or decremented value back to memory for
F&I/F&D, the latency of a F&I/F&D is higher than for a TAS.
In detail, one extra cycle in the memory controller is needed
to increment/decrement the loaded value.

B. Software Synchronisation Techniques

Software synchronisation techniques presented in this sec-
tion are part of a HRT capable Real-time Operating System
(RTOS) extending the RTOS presented in [10]. In the follow-
ing we introduce a FIFO buffer implemented with the F&I
primitive, and we describe the implemented synchronisation
constructs (see Table I): a mutex lock implementation accord-
ing to POSIX, using the TAS hardware primitive, as well as
ticket locks, semaphores, and software barriers that are using
the F&I/F&D hardware synchronisation primitives.

Synchronisation methods can be separated into two different
categories, that is either blocking or busy-waiting. Busy-
waiting means that the thread executes the synchronisation
function as long as the lock is not gained, whereas blocking
means that a thread tries to get the lock and is suspended if
not succeeding. Busy-waiting algorithms can consume a lot of
processor time and add contention on the memory system (and
other shared resources which need to be taken into account
when accessing a synchronisation variable). With suspension
it is possible to avoid unnecessary accesses, but suspending
and waking up may take longer than busy-waiting.

Synchronisation primitives need to fulfil the following two
requirements for a safe implementation of critical sections:
mutual exclusion, and progress. In addition, some further
restrictions for synchronisation primitives are needed to fulfil

TABLE I
OVERVIEW OF THE IMPLEMENTED SOFTWARE SYNCHRONISATION

TECHNIQUES, THE USED HARDWARE SYNCHRONISATION PRIMITIVES,
AND THE CATEGORISATION AS EITHER BUSY-WAITING OR BLOCKING.

SW Synchronisation HW Primitive Strategy

Mutex lock (Section III-B1) TAS blocking
Ticket lock (Section III-B2) F&I busy-waiting
Semaphore (Section III-B3) F&I/F&D blocking
Software barrier (Section III-B4) F&I blocking

the special requirements for being HRT capable. Concerning
progress, we need to achieve fairness between threads that
are competing to access a critical section. In the following
we show that not all implementations, e.g. barriers commonly
implemented with conditionals, or mutex locks with TAS,
are strictly fair (see Sections III-B1, and III-B4). Hence, fair
progress between competing threads, achieving as low as
possible upper bounded waiting times for critical sections, is
needed to enable a tight WCET analysis.

FIFO Buffer: The F&I primitive can be used to implement
a shared FIFO buffer. In that case, F&I is used to increment
the index for the insert/remove operation in the FIFO buffer.
The only requirement is that the upper limit of the FIFO buffer
needs to be known a-priori, that is the upper bound needs to
be set for the F&I primitive. With our implementation of F&I,
it is then easily possible to manage a FIFO buffer applying
the implemented cyclic counting of F&I. In detail, we can use
F&I to increment the index atomically, and, if the last index is
reached, the next fetched index is ’0’ again, as the upper limit
for F&I is reached. This allows to implement a FIFO ordered
waiting list for HRT threads with two indexes. Overwriting of
HRT threads in the list is not possible, as the number of threads
is known at design time. The advantage of this approach is that,
contrarily to a fully software managed linked list, we do not
need to secure the access to the list with locks. Therefore,
we save computation and waiting time in the WCET. We
use this FIFO buffer with F&I to manage the waiting list
in the semaphore implementation in Section III-B3. It is
also applicable for other blocking software synchronisations.
However, for comparison, the waiting list for mutex locks has
been implemented with a linked list.

1) Mutex Lock: The mutex lock is a blocking synchroni-
sation function implemented according to POSIX. The RTOS
uses a TAS spin lock for critical sections inside the mutex
lock. We can assure fairness and progress of the used spin
lock by specific arbitration strategies in the real-time bus [6].
Additionally, a linked list contains all waiting HRT threads
in FIFO ordering to guarantee fairness, that is the longest
waiting thread wakes up and acquires the mutex lock when
the previous holding HRT thread releases it.

For HRT capability, the POSIX mutex lock implementation
has been refined to ensure that the woken HRT thread acquires
the mutex lock, and not other HRT threads which are not
suspended yet and that are competing for the mutex lock.
Therefore, the active mutex lock holder does not release the



spin lock after waking up a waiting HRT thread. Instead,
if a HRT thread, other than the woken HRT thread, tries
to acquire the spin lock inside the mutex lock, it finds it
still locked and suspends. The woken HRT thread does not
check the spin lock again, and hence acquires the lock. If
we take the FIFO ordering in the waiting list into account as
well, we can assure a fair handling of HRT threads for our
mutex lock implementation using a real-time aware memory
bus arbitration.

2) Ticket Lock: The semantic of ticket locks [4], based on
Lamport’s bakery algorithm, is quite easy. Each HRT thread
gets a unique ticket id when trying to access a critical region.
HRT threads are allowed to enter the critical region when their
ticket id matches the current value of now served. A HRT
thread leaving the critical section increments now served,
and the HRT thread with the appropriate ticket id can then
enter the critical section. The atomic incrementing of ticket
id and now served id is done with the F&I primitive in
the memory controller. Thus, ticket locks implement a busy-
waiting spin lock, which is, contrary to simple TAS spin locks,
fair, independently of the arbitration strategy in a bus-based
memory interconnect.

3) Semaphores: Our semaphores are implemented accord-
ing to POSIX. The implementation uses the F&I/F&D hard-
ware primitives. In POSIX, the original P-operation and V-
operation from Dijkstra are being referred to as wait() and
post(), which we also use in the following. The wait() method
first needs to check if the resource secured by the semaphore
is free. This is done by using F&D on the semaphore
counter. A resource is successfully acquired if a value > 0
is fetched, otherwise the thread enters a waiting list and
suspends. Inserting and removing a thread from the waiting
list is secured in a critical section using F&D with lower limit
0 (see Section III-A2) instead of TAS as for mutex locks. This
critical section is needed as otherwise a thread calling post()
might conflict with a thread that is calling wait() and trying
to enter the waiting list. In that case, it is crucial that the
thread executing post() wakes a thread from the waiting list.
Otherwise, if no thread is already waiting, the thread executing
post() increments the semaphore counter without waking a
thread. Instead, the thread executing wait() needs to check if
the resource was released while the thread was competing to
enter the waiting list. Therefore, we added an additional F&D
primitive inside the critical section for the waiting list. The
suspended threads are managed in a waiting list that uses the
FIFO buffer implementation with the cyclic F&I as described
in Section III-A2. Please also note that a binary semaphore
has the same functionality as a mutex lock with the difference
that the semaphore implementation does not use the concept
of an owner contrarily to the mutex lock implementation (see
WCET comparison in Section IV).

4) Software Barriers: Barriers are a very useful construct
to synchronise starting or re-starting of threads at a specific
point, e.g. to organise parallel progress in different phases
of an application. But, typically implemented barriers with
conditionals are not HRT capable respectively lead to an

overestimation in the WCET. This is because it is possible
that threads exiting a barrier compete with threads that are
trying to reenter the barrier, if the code between barriers is too
short. In detail, it is possible that a reentering thread acquires
the mutex lock to enter the barrier again, before a thread that
is trying to leave the barrier acquires the mutex lock for the
conditional that is needed to leave the barrier. One solution to
this is to use subbarriers introduced in [15], and e.g. later used
in the Legion OpenSPARC simulator. In that implementation
the competition between threads at a barrier in different phases
of the application is solved by switching from one subbarrier
to another when all needed threads have reached the barrier.
Thus, leaving threads are exiting one subbarrier whereas other
threads, which again execute the barrier code, enter the other.

Another solution is to implement barriers with the F&I/F&D
primitives and use a waiting list for suspended threads at
the barrier as described for the FIFO buffer with F&I in
Section III-A2. Using F&I/F&D for barriers is a well known
concept, and overcomes the WCET overestimation of the
implementation of barriers with conditionals. All threads that
enter a barrier are suspended, as long as the needed number of
threads is not reached. The waiting list for threads is organised
as for the blocking semaphores with a FIFO buffer managed
with F&I. When the last thread enters the barrier, it wakes
all waiting threads and all threads continue. Also, threads that
try to reenter the barrier in the next iteration are busy-waiting
until the last thread of the actual iteration leaves the barrier.

IV. WCET ANALYSIS - EVALUATION

A. Methodology

Approaches to estimate the WCET of critical tasks have
received much attention in the last fifteen years [16]. Those
based on static analysis techniques aim at determining guar-
anteed upper bounds on the real WCET, taking into account
the specificities of the target hardware.
In this work, we use a static WCET analysis tool that im-
plements state-of-the-art algorithms for WCET analysis [1].
It supports our target multi-core architecture and accounts for
possible contentions on the shared bus and memory controller
by considering worst-case latencies. In this architecture, pre-
dictability is enforced by processing the requests to the main
memory in a round-robin fashion. As a result, the worst-case
latency experienced by one core occurs when all the other
cores have pending requests and are served before it, and
when these requests exhibit the longest processing time by
the memory system. This is illustrated in Fig. 2 that assumes a
four-core configuration. For the sake of simplicity, we consider
that the latency of read-modify-write access (tRMW ) is twice
the latency of a simple load or store (tmem). In the worst-
case, core C0 will be served after the other cores that might
execute RMW operations. This must be assumed for safety
although synchronisation instructions are relatively unfrequent
in a program, and it contributes to WCET overestimation. As
a result, the worst-case latency of an access to the memory in



Fig. 2. Worst-case memory latencies

an N-core architecture is computed as:

` = (N − 1)× tRMW + (tmem or tRMW )

In our target architecture, tRMW is 10 cycles (an additional
cycle is needed to modify the synchronisation variable for a
F&I/F&D instruction) and tmem is 5 cycles for a load and
4 cycles for a store. These values are typical for embedded
SDRAM operating with up to 200 MHz and we derived those
values with an in-house build FPGA simulator of our multi-
core processor [12]. Table II depicts the worst-case latencies
for loads, stores, and for the two RMW operations TAS, and
F&I/F&D for the augmented memory controller.

Considering worst-case latencies is safe only for processors
that are free from timing anomalies [17]. Otherwise, all the
possible latency values should be considered.

B. WCET Analysis of Parallel Applications

In this paper, we focus on data-parallel applications where
all threads execute the same code, each on another part of
the data. Our target architecture and system software include
support to start all the threads simultaneously so that the
WCET of the application is the WCET of the longest running
thread. Now, the difficulty is to account for the waiting times at
any synchronisation point. In [10], we show how these waiting
times can be analysed for a small set of synchronisation prim-
itives. In this work, we consider a wider set of primitives and
we exploit these results in the context of full applications. In
brief, computing the waiting time linked to a lock/semaphore
synchronisation function consists in determining the worst-
case time during which the synchronisation variable could be
held by another thread. This is done by analysing the WCET
of all the possible paths from any point where the variable is
locked to any point where it is released. As far as barriers are
concerned, the longest thread is, by definition, the one that
reaches the barrier last. Then this thread will not wait at this
point. The approach is further detailed in [11].

To analyse the difference in the worst-case execution of
mutex locks respectively binary semaphores or ticket locks
we use a dynamically partitioned version of a matrix mul-
tiplication (matmul). Therefore, the matrix multiplication
A = B ·C has been partitioned into working units consisting
of a scalar multiplication of Aij = Bi ·Cj . Each working unit
is computed by one thread, and getting the next working unit
is secured by either a mutex lock or alternatively a binary
semaphore. The Integer Fast-Fourier-Transformation (IFFT)
application has been parallelised based on an integer version

TABLE II
WORST-CASE LATENCIES (# CYCLES)

load store test-and-set (TAS) F&I/F&D
38 37 43 44

of the iterative radix-2 algorithm, which is working in place
and stores all samples in an array. In our parallelised version,
for N samples the pairwise combination and rearranging in
each of the k = log2(N) stages is done in parallel. Each thread
combines independently a pair of samples, and, as in the above
version of the matmul application, the fetching of the next
working unit is secured using a mutex lock, a ticket lock, or
respectively a binary semaphore. After each stage, we use a
barrier to assure that all threads finished their computation for
the current stage before beginning to compute the results in the
next stage. The barriers have been implemented either using
the F&I barriers, or accordingly the subbarrier implementation.

C. Results and Discussion

In this section we present WCET estimates for our two
parallelised applications, matmul and IFFT. Both have been
implemented with three kinds of primitives to guard criti-
cal sections: mutex locks (Section III-B1), binary blocking
semaphores (Section III-B3) and ticket locks (Section III-B2).
In addition, IFFT includes synchronisation barriers and was
compiled with barriers implemented using subbarriers and
conditionals [15] or F&I instructions (Section III-B4). Results
of the WCET analysis are given in Table III. Note that
the discussion below refers to WCET estimates only, since
determining real WCETs is not feasible.

1) Locks and Semaphores: As mentioned in Section III-B3,
a blocking binary semaphore is very similar to a mutex lock.
In our implementation, they differ by the hardware synchro-
nisation primitive they rely on: mutex locks make use of
TAS while blocking semaphores are based on F&I/F&D. They
mainly differ in the way they implement the list of threads
waiting to enter the critical section: the use of F&I/F&D
instructions makes it possible to implement hardware-managed
FIFO queues that perform noticeably better than software
linked lists. Results in Table III show that the worst-case
performance of the blocking semaphore is noticeably better
than that of the mutex lock: the WCET is improved by 16.2%
to 29.4%.

Both mutex locks and blocking semaphores suspend a
thread that tries to enter a locked critical region. This solution
is favoured in high-performance systems because it reduces the
traffic on the bus and thus the number of contentions. However,
when computing the WCET of one thread, it is not possible to
determine how many other threads will be suspended at any
point of the program. So suspension does not help to reduce
pessimism on the bus/memory latencies since it must always
be assumed that all the threads can be active. The consequence
is that instead of improving the WCET, thread suspension
tends to degrade it because the code required to suspend a
thread is generally longer than the code for busy waiting.



TABLE III
WCET ESTIMATES (# CYCLES)

mutex semaphore ticket lock
matmul 1,347,342 1,041,525 938,312
IFFT (conditional subbarriers) 233,921 196,085 183,936
IFFT (F&I barriers) 156,664 110,529 102,252

So, even if thread suspension contributes to free computing
resources and gives opportunities to run NHRT threads, we
do not recommend it if tasks are submitted to tight timing
constraints and if their WCET must be as low as possible.

As an alternative, we suggest the use of ticket locks that
implement a busy waiting strategy with F&I/F&D instructions,
as introduced in Section III-B2. Contrarily to the average
execution time, the WCET of a thread is not impacted by
the other threads’ busy waiting because worst-case latencies
assume that all threads permanently issue requests to the main
memory. Compared to mutex locks or blocking semaphores,
the code of acquiring respectively releasing a ticket lock is far
shorter because it does not include inserting and suspending
(respectively extracting) a thread in (from) a FIFO queue. The
result is an improved WCET, as shown in Table III. The gain
ranges from 6.2% to 9.9% compared to the implementation
with blocking semaphores.

2) Barriers: Table III also highlights a considerable WCET
improvement when using synchronisation barriers imple-
mented with F&I/F&D instructions instead of primitives on
conditions (wait, broadcast) and subbarriers, as described in
Section III-B4. Again the possibility of implementing FIFO
queues in a very efficient way with F&I/F&D instructions
makes the difference. Also, the F&I/F&D implementation does
not show the problem of threads reentering the barrier while
other threads have not left it yet after the previous round,
hence subbarriers are not required. The gain in the WCET
ranges from 33,0% up to 44,4%.

V. SUMMARY

We foresee that performance requirements of safety-critical
systems will soon motivate the design of parallel applications
running on multi-cores. However, this will require predictable
hardware and software support, in particular to implement safe
and efficient inter-thread synchronisation. Here, we investigate
solutions for such a support in the context of HRT applications.

Synchronisation primitives used to implement critical sec-
tions must guarantee mutual exclusion and progress for all
the threads. To be HRT-capable, they must in addition en-
sure fairness which is required to compute upper bounds
on waiting times. We propose three solutions (mutex locks,
blocking binary semaphores and ticket locks) that exhibit such
properties. They are implemented using TAS and F&I/F&D
primitives processed within the memory controller. We show
how F&I/F&D primitives can be used to control a FIFO buffer
in a very efficient way. In addition, we consider synchroni-
sation barriers implemented in two variations: one based on
conditionals and subbarriers and the other one based on F&I
operations.

To compare these primitives, we study two parallelised
applications: matmul and IFFT. We consider an HRT-capable
multi-core architecture and we estimate the WCET of the ap-
plications running on this architecture using the static WCET
tool OTAWA. We explicate how worst-case latencies for any
access to the main memory should be computed. Experimen-
tal results show that the primitives implemented using the
F&I/F&D instructions (semaphores and F&I barriers) perform
noticeably better than those that use TAS as soon as we
consider the WCET. For example, the IFFT application has
its WCET improved by 47% with binary semaphores and F&I
barriers against mutex locks and conditional-based subbarriers.
Additionally, we show that ticket locks based on a busy waiting
strategy improve the WCETs further, by 24.7% to 39.9%.

As future work, we plan to introduce a technique in the
memory controller to further reduce the WCET overestima-
tion introduced by (slow) synchronisation accesses on faster
memory accesses.

REFERENCES

[1] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: An
Open Toolbox for Adaptive WCET Analysis,” in Software Technologies
for Embedded and Ubiquitous Systems, ser. Lecture Notes in Computer
Science, vol. 6399, 2011, pp. 35–46.

[2] M. Monchiero et al., “An Efficient Synchronization Technique for
Multiprocessor Systems on-Chip,” in Proc. of MEDEA, 2005, pp. 33–40.

[3] T. E. Anderson, “The Performance of Spin Lock Alternatives for Shared-
Memory Multiprocessors,” IEEE Trans. Parallel Distrib. Syst., vol. 1, pp.
6–16, January 1990.

[4] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scalable Syn-
chronization on Shared-Memory Multiprocessors,” ACM Trans. Comput.
Syst., vol. 9, pp. 21–65, February 1991.

[5] L. D. Molesky, C. Shen, and G. Zlokapa, “Predictable Synchronization
Mechanisms for Multiprocessor Real-Time Systems,” Real-Time Sys-
tems, vol. 2, pp. 163–180, 1990.

[6] M. Paolieri et al., “Hardware Support for WCET Analysis of Hard Real-
Time Multicore Systems,” in Proc. 36th Intl’ Symposium on Computer
Architecture (ISCA09), 2009, pp. 57–68.

[7] T. Craig, “Queuing Spin Lock Algorithms to Support Timing Predictabil-
ity,” in Real-Time Systems Symposium 1993, Dec. 1993, pp. 148 –157.

[8] M. Schoeberl and P. Puschner, “Is Chip-Multiprocessing the End of
Real-Time Scheduling?” in Proc. of the 9th Int’l Workshop on WCET
Analysis (WCET 2009), 2009.

[9] A. Gustavsson et al., “Towards WCET Analysis of Multicore Architec-
tures using UPPAAL,” in Proc. of the 10th Int’l Workshop on WCET
Analysis (WCET 2010), July 2010, pp. 103–113.

[10] J. Wolf et al., “RTOS Support for Parallel Execution of Hard Real-Time
Applications on the MERASA Multi-core Processor,” IEEE Int’l Symp.
on Object-Oriented Real-Time Dist. Comp. (ISORC), pp. 193–201, 2010.

[11] C. Rochange et al., “WCET Analysis of a Parallel 3D Multigrid Solver
Executed on the MERASA Multi-Core,” in 10th Int’l Workshop on
WCET Analysis (WCET 2010), July 2010, pp. 92–102.

[12] T. Ungerer et al., “MERASA: Multicore Execution of HRT Applications
Supporting Analyzability,” IEEE Micro, vol. 30, pp. 66–75, 2010.

[13] S. Metzlaff, I. Guliashvili, S. Uhrig, and T. Ungerer, “A Dynamic
Instruction Scratchpad Memory for Embedded Processors Managed by
Hardware,” 24th Int’l Conf. on ARCS, pp. 122–134, February 2011.

[14] C. P. Kruskal, L. Rudolph, and M. Snir, “Efficient Synchronization of
Multiprocessors with Shared Memory,” ACM Trans. Program. Lang.
Syst., vol. 10, pp. 579–601, October 1988.

[15] R. Marejka, “A Barrier for Threads,” SunOpsis - The Solaris 2.0
Migration Support Centre Newsletter, vol. Vol. 4, no. 1, November 1994.

[16] R. Wilhelm et al., “The Worst-case Execution Time Problem—Overview
of Methods and Survey of Tools,” ACM Trans. on Embedded Computing
Systems (TECS), vol. 7, no. 3, 2008.

[17] J. Reineke and R. Sen, “Sound and Efficient WCET Analysis in the
Presence of Timing Anomalies,” in 9th Int’l Workshop on WCET
Analysis (WCET 2009), 2009.


