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Abstract – Unaddressed thermal issues can seriously hinder 
the development of reliable and low power systems. In this paper, 
we propose a statistical approach for analyzing thermal behavior 
under leakage power variations stemming from the manufacturing 
process. Based on the proposed models, we develop floorplanning 
techniques targeting thermal optimization. The experimental 
results show that peak temperature is reduced by up to 8.8˚C, while 
thermal-induced leakage power and maximum thermal variance 
are reduced by 13% and 17%, respectively, with no additional area 
overhead compared with best performance-driven optimized 
design. 

I. INTRODUCTION 
Excessively high operating temperature is the root of many 

reliability issues. The rate of several failure mechanisms, such as 
aging and electro-migration, increases exponentially when the 
operating temperature increases [1]. High operating temperature also 
impacts system's leakage power; the increase of leakage power 
contributes to the increase of total power consumption, which in turn 
increases the operating temperature. This thermal-leakage positive 
feedback loop may lead to the thermal runaway phenomenon, which 
may burn the chip in the worst case. 

The presence of manufacturing process variations [2][3] further 
deteriorates thermal behavior by increasing leakage power [4]. Due 
to leakage variations, the power consumption of a module may vary 
from its nominal value, and therefore introduces unexpected thermal 
hotspots which may not be captured during design time [5]. This 
phenomenon requires a statistical, instead of a deterministic model, 
for evaluating and mitigating thermal hotspots early in the design 
cycle. 

Modifying the floorplan of a system is one of the most effective 
and direct methods to mitigate thermal hotspots, since the operating 
temperature has strong spatial correlations [6][7]. However, an ideal 
thermal mitigation strategy should not affect the performance of a 
system. For example, in addition to mitigating thermal hotspots, an 
ideal thermal-aware floorplan should also optimize the physical 
length and routability of on-chip interconnects among modules [8]. 
The on-chip interconnects here refer to the connection among 
modules, IPs, or processing cores, not the wires among transistors or 
logic gates. Therefore, optimal planning of on-chip interconnects 
along with thermal mitigation under leakage variations requires a 
multi-constrained optimization strategy.  
A.  PRIOR ART 

Thermal-aware designs have received a lot of attention in the 
research community; many thermal mitigation techniques have been 
proposed at each level of design hierarchy – from physical level up 
to system level. Huang et al. [7] proposed Hotspot, an accurate 
temperature model for planar ICs. Based on Hotspot, 
Sankaranarayanan et al. [6] proposed a thermal-aware strategy for 
floorplanning. Goplen et al. [9] and Cong et al. [10] proposed novel 
placement and floorplanning algorithms to reduce the temperatures 

in 3D systems. Ebi et al. [11] presented an agent-based power 
distribution approach to balance the power consumption in a 
pro-active manner. Chuang et al [12] proposed an effective 
placement strategy for mixed-size circuits considering global power 
spreading. Very recently, Zhuo et al. [13] presented a 
workload-aware framework that accounts for local variations in both 
the process and temperature. 

The planning of on-chip interconnects has also been addressed 
by Cheng et al. [8] and Xiang et al. [14]. However, the goal of both 
papers was to facilitate the routability of on-chip interconnects, not 
mitigating the thermal emergencies for a design. 
B. PAPER CONTRIBUTIONS 
• Previous work has only addressed either the thermal mitigation 

or the interconnect routability of a system, but not both 
simultaneously, especially under leakage variation conditions. 
In this work, we perform a joint optimization on both criteria 
under process variations for the first time. The proposed 
framework helps designers create a thermal-aware floorplan 
which is highly robust to leakage variations while maintaining 
the routability and efficiency of on-chip interconnects.  

• We develop a statistical thermal model based on the linearity of 
Gaussian distributions and linear time-invariant (LTI) system. 
A popular statistical method, Box-Cox transformation [15][16], 
is applied as an ancillary to provide normality when the dataset, 
i.e., the distribution of leakage power does not exactly follow a 
Gaussian distribution. The proposed model is able to estimate 
the steady-state temperature of a system under leakage power 
variations. Furthermore, this model can also be used in any 
thermal mitigation strategy for minimizing the peak 
temperature under leakage variations. 

• To perform optimization under multiple constraints, we propose 
an adaptive simulated annealing (SA) algorithm incorporated 
with the proposed statistical thermal model, and implement it 
with a state-of-the-art B*-tree floorplanner [18].   

• To evaluate the effectiveness and generality of the proposed 
thermal optimization framework, we perform experiments on 
multiple benchmark suites that cover a wide spectrum of 
designs and systems: (1) the Alpha21264 processor [19], (2) 
Embedded System Synthesis Benchmarks Suite (E3S) [20], and 
(3) MCNC benchmarks modified by [14]. Experimental results 
confirm that the proposed framework is very effective for each 
type of benchmarks – up to 8.8˚C, 13% thermal-induced 
leakage power, and 17% thermal variance are reduced with no 
additional area cost or interconnect length overhead. 

C. PAPER ORGANIZATION 
The remainder of this paper is organized as follows. Section II 

introduces the related background knowledge required for our work. 
Section III provides the problem formulation. Section IV details the 
proposed statistical thermal optimization framework by using 
simulated annealing. Section V presents the implementation flow. 



Section VI demonstrates the experimental results. Section VII 
concludes this paper. 

II. PRELIMINARIES 
In this section, we introduce the background knowledge relevant 

to our proposed methodology, including thermal model, leakage 
power model, manufacturing process variations, and B*-tree 
floorplanning representation. 
A. THERMAL MODEL 

This section presents the thermal model used throughout the 
paper. To this end, heat flow is approximated as a heat current 
flowing through thermal resistance, resulting in temperature 
differences. This phenomenon can be modeled as the electrical 
current in an RC network, and the temperature differences can be 
expressed as: 

    Eq(1) 

where  is a diagonal thermal capacitance matrix,  is a thermal 
resistance matrix,  is the 
temperature vector and  is the ambient temperature, 

 is the power vector1,  is a step function, and 
 is the number of thermal grids used to represent thermal gradient. 

For simplicity and without losing much accuracy,  is set to 32×32 
= 1,024 here [7].  

For the purpose of steady-state thermal analysis the temperature 
is assumed constant, i.e., . Therefore, Eq(1) can be 
modified as follows: 

    Eq(2)  

From Eq(2), it is clear that the power vector  and the thermal 
resistance matrix  can directly determine the steady-state 
temperatures of a system. In this paper, we focus on the optimization 
of the steady-state temperature, since the transient-state temperature 
can be controlled by many dynamic thermal management (DTM) 
methodologies, such as task reallocation [11] and dynamic 
frequency and voltage scaling (DVFS) [21]. Also, we assume the 
cooling system and packaging are fixed, which implies a fixed .  
B. LEAKAGE CURRENT 

The power consumption of a circuit consists of active power 
and leakage power. This section focuses on modeling the feedback 
loop between leakage and temperature, since the active power is not 
sensitive to either temperature or process variations [22]. Leakage 
power contains several components, among which sub-threshold 
leakage current and gate leakage current are main contributors [23]. 
Recently, due to the introduction of high-k dielectrics, the gate 
leakage component has become less important. We therefore 
concentrate only on sub-threshold leakage power dissipation. Eq(3) 
describes the leakage current model for a single transistor. For 
simplicity and without losing accuracy, terms not sensitive to 
temperature or effective channel length are merged together:  

  Eq(3) 

where  is a technology dependent constant,  is the transistor 
width,  is the effective channel length,  is the temperature, 

 is the threshold voltage, and  is a positive constant. According 
to Eq(3),  will increase when  decreases and  
increases. Combining Eq(1), Eq(2) and Eq(3) determines the 

                                                           
1 All the bold-font symbols represent vectors instead of scalars. 

interdependency of temperature and leakage power. The increase of 
either temperature or leakage power will trigger this positive 
feedback loop. 

It is worth mentioning that  also exponentially depends 
upon  due to drain induced barrier lowering (DIBL) [24]. 
Therefore, the decrease of  determines both exponential and 
linear scaling factors for leakage current. 
C. PROCESS VARIATIONS 

In general, the variation of the effective channel length ( ) 
of a transistor can be described as: 

    Eq(4) 
where  is the nominal value of , and  is the total 
variation of .  can be further decomposed as: 

  Eq(5) 
where  is the wafer-to-wafer (W2W) variation,  is the 
die-to-die (D2D) spatial variation,  is the within-die (WID) 
random variation, and s are the corresponding weights.  
and  can be modeled as Gaussian random variables. In [2], 
Cheng et al. proposed an accurate, deterministic model of  by 
exploiting the across-wafer variation from the manufacturing data in 
an industrial 45nm technology. In this paper, we use this model 
assuming  of 5% of , and  is 45nm. 
Furthermore, based on [25], the relative ratio among  ,  
and  is set to 0.7:1:1. 
D. B*-TREE FLOORPLAN REPRESENTATION 

A B*-tree [18] is an ordered binary tree used to represent 
non-slicing or slicing floorplans. Given a floorplan, a unique B*-tree 
can be constructed in linear time by a recursive procedure similar to 
the depth-first search. Furthermore, one can also pack each node in 
B*-tree to recover the original floorplan in linear time with a contour 
structure. Figure 1(a) shows an example of B*-tree. The root 
represents the block on the bottom-left corner, (0, 0). A block here 
can represent a module, IP, core, or any function block in a system. 
The node  is the left child of , which means block  is the 
lowest block placed on the right-hand side and adjacent to . On 
the other hand,  is the right child of , which means block  
is the first block placed above the block  with the same 
x-coordinate. Therefore, given a B*-tree, the x-coordinate of all 
blocks can be determined by traversing this tree once in linear time. 
In addition, the y-coordinates can be computed by a contour 
structure in linear time [18]. 

On-chip interconnects are not represented as nodes in a B*-tree. 
Instead, they are modeled as constraints to restrain the planning of 
each module during the optimization stage. The orientation of 
interconnects among modules can be vertical or horizontal [14]. For 
the ease of routing, all vertical on-chip interconnects will be 
assigned to one metal layer and horizontal ones will be assigned to 
another one. Therefore, one legal deployment of on-chip 

Figure 1: B*tree and its corresponding floorplan. 
(a) B*-tree representation   (b) Actual floorplan 



interconnects needs to satisfy two conditions: (1) there is no overlap 
between any two horizontal (or vertical) interconnects, and (2) an 
on-chip interconnect must traverse through all modules that connect 
to it. Figure 1(b) shows a legal horizontal on-chip interconnect 
deployment. 

III. PROBLEM FORMULATION 
Figure 2 illustrates the formulation of the multi-constrained 

thermal optimization. First, several following inputs are given: (1) 
The dynamic and leakage power consumption of module i, , 
denoted as  and . (2) The width  and the height  
of . (3) The information of on-chip interconnect , , including 
a set of modules connected by ,  = , and the 
width . 

The decision variable here is the floorplan of all modules. The 
initial condition  is given and fixed, which means the cooling 
system is given and fixed. The objective function is to minimize (1) 
the peak steady-state temperature  of a system, (2) the total 
on-chip interconnect length , and (3) the chip area . 
Finally, the final floorplan of each module needs to be legal, which 
means no overlap between any two modules and all on-chip 
interconnects are deployed correctly as described in Section II.D. 

IV. METHODOLOGY 
In this section, we explain the proposed multi-constrained 

thermal optimization framework in detail.  
A. POWER MAPPING: FROM FLOORPLAN TO GRIDS 

Before elaborating on the proposed methodology, we need to 
describe how to map the power of each block from the floorplan 
onto the thermal grids. Figure 3 shows an example of mapping a 
floorplan onto the thermal grids. For the simplicity of explanation, 
we only consider one module  here.  is mapped into , , 

 and  of the thermal grids based on the corresponding 
location. d is the granularity of the thermal grids, and as mentioned 
in Section II.A, d is set to 32 in this paper, so the total number of 
grids  = 32×32 = 1,024 [7]. Based on this mapping, the power 
consumption of a whole chip can be expressed as a vector 

. In the rest of the paper, for the simplicity of 
explanations,  and  always refer to the power consumption of 
each grid, not each module unless we mention it explicitly. To 
capture the worst-case thermal scenario, we assume the power 
consumption of a chip is equal to its peak power and does not vary 
with time. In Section V, we will elaborate how to extract the peak 
power. 

The power consumption of a system can be decomposed into 
dynamic and leakage power, i.e.,  =  + . From Eq(4), 
we know  is a random variable depending on , and 
since  affects ,  is also a random variable. Without 
losing generality, we assume transistors in the same grid have the 
same  distribution, since one can tune the granularity 

according to different accuracy requirements. Also, we assume 
 =  follows a multivariate Gaussian distribution 

 with a mean vector  and a covariance matrix . 
The bold-font symbols here are vectors or matrices, not scalars. The 
dimensionalities of ,  are (n × 1) and (n × n), respectively. 
This assumption will be relaxed later in Section IV.C. With the 
supply voltage  set to 1V, we have:  

 Eq(6) 
where  is a (n × n) diagonal matrix, and each entity  
represents the transistor count in the ith grid [26] used for estimating 
leakage power. Note that we did not explicitly express  in Eq(6) 
because its value equals one. Also, since  is not sensitive to 
process variations [22], it will not contribute to the non-deterministic 
part and therefore can be merged into the mean vector of the 
multivariate Gaussian distribution. 

From the power consumption point of view, a floorplan actually 
represents a certain permutation of  = , which 
can be expressed by  where  is a permutation matrix [27]. 
A permutation matrix is a square binary matrix that corresponds to a 
given floorplan. By using the linearity of a Gaussian distribution 
[16],  from Eq(6) can further be expressed as:  

   Eq(7) 

Parentheses are intentionally placed around , ,  to 
indicate that modifying a floorplan via a permutation  will 
change  and , because of remapping modules to different 
grids. For example, for module , its dynamic and leakage power, 

 and , will reflect the floorplan described by the 
permutation. However, the underlying leakage variations ,  
will not change with , because  does not affect to 
manufacturing processes. To simplify the notation, we rewrite  
from Eq(7) as . Therefore, the original thermal 
mitigation problem can be converted into finding the best 
permutation matrix  under multiple constraints described in 
Section III.  
B. STATISTICAL THERMAL MODEL 

We are now ready to investigate  from Eq(2) more carefully. 
Mathematically, each  in  will impact thermal behavior (and 
therefore the whole ) due to the multiplication by . The 
intuition behind this is that thermal diffusion process is continuous 
and thus, each thermal grid will contribute to all other grids. This 
effect is also known as spatial thermal correlation. Therefore, if the 
power value of a certain grid varies from its nominal value due to 
leakage variations, this variability will “propagate” to each grid due 
to spatial correlations, which in turn will contribute to the thermal 
behavior of the whole system. As a result, the original thermal 
behavior will be altered, making thermal hotspots difficult to be 
captured [5]. 

Figure 2: Problem formulation for multi-constrained thermal 
optimization. 

Inputs:     
Decision variable:  Floorplan of     
Initial Condition:   
Objective function:    minimize  , and 

 
Subject to:     
The output floorplan of modules must be legal. 

Figure 3: Mapping floorplan into thermal grids. 
(a) Actual floorplan    (b) Thermal grids 



As Eq(2) shows,  is a linear combination of  due to the 
multiplication of . Therefore, steady-state temperature can be 
modeled as a linear time-invariant (LTI) system [17]. To describe a 
statistical thermal model, Eq(2) can be further derived into: 

 Eq(8) 
where  represents the mean temperature of each grid, and  is 
the covariance matrix. We point out that only the diagonal entities of 

 are informative, and hence can be converted into a (n × 1) 
vector denoted as . From Eq(8), the temperature  = 

 of a chip follows a multivariate Gaussian distribution, 
which means the temperature of each grid  is a Gaussian 
distribution with mean  and variance . To put it all together, 
once the proposed multi-objective optimization framework 
determines a floorplan,  and the corresponding  and  can 
be calculated by using Eq(8). 

Let us examine the criterion of thermal optimization again. One 
of the major goals in this work is to minimize the peak temperature 

 of a system by finding the best .  can be calculated 
by the infinity norm of  from Eq(8), denoted as  = 

 [27]. As Eq(8) shows,  is a random variable, 
which means  will also be a random variable. Due to adding 
the thermal variance , the location and magnitude of the original 
thermal hotspot may vary. To truly mitigate , we need to 
minimize both  (or ) and  (or ). 
C. BOX-COX TRANSFORMATION 

In this work, we rely on the linearity of a Gaussian distribution 
to develop the statistical thermal model. In practice, the leakage 
variations are unlikely to exactly follow a Gaussian distribution. In 
such cases, it is necessary to transform the data so it fits a Gaussian 
distribution. Data transformation is usually applied so that the data 
appear to more closely meet the assumptions of a statistical 
procedure that is to be applied [28]. Also, data transformation is 
nearly always invertible. One of the widely-used methods in the 
statistics community for data transformation is the Box-Cox 
transformation [15]. For the ease of explanation, we focus on 
univariate random variable, and rewrite  of Eq(3) into , 
because multivariate random variables can be transformed in a 
similar fashion. The Box-Cox transformation of variable  is given 
by: 

    Eq(9) 

where  is the natural log function and  is the fitting parameter. 
Given a set of data , the best  will be chosen to maximize 
the following likelihood function: 

   
Eq(10) 

where  is the average of transformed data. The best  can be 
calculated by setting , which is also known as the 
maximum likelihood estimate (MLE) [16]. 

 To evaluate the effectiveness of Box-Cox transformation, we 
compare the normality of the original data and the transformed data. 
The dataset used here is the leakage measurement from 1,000 dies of 
an industrial design in 45nm technology. We perform the popular 
Jarque–Bera normality test [29] on both original and transformed 
datasets under the null hypothesis that the data has a Gaussian 
distribution. The null hypothesis will be rejected at the 5% 
significance level. The original dataset was rejected, whereas the 
transformed dataset was accepted as Gaussian distributed data. This 
result confirms the effectiveness of Box-Cox transformation which 

we are using in our framework. In [3], the authors also demonstrated 
the effectiveness of Box-Cox transformation. 
D. MULTI-CONSTRAINED OPTIMIZATION 

Finding the best  to minimize , ,  and 
  simultaneously is not a trivial task. Here, we rely on 

simulated annealing (SA), for this multi-constrained optimization. 
1. SIMULATED ANNEALING 

Simulated annealing (SA) is well-known for its nonzero 
probability of accepting inferior solutions. The probability of 
accepting inferior solutions is typically defined by:  

   Eq(11) 
where  is the cost difference between the neighboring state and 
the current state, and  is the current annealing temperature. In 
classical SA process,  is reduced by a fixed ratio , usually 
around 0.85–0.95 [8], during each annealing iteration. During each 
iteration, B*-tree creates a new floorplan by randomly rotating its 
two nodes, calculates  and  of Eq(11), and then determines 
whether to keep this floorplan as the best floorplan or to discard it. 
This annealing process will repeat until  reaches 0, and finally 
outputs the best floorplan  [8].  
2. ADAPTIVE FLOORPLANNING:  SELECTION 

One straightforward method to select  is to lump all criteria 
into the cost function:  

  Eq(12) 
where  is the total chip area,  is the total on-chip 
interconnect length,  is the maximum of thermal mean, and 

 is the maximum of thermal variance as defined in Section 
IV.B.  are the weights of , ,  and , 
respectively. Once  are determined,  can be calculated 
based on the floorplan generated by B*-tree at each iteration; then  
will be plugged into Eq(11) to calculate . Note that  and 

 can be calculated by using Eq(8). However, according to our 
experimental results, we found that optimizing these four criteria 
simultaneously by using conventional SA was not able to provide a 
floorplan with lower . 

Inspired by [30], we developed an adaptive two-stage 
optimization framework, aiming at finding the desired 
thermal-aware solution space. In the first stage, we modified the 
algorithm proposed by [8] to optimize  and  only. In the 
second stage, we use the result from the first stage as the initial 
solution of SA, and only consider the chip area and the thermal 
costs. The intuition behinds this method is that B*-tree rotates only 
two nodes to generate a new floorplan at each SA iteration, so the 
new and old floorplans should share a large proportion of 
similarities. Since we use the solution from the first stage, which has 
small  and , as an initial solution of the second stage, the 
resulting floorplans in the second stage are likely to have small 

 and , too. Also, at each iteration of SA process, if a 
floorplan generated by B*-tree is illegal, this floorplan will be 
discarded and SA continues on the next iteration. 

In the first stage of the proposed SA process, we introduce an 
adaptive mechanism to gradually increase the interconnect-related 
weight. In the very beginning,  is set to 1/10 of the interconnect 
-related weight . The main goal is to optimize the floorplan 
on-chip interconnect first. During SA iterations, we record the total 
number of legal solutions, and increase  gradually by the ratio of 
legal solutions and total solutions as: 

     Eq(13) 



where  is the number of legal floorplans, and  represents 
the duration to the update .  is empirically set to 1,000 
iterations. By using this adaptive update, we can gradually guide the 
floorplan solutions from SA to satisfy both  and  
constraints. In the second stage, we use the best floorplan from stage 
1 as an initial solution, and we do not include interconnect-related 
costs to the cost function. Therefore, the cost function in stage 2 is 
defined as: 

  Eq(14) 
where  is an adjusting parameter and empirically set to 2. 
Therefore, when SA finds the floorplan candidate with the lowest 
total cost, usually it also has the lowest temperature.  

V. IMPLEMENTATION 
Figure 4 illustrates the implementation flow of this work. First, 

the variation parameters described in Section II.C to our in-house 
simulator based on [2] to generate  within each die. Based on 
the  values, the leakage currents  are characterized by 
using HSPICE simulation with the 45nm high performance 
Predictive Technology Model (PTM) [32], to calculate the 
corresponding . Next, the attributes of each module, such as 

 and  described in Section III, along with  are fed 
as inputs into our Adaptive Floorplanner described in Section 
IV.D.2. If  and  do not exactly follow Gaussian distributions, 
Box-Cox transformation described in Section IV.C will be applied to 
transform them into Gaussian distributions so as to provide the 
linearity needed for building the statistical thermal model described 
in Eq(8). We modify the steady-state temperature calculation of 
Hotspot5.0 [7] to include thermal-leakage feedback loop, and then 
embed it into Adaptive Floorplanner for calculating  to estimate 

 and  in each SA iteration. After that, the best floorplan 
 is generated and fed into the Power Estimator. Power estimator 

calculates the whole-chip power consumption under leakage 
variations  by using Eq(7). Finally, with  and , 
Hotspot5.0 thermal simulator calculates  and  distributions 
for statistical thermal evaluations. Table 1 lists the detail settings of 
Hotspot parameters. The parameters not mentioned here are assumed 
to be the default values. For the Adaptive Floorplanner, we use the 
same configuration as [8]: the aspect ratio of a floorplan is set to one 
and the outline is fixed.  

Next, we introduce the multi-faceted benchmark suite used in 
this paper. 
• Alpha21264: we extract the size of each module from [7], and 

build the on-chip interconnects based on [19]. Then we use 
Wattch [31] as the power simulator, and modified the 
corresponding leakage power model based on [26] and Section 
II.B. Finally we execute SPECcpu2000 benchmarks on 
Alpha21264 to obtain the power profiles. Among all 
SPECcpu2000 benchmarks, the power profile of mesa, an 
application with extreme thermal demands, will lead to the 
worst-case thermal scenario. We select the peak power from 
mesa’s power profile as the power benchmark, i.e,  and 

, for each module of Alpha21264.  
• E3S: E3S contains the area and power information of 17 

processors and each processor is characterized based on the 
execution of 47 tasks and its datasheet. To create a synthetic 
benchmark close to a general SoC design, we select ten 
processors, and build the on-chip interconnection based on 
commonly-used task graphs, such as image processing tasks 
including JPEG compression and RGB-to-YIQ conversion. 

Power values here are scaled according to the simulation with 
45nm high performance Predictive Technology Model [32]. 

• MCNC: these benchmarks are provided by [14]. The number of 
interconnect constraints ranges from 2 to 18. Each interconnect 
needs to go through 2–7 modules according to the constraints. 
The power of each module is assigned according to the power 
consumption reported by [33], with the total thermal design 
power (TDP) of 150W treated as peak power. 

VI. EXPERIMENTAL RESULTS 
This section presents the experiment results, including overall 

comparisons and statistical thermal evaluations. 
A. OVERALL COMPARISONS 

To evaluate the proposed framework for multi-constrained 
thermal optimization, we re-implement the method proposed by [6] 
and [8]. [6] is the state-of-the-art of thermal-aware floorplanner, and 
[8] is a the state-of-the-art of performance-driven floorplanner. For 
clear expression, we denote [6] as T[6] (thermal), and [8] as P[8] 
(performance). Table 2 lists detailed comparisons among T[6], P[8] 
and our proposed method. Since SA is not a deterministic 
methodology and all three methods are based on SA, we execute 
T[6], P[8] and our proposed method for ten times and calculate the 
average of each target criterion. For our method and P[8], each 
instance of SA can be finished within 60 seconds, whereas T[6] 
requires on average 974 seconds to finish one instance of SA. We 
report these average values as the representative results. To show the 
extra design overhead required to trade with thermal optimization, 
the results of chip area, total on-chip interconnect lengths are 
normalized to P[8].  

Let us take a look on the chip area and on-chip interconnect 
lengths first. As the results show, on average, our proposed method 
ties with P[8] on the chip area, while T[6] requires slightly bigger 
chip space. As to on-chip interconnect lengths, our method 
outperforms T[6] and P[8] by 4% and 2%, respectively. It is worth 
mentioning, when the number of modules increases (e.g., in ami49-1 
and ami49-2), T[6] requires more than 10% longer interconnect 
lengths than ours.  

Figure 4: Flow chart of the proposed framework. 

: Existing tools : Our tools 

Benchmarks 
 ( ) 

Power estimator

Adaptive Floorplanner 
(with thermal Simulator [7] for ) 

1. Deterministic  (w/o variations) 
2.  distribution (w/ variations) 

Variation Generator

Variation parameters

,  

Thermal Simulator [7] 
(with thermal-leakage loop) 

Best floorplan 
  

, 

Whole chip 
power  

under variations

Box-Cox trans. 
,  

Parameters Values 
Chip size 0.039m×0.039m. 
Heat sink thermal res. 0.48, based on [7]. 
Heat spreader size Same as the Chip size. 
Heat sink size 0.06m×0.06m. 

Table 1. Hotspot Setup. 



As to the peak temperature of a system, , on average we 
achieve 4˚C reduction on each benchmark in all scenarios compared 
to P[8]. The maximum reduction happens at ami49-1, 6.9˚C is 
reduced. More interestingly, floorplans generated by our method 
constantly have lower  than P[8]. Our method achieves almost 
the same average  as T[6] does. In some cases, such as 
ami33-1 and ami33-2, T[6] outperforms ours by 1 ˚C because the 
resulting areas are larger. 

For completeness, we also report the normalized results of 
thermal-induced leakage. As the results show, our method 
consistently achieves lower leakage power than P[8]. The maximum 
reduction happens at ami49-2, 13% of thermal-induced leakage 
reduction is achieved. On average, we reduce 7% of the 
thermal-induced leakage power. T[6] achieves almost the same 
leakage reduction as our method does. 
B. STATISTICAL THERMAL EVALUATIONS 

Here, we perform statistical thermal evaluations for all three 
methods. For each benchmark, we first select a floorplan generated 
by P[8] with the smallest chip area, and the corresponding ones 
generated by our proposed method and T[6] with approximately the 
same chip area. Next, we generate 1,000 samples to emulate the 
leakage variations, , on 1,000 dies by using the settings 
described in Section V. Given  and the floorplan provided by 
T[6], P[8] or our method, the whole chip power under variations 

 of each benchmark can be calculated and fed into Hotspot5.0 
for thermal simulations. 

 Let us focus on the mean of the  distribution first. 
Compared to P[8] and T[6], our method can reduce the mean by 
6.7˚C and 1.5˚C on average. The trend is similar to the  
reduction without considering leakage variations. The maximum 
reduction happens at ami49-1 where the temperature reduction is 
8.78˚C. As to the variance of the  distribution, our method 
achieves on average 11% and 3% reduction compared to P[8] and 
T[6], respectively. It is worth mentioning that our method constantly 
outperforms P[8] on temperature variance across all benchmarks, but 
T[6] does not (ami33-2). All these results demonstrate the strength 
of our proposed framework to statistically mitigate the thermal 
hotspots of a system, without introducing any design overheads. 

VII. CONCLUSION 
In this paper, we provide a statistical thermal model and the 

corresponding optimization framework, which aims at reducing peak 
temperature of a system under leakage variations without 
compromising any performance or introducing any design overhead. 
The experimental results show that up to 8.8˚C, 13% 
thermal-induced leakage power, and 17% maximum thermal 
variance are reduced with no additional design cost or overhead. 
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Bench. 
Block 
# 

Inter- 
connect 
# 

Avg  Avg  Avg (˚C) Avg Thermal-induced 
leakage  distribution 

 Mean (˚C) Variance 
P[8] T[6] Ours P[8] T[6] Ours P[8] T[6] Ours P[8] T[6] Ours P[8] T[6] Ours P[8] T[6] Ours 

Alpha 27 7 1 0.99 0.98 1 1.01 0.95 96.25 94.01 93.70 1 0.97 0.96 103.06 99.16 97.13 1 0.90 0.87 
E3S 10 2 1 1.01 0.99 1 1.02 1.01 100.9 95.13 96.21 1 0.93 0.95 108.79 100.23 100.26 1 0.91 0.85 
ami33-1 33 8 1 1.03 1.01 1 1.02 0.97 96.29 91.98 92.75 1 0.94 0.95 102.53 97.77 97.11 1 0.97 0.93 
ami33-2 33 18 1 1.02 1.00 1 1.03 1.02 95.88 91.55 92.54 1 0.92 0.94 101.48 96.15 97.83 1 1.02 0.99 
ami49-1 49 9 1 1.00 0.99 1 1.02 0.92 98.13 93.25 91.26 1 0.95 0.92 103.71 98.60 94.93 1 0.92 0.88 
ami49-2 49 12 1 1.00 1.01 1 1.05 0.91 96.53 94.78 91.20 1 0.93 0.87 104.02 100.20 95.29 1 0.89 0.84 
apte 9 5 1 1.01 1.00 1 0.98 0.93 111.96 109.47 108.08 1 0.99 0.97 118.78 114.35 112.04 1 0.87 0.83 
xerox 10 6 1 0.99 0.99 1 0.99 1.10 82.15 77.54 79.90 1 0.87 0.88 88.95 82.65 82.93 1 0.85 0.89 
avg 27.50 8.38 1 1.01 1.00 1 1.02 0.98 97.26 93.46 93.21 1 0.94 0.93 103.92 98.64 97.19 1 0.92 0.89 

Table 2. Overall comparison between existing work [6], [8] and our proposed framework. 


