
Formal Analysis of Sporadic Overload
in Real-Time Systems

Sophie Quinton, Matthias Hanke, Rolf Ernst
Institute of Computer and Network Engineering,

TU Braunschweig, 38106 Braunschweig, Germany
Email: {quinton, hanke, ernst}@ida.ing.tu-bs.de

Abstract—This paper presents a new compositional approach
providing safe quantitative information about real-time systems.
Our method is based on a new model to describe sporadic
overload at the input of a system. We show how to derive from
such a model safe quantitative information about the response
time of each task. Experiments demonstrate the efficiency of
this approach on a real-life example. In addition we improve
the state of the art in compositional performance analysis by
introducing execution time models which take into account
several consecutive executions and by using tighter bounds for
computing output event models.

I. INTRODUCTION AND RELATED WORK

Formal performance verification of systems with real-time
constraints is both essential and complex. Real-time systems
very often consist of multiple components such as processors
or buses on which multiple tasks are executing concurrently.
The interferences between tasks are complex and very hard to
capture by simulation, thus making formal analysis essential in
order to obtain safe information on the behavior of the system.
Today, two main compositional approaches have been success-
ful in tackling this problem, namely Real-Time Calculus [14],
[3] and Compositional Performance Analysis (CPA) [11], [4].

These methods are proven efficient and safe, however their
results are often rather pessimistic when compared to simula-
tions of the systems that have been analyzed. This discrepancy
between analysis and simulation results has two explanations.
First, the result of the analysis is an overestimation of the
actual worst-case scenario possible in the system. Second,
the actual worst-case scenario may be very rare and thus not
appear in simulations, although it is indeed possible. In this
case, one may restrict the analysis by excluding the unlikely
worst-case scenario in the analysis. It is then crucial to provide
a tight bound on the “error” made by the new analysis.

In this paper we follow the CPA approach. We show how
to obtain tighter bounds on worst-case analysis results and we
propose a method for refining worst-case results when they
are due to a sporadic overload at the input of the system.

On the one hand, we improve the state of the art in compo-
sitional performance analysis by introducing a new execution

This work was funded by the ITEA2 project TIMMO-2-USE (EUREKA
cluster N◦ 3674) through the German Ministry of Education and Research
(BMBF) under the funding ID 01IS10034.

time model for capturing dependencies between consecutive
instances of tasks. This model is based on a generalization of
the intra event contexts used in Context-Aware Analysis [6],
which already improved on the multiframe model of [10].
Our model is particularly useful when some incomplete in-
formation is available about sequences of execution times. We
then integrate this new execution time model into the Multiple
Event Busy Time analysis introduced in [12] for which we also
propose improved bounds on the task termination models.

On the other hand, we propose an approach which performs
two CPAs, one with a complete model of the possible activa-
tions at the input of the system providing the worst case and
another one with a restricted model covering only the “typical”
activations observed at the input. The worst-case exceptions
which are not covered by the restricted model are formally
represented using what we call an overload model. Based on
the result of the worst-case analysis and the overload model
at the input, we are then able to provide a safe bound on
the number of response times for a given task which will be
out of the range obtained using the typical activation model,
represented as an error model. Experiments show that this
approach may result in dramatically shorter typical response
times associated with safe and reasonably tight bounds on the
error model when some tasks are activated both periodically
(time-triggered) and aperiodically (event-triggered).

This paper is organized as follows. Section II presents our
representation of systems. Section III then revisits and im-
proves on the multiple event busy time approach to composi-
tional performance analysis. Section IV presents our approach
for a compositional error analysis. Finally Section V presents
experimental results obtained with an industrial example while
Section VI concludes.

Related work. Stochastic analysis [8], [9], [15] typically aims
at providing a distribution of the response times of each task
in a system. Although this research area has been extensively
studied, existing stochastic approaches still suffer from several
limitations. First, they are computationally highly expensive.
Furthermore most of them rely on the assumption that the
activation and execution times of tasks can be represented
as independent random variables. This is in general not the
case, as e.g. cache memory induces a correlation between the
various execution times of a given task. Besides, a data flow
between two tasks may also lead to a correlation between their978-3-9810801-8-6/DATE12/ c©2012 EDAA



respective execution times. Ignoring these dependencies is not
safe as shown in [5] while attempts at dealing with them lead
to overly pessimistic results [2], [5].

Finally, any stochastic approach requires the complete (pos-
sibly infinite) set of execution traces (each trace being also
possibly infinite) in order to determine whether a system
satisfies a stochastic model. In other words, a stochastic
analysis does not yield any safe information about the behavior
of a system in a given time window. In this respect, our
approach is rather related to the analysis of weakly-hard real-
time systems [1] in so far as we provide a safe upper bound
on the number of response times outside the specified model.
Note that unlike [1] we are not restricted to periodic tasks.

II. A TRACE-BASED REPRESENTATION OF SYSTEMS

The systems that we want to analyze consist of software
components performing for example a computation or some
storage or communication, which we call tasks. These compo-
nents are mapped onto hardware components (e.g. processors,
memories, buses) called resources, on which they execute.
When a resource is shared by several tasks, a scheduling policy
decides in which order tasks are executed.

The execution of a task is triggered by an input event
received by the task, called activation. The end of the ex-
ecution is indicated by the output of another event, called
termination. As is the case in all event-based approaches,
we abstract from the data often associated with an activation
and identify the behavior of the system with how events
occur during execution. This makes the size of our system
abstraction manageable. An event trace describes the set of
instants at which an event takes place. Note that we only use
traces focusing on a specific type of event, which is either the
activation or the termination of a given task τ . Such a trace
is called the activation trace (resp. termination trace) of τ .

Definition 1. An event trace is a function σ : N+ −→ N
where σ(n) denotes the time of the n-th occurrence of an
event in the trace.

Definition 2. A system is a tuple Sys = (T,R,→,Ω) where:
– T is a (finite) set of tasks; we keep the notion of task

abstract here. Tasks are arbitrarily named τ1, . . . , τn.
– R is a (finite) set of resources defined as a partition of

T , i.e., we identify a resource with the tasks executed on it.
– → ⊆ T × T is a relation describing how tasks interact;

for two tasks τ1, τ2 ∈ T , τ1 → τ2 means that the output of
task τ1 is connected to the input of task τ2.

– Ω is the set of behaviors of the system, that is, tuples
(act1, end1, . . . , actn, endn) of event traces where for each
task τi, acti is the activation trace of τi and endi is its
termination trace.

We call source a task τ such that {τ ′ ∈ T | τ ′ → τ} is
empty. A source is activated directly by the environment of
the system rather than by another task. A task instance is a
pair relating in a behavior one activation and its corresponding
termination, as follows.

Definition 3. Consider a system Sys as above and a behavior
(act1, end1, . . . , actn, endn) ∈ Ω. For a given n ∈ N+, the
n-th instance of a task τi is the pair (act i(n), end i(n)). The
response time of the n-th instance of τi in the given behavior
is the time interval RT i(n) = end i(n)− act i(n).

The worst-case response time (WCRT) of τi in Sys , is the
maximal RT i(n) over all n ∈ N+ and all behaviors in Ω.

In practice, the set of behaviors of a system is too complex
to be known directly. The only reliable information available
for analysis is usually related to: 1) the input of the system, that
is, the activation traces of the sources; 2) the way the activation
of a task is triggered by the termination of the tasks connected
to it, usually some AND or OR operation; 3) the scheduling
policy enforced by each resource, 4) the execution times of
tasks, often represented by one interval [BCET ;WCET ] per
task between its best-case and its worst-case execution time.
Now, if there exist constraints on the system, e.g. with respect
to the worst-case response times of tasks, then at least an
overapproximation of the set of possible behaviors is needed.
This is what Compositional Performance Analysis (CPA) [4]
achieves based on a fixpoint computation using the above
information. This approach groups traces into event models
to make the analysis scalable.

Definition 4. An event model Σ is a set of event traces.
An event trace σ satisfies an event model Σ if σ ∈ Σ. A
behavior (act1, end1, . . . , actn, endn) satisfies an activation
model Σact

i if acti∈ Σact
i ; similarly for termination models.

CPA supposes that an activation model (i.e. a set of activa-
tion traces) is given for each source. The following steps are
then performed iteratively until a fixpoint is reached.

– For each resource r ∈ R a local performance analysis
function takes as input one activation model per task in r and
returns one termination model per task such that any behavior
satisfying the activation models given as input also satisfies
the computed termination models. This local analysis of r
takes into account the scheduling policy of r and all possible
execution times of tasks mapped onto r.

– New activation models of tasks are computed from the
termination models connected to them (except for sources).

The termination of this fixpoint computation is proven
in [13]. We now focus on the problematic part of the analysis,
namely local performance analysis.

III. COMPOSITIONAL PERFORMANCE ANALYSIS REVISITED

In this section, we improve on the Multiple Event Busy
Time [12] approach for local performance analysis by refining
the model [BCET ;WCET ] used to describe execution times.
We consider instead the best-case and worst-case execution
time of a task over several instances, which is useful when
execution times vary from one instance to the next.

Definition 5. The execution time model of a task τi consists
of two functions (ET−i ,ET

+
i ) such that ∀q ∈ N+ : ET−i (q)

(resp. ET+
i (q)) is the best-case (resp. worst-case) cumulative

execution time of q consecutive instances.



Our model is inspired by the multiframe model [10] which
handles cases where the pattern of execution times is fully
known and was extended in [6] to situations where only partial
information is available. The latter is however less general
than the model presented here: there, a predefined number of
possible execution times {ET 1, . . . ,ET k} is defined along
with properties of the form “Out of m instances, at most
(resp. at least) n have an execution time ET k”. From this
a best-case and a worst-case sequence are built whose length
is the smallest common multiple of all m appearing in some
property. Within the sequence the smallest (resp. largest)
execution times are always supposed to occur first. This does
not allow the exploitation of more fine-grain information about
the order in which execution times occur.

After the execution model, let us now focus on event
models. CPA was originally introduced for periodic with jitter
event models and was later generalized to load event models,
which describe sets of traces according to the minimum and
maximum size of the time interval between two events in a
trace. Depending on the context it is more convenient to adopt
an event-based (δ-functions) or a time-based (η-functions)
view so we present both. The former is easily obtained from
the latter and vice versa.

Definition 6. For a trace σ, we define δσ : N+ × N+ −→ N:

∀k, n ≥ 1 : δσ(n, k) = σ(n+ k − 1)− σ(n)

Then for all k ≥ 1, δ+
σ (k) denotes the maximum δσ(n, k) and

δ−σ (k) the minimum δσ(n, k) over all n ≥ 1.

Definition 7. Two functions δ− and δ+ : N+ −→ N define an
event model (δ−, δ+) as the set of event traces σ such that:
δ− ≤ δ−σ , i.e. ∀k ≥ 1 : δ−(k) ≤ δ−σ (k), and δ+

σ ≤ δ+.

Note that to denote a non-empty set of traces an event model
(δ−, δ+) must have some specific properties, e.g. δ− ≤ δ+.

Definition 8. Given a trace σ, we define:

∀∆t ≥ 1,∀t ≥ 1 : ησ(t,∆t) =

∆t∑
i=0

event-atσ(t+ i)

where event-atσ(t) = 1 if σ(n) = t for some n ≥ 1
(there is an event occurrence at time t) and event-atσ(t) = 0
otherwise. Then for all ∆t ≥ 1, η+

σ (∆t) denotes the maximum
ησ(t,∆t) and η−σ (∆t) the minimum ησ(t,∆t) over all t ≥ 1.

Definition 9. Two functions η− and η+ : N −→ N define an
event model (η−, η+) as the set of event traces σ such that:
η− ≤ η−σ and η+

σ ≤ η+.

Let us assume that we are given a system Sys as in
Definition 2. As we look for safe results (by contrast with
stochastic approaches), it is sufficient to consider an arbi-
trary behavior (act1, end1, . . . , actn, endn) of Sys . Worst-
case response time analysis is based on the notion of busy
window [7]. We define a level-i busy window as a time interval
[act i(n); end i(n+ q)] for n ≥ 1 and q ≥ 0 such that:

– ∀k ∈ [1; q] : act i(n+ k) < end i(n+ k − 1)
– end i(n+ q) ≤ act i(n+ q + 1)

– end i(n− 1) ≤ act i(n)
That is, a level-i busy window is a maximal time interval
during which τi is busy, where busy means that an activation
is currently being processed (as opposed to idle) 1.

The notion of multiple event busy time was introduced
in [12] to improve the results obtained by CPA. For a task
τi mapped onto a resource r and k ≥ 1, it is denoted B+

i (k)
and represents the maximum time it may take r to process k
activations of τi within a level-i busy window starting with
the first of these k activations. We focus on the Static Priority
Preemptive (SPP) [16] scheduling policy, which defines a
strict order between tasks by assigning them a priority such
that higher-priority tasks are executed first and may preempt
(interrupt the execution of) lower-priority tasks.

Definition 10. The multiple event busy time B+
i (k) for a task

τi under SPP scheduling is the smallest value such that

B+
i (k) = ET+

i (k) +
∑

j∈hp(i)

ET+
j (η+

j,in(B+
i (k))

where
– ET+

i is the worst-case cumulative execution time of τi
– hp(i) is the set of tasks with higher priority than τi
– η+

j,in(∆t) is the maximum number of activations of task
τi in a time window of size ∆t.
B−i is defined by replacing all + by − in the above definition.

Note that the multiple event busy time does not depend on
the actual activation model of τi. In practice, B+

i (k) is relevant
only if the activation of τi makes it possible for k consecutive
activations to arrive before the previous instance is finished,
as expressed in Theorem 1.

Theorem 1. The size of a level-i busy window is bounded 2

by B+
i (Ki) where Ki = min{k ≥ 1 | B+

i (k) < δ−i (k + 1)}.

Proof. The activation model of τi is denoted here (δ−i , δ
+
i ).

Consider a level-i busy window of size greater or equal to
Ki starting at act i(n). By definition of B+

i we know that
end i(n+Ki − 1) ≤ act i(n) + B+

i (Ki). Besides, by defini-
tion of δ−i we know that act i(n+Ki) ≥ act i(n)+δ−i (Ki+1).
Thus, as by definition of Ki we have B+

i (Ki) < δ−i (Ki+1), it
follows that end i(n+Ki − 1) < act i(n+Ki) and a level-i
busy window cannot be longer than B+

i (Ki).

Remember that it is safe to use B+
i (k) only if k ≤ Ki

while B−i (k) is always safe. In the rest of the section, we
define bounds on the WCRT of tasks as well as for the output
of our local performance analysis. The results presented here
generalize those of [12] and their proofs will be useful in the
next section for defining how sporadic overload propagates
through the system. As from now on we consider only one
task τi we simplify notation by omitting the i indexes. The
activation and termination models of τi are denoted respec-
tively (δ−in , δ

+
in) and (δ−out , δ

+
out).

1. Note that our definition slightly differs from that of [7] as we do not
require higher priority tasks to be idle at the beginning of the busy window.
Both definitions yield the same size of the largest busy window.

2. This result does not appear in [12] although a (potentially infinite) set
K is used for the same purpose in the other proofs of the paper.



Theorem 2. The response time of τi is bounded by

WCRT = max
1≤k≤K

{B+(k)− δ−in(k)}

Proof. Consider the n-th instance of τi. As K is the maximal
size of a level-i busy window, there is at least one k ∈ [1;K]
such that act (n− k + 1) marks the beginning of a busy
window. Denote k the latest of these events. By definition of
the response time, RT (n) = end (n)− act (n). Besides, from
the definition of B+, end (n) ≤ act (n− k + 1) +B+(k) and
from that of δ− we obtain act (n)−act (n− k + 1) ≥ δ−in(k).
Hence RT (n) ≤ B+(k)− δ−in(k). The result follows.

Theorem 3. For q ≥ 1, define δ+
out(q) as the maximum 3 of

max
0≤k≤(K−q)

{B+(k + q)−B−(k + 1)}
and

max
1≤k′≤min(q−1,K)

{δ+
in(q − k′ + 1) +B+(k′)} −B−(1)

Then for all n ∈ N+, δout(n, q) ≤ δ+
out(q).

Proof. By definition δout(n, q) = end (n+ q − 1)− end (n).
Case 1. Suppose that act (n) and act (n+ q − 1) are in
the same busy window as represented in Figure 1 where
k ∈ [0;K− q] is such that act (n− k) is the first activation in
this busy window (represented by a grey box in the figure).

Then end (n+ q − 1) ≤ act (n− k) + B+(k + q) and
end (n) ≥ act (n− k) + B−(k + 1) by definition of B+ and
B− respectively. Hence

δout(n, q) ≤ max
0≤k≤(K−q)

{B+(k + q)−B−(k + 1)}

δout (n, q)

act (n− k) act (n)

end (n)

act (n+ q − 1)

B(n− k, k + q)

end (n+ q − 1)

B(n− k, k + 1)

Figure 1. δout (n, q) when only one busy window is considered.

Case 2. Suppose now that act (n) and act (n+ q − 1) are in
two level-i busy windows. Let 1 ≤ k′ ≤ min(q − 1,K) be
such that act (n+ q − k′) is the first activation in the busy
window of act (n+ q − 1) as represented in Figure 2. Note
that it is sufficient to consider that k′ is smaller than q − 1
(otherwise act (n) and act (n+ q − 1) are in the same level-
i busy window) and k′ is also smaller than K (otherwise
act (n+ q − k′) and act (n+ q − 1) cannot be in the same
busy window).

Then end (n+ q − 1) ≤ act (n+ q − k′) + B+
i (k′) by

definition of B+
i . Besides the definition of δ+

i implies
that act (n+ q − k′) ≤ act (n) + δ+

in(q − k′ + 1). Hence
end (n+ q − 1) ≤ act (n)+δ+

in(q−k′+1)+B+(k′). We also
know that end (n) ≥ act (n) +B−(1). The result follows.

3. The case where q ≤ K was not covered in [12].

act (n)

B(n+ q − k′, k′)

end (n)

RT(n)

δout (n, q)

δin(n, q − k′ + 1)

end (n+ q − 1)

act (n+ q − 1)act (n+ q − k′)

Figure 2. δout (n, q) when several busy windows are considered.

Theorem 4. For q, n ≥1, define δ−out(q) as the maximum 4 of

min
0≤k≤K−1

{ max
1≤k′≤q

{δ−in(k + q − k′) +B−(k′)} −B+(k)}

and B−(q − 1). Then for all n ≥ 1, δout(n, q) ≥ δ−out(q).

Proof. This proof follows the same pattern as the previous one
so we rely mostly on Figure 3 for the proof. Unlike B+, it
is always safe to use B−, so δ−in(k + q − k′) + B−(k′) is a
safe approximation of end (n+ q − 1) − act (n− k) for any
k′, and the presence of a max in the definition of δ−out(q). The
second bound, namely B−(q − 1), is a rather straightforward
approximation for the case where act (n) and act (n+ q − 1)
are in the same busy window.

act (n)

end (n)

δout (n, q)

act (n− k)

B(n+ q − k′, k′)B(n− k, k)

δin(n− k, k + q − k′)

end (n+ q − 1)

act (n+ q − 1)act (n+ q − k′)

Figure 3. δout (n, q) when several busy windows are considered.

We have now completed the part devoted to improving the
worst-case response time analysis in the context of CPA. The
next section combines these results with a new approach for
refining worst-case results in presence of sporadic overload at
the input of the system.

IV. ANALYSIS OF SPORADIC OVERLOAD

Let us introduce our approach on an example. Consider two
tasks τ1 and τ2 executing on the same resource and such that
τ1 has higher priority than τ2. Suppose furthermore that τ2 is
a periodic task of period P while τ1 is “almost” periodic: it is
activated with period P with a few additional activations —
but never more than one out of three periods. The execution
time of τ1 is always P/3 and that of τ2 always P/2. A simple
analysis finds out that the largest size of a level-2 busy window
is 2×P and the worst-case response time of τ2 is 3×P/2, as
illustrated on Figure 4 where grey rectangles denote execution
and white rectangles blocking to the execution of a higher
priority task.

As we mentioned, the overload at the input of τ1 is sporadic,
so that even if the worst-case scenario WCRT 2 is indeed
possible, it is rare and most of the observed response times
for τ2 will in fact measure 5× P/6.

4. This bound generalizes that of [12] which only considers k′ = 1.



P P

largest level-2 busy window

WCRT2

task
τ1

task
τ2

Figure 4. Largest level-2 busy window and worst-case response time of τ2.

Rather than using a probabilistic approach for formalizing
this, we choose a representation inspired by load event models.

Definition 11. An overload model is an event model, which
we denote either δ−over or η+

over depending on whether we
adopt an event-based or a time-based view, and such that for
k ≥ 1, δ−over (k) is the minimum distance between k overload
events while for ∆t ≥ 1, η+

over (∆t) is the maximum number
of overload events in a time interval of size ∆t. As we focus
on WCRTs we are not interested in δ+

over or η−over .
Given two event models (δ−, δ+) and (δ−, δ+) where

the former is a safe (worst-case) model and the latter is an
approximate (typical-case) model, an overload model δ−over
relating them is such that any trace satisfying (δ−, δ+) can be
decomposed into a trace satisfying (δ−, δ+) and another one
satisfying δ−over .

Let us now consider a system for which a safe model is
defined as in the previous sections. We focus on a source
task τi for which a safe activation model (δ−i , δ

+
i ) is known.

Note that in this section we are only concerned with activation
models so we omit the in indexes. A first CPA (as in
Section III) on this safe (worst-case) model provides us with
the maximum number Ki of instances of τi that can possibly
be in the same level-i busy window, the size B+

i (Ki) of
the longest possible level-i busy window and the worst-case
response-time WCRT i of τi.

Suppose now that we are given an approximate model
(δ−i , δ

+
i ) of the activation of τi and an overload model δ−i,over

relating it with the safe activation model (δ−i , δ
+
i ) of τi.

We perform a second CPA of our system where (δ−i , δ
+
i )

is replaced by (δ−i , δ
+
i ). From this we obtain approximate

results Ki, B
+
i (Ki) and WCRT i. In the example of

Figure 4, the approximate results for τ1 obtained by ignoring
its sporadic overload activations would be as follows: K1 = 1
and B+

1 (K1) = WCRT1 = P/3.
At this point, the question is: how often can WCRT i be

“wrong”, meaning that the actual response time of τi is larger
than WCRT i (while still being smaller than WCRT i)? The
answer to this question is represented as an error model which
expresses safe bounds on the number of response times which
may be larger than WCRT i.

Definition 12. An error model for WCRT i is a function
err i : N+ −→ N such that erri(k) is a safe bound on the
number of instances of τi which can have a response time
larger than WCRT i in a window of k consecutive instances.

Let us now focus on how to obtain such an error model.
Consider first the following sufficient condition for proving
that the response time RT i(n) of instance n is smaller than
WCRT i, based on the fact that activations can interfere with
each other only if they are in the same busy window.

Theorem 5. ∀n ≥ 1 : RT i(n) ≤WCRT i if

∀k, q ∈ [1;Ki] : δi(n− k, q) ≥ δi−(q)

Proof. Suppose that ∀k, q ∈ [1;Ki] : δi(n − k, q) ≥ δi−(q).
According to the proof of Theorem 2, we have the following:
∀n ≥ 1 : RT i(n) ≤WCRT i if

– ∀k ∈ [1;Ki] : δi(n− k, k) ≥ δi−(k)
– ∀k ∈ [1;Ki] : Bi(n− k + 1, k) ≤ B+

i (k)
– ∃k ∈ [1;Ki] : end i(n− k) ≤ act i(n− k + 1)

The first condition is trivially satisfied. As the level-i multiple
event busy time does not depend on the activation model of
τi, the second condition always holds if overload occurs only
at the input of τi. So let us show that the third condition
is satisfied, namely that the level-i busy window containing
act i(n) starts with act i(n− k) for some k ∈ [1;Ki].

There is at least one activation corresponding to the be-
ginning of a busy window between act i(n−Ki + 1) and
act i(n), which we denote act i(n− k). We know that for all
k ≤ k and q ∈ [1;Ki], δi(n − k, q) ≥ δi−(q). This implies
(using the same argument as in the proof of Theorem 1) that
the busy window starting with act i(n− k) and those that
follow until act i(n) cannot be larger than B+

i (Ki). As a
consequence, the busy window containing act i(n) cannot start
earlier than act i(n− k) for some k ∈ [1;Ki].

The direct corollary of this theorem is that one overload
event at the input of τi can result in at most Ki response
times larger than WCRT i because RT i(n) depends only on
its previous Ki activations. Hence the following result.

Theorem 6. If overload occurs only at the input of τi then
err i(k) = Ki × η+

i,over (δ+
i (k +Ki))

Proof. We consider how many overload activations may occur
during the time needed for k + Ki activations. Note that we
take into account the effect of the Ki activations before the
first one in the considered sequence of k instances.

Suppose now that overload may happen also in activation
models of tasks with higher priority executing on the same
resource, as for τ2 in our running example.

Theorem 7. If overload concerns only tasks in hp(i), then

err i(k) = Ki ×
∑

j∈hp(i)

η+
j,over (δ+

i (k +Ki) + WCRT i)

Proof. The same reasoning as above applies here: one overload
event at the input of τj , where j ∈ hp(i), interferes with one
level-i busy window and thus impacts at most Ki response
times of τi. Note that one must consider overload activations
of tasks in hp(i) which occur after the last of the k activations
but before the end of the corresponding execution.

We then compute err i by conservatively adding both errors.



V. EXPERIMENTS

We have applied our approach to a real-life example trace
of running gear consisting of 12 tasks running on a single
resource. There is no task-chaining in this system, so all tasks
are activated by external events or strictly periodically. We
present results related to two tasks of interest, τ7 and τ5.

An analysis of the trace leads to the following observation:
τ7 is almost periodic of period 2.5 ms except for additional
activations, which denotes an activation both time-triggered
and event-triggered. The event-based activations are rare,
hence the idea to perform an approximate analysis ignoring
these events. We have derived from the trace the following
overload model for τ7, which shows e.g. that the minimum
interval containing 5 overload activations of τ7 is 407 ms.

δ−7,over of 2 3 4 5 6 7 8
equals: 9 29 157 407 887 1392 1642

Let us note that the execution times of τ7 illustrate the
interest of our execution time model: most execution times
follow a pattern of length 10 where a long execution alternates
with a short one. On top of that, the additional activations of
τ7 result in shorter executions which introduces uncertainty.
Our model is the only one able to handle efficiently such a
pattern of execution times.

We now focus on the impact of the overload in the activation
of τ7 on τ5, a task with a very low priority. τ5 is fully periodic
(period 10 ms). The following table shows the obtained
WCRTs for both the original model M and its approximated
model M , computed without, then with, cumulative execution
times (denoted with the index c).

model M Mc M M c

WCRT 5 non-schedulable 8.616 4.473 4.288

This shows first that using cumulative execution times
significantly improves the results but also that a relatively
small approximation in the model (about 0.4% of the events in
the activation trace of τ7 are ignored) has a dramatic impact on
the WCRT. Note that the worst-case response time observed in
the trace is 4.142 ms, while most response times are between
3.9 and 4.0 ms. Our approximate result is rather accurate.

The worst-case analysis of τ5 indicates that a level-5 busy
window never contains more than 1 activation since the WCRT
of τ5 is smaller than its period. As a result, one overload event
in τ7 cannot impact more than one response time in τ5. Hence
the following error model 5 for WCRT5. For example, we
conclude that out of 163 consecutive instances of τ5, at most
7 have a response time larger than 4.287 ms — roughly 4%.
Note that this result is a safe bound.

err5 of 1 2 14 39 87 138 163
equals 1 2 3 4 5 6 7

5. For readability we only show the step values. In fact, one can read for
example that for any sequence of 15 ≤ k ≤ 39 activations, WCRT5 is
incorrect at most 4 times.

VI. CONCLUSION

We have presented new results for formal performance
analysis of real-time systems to obtain safe response time
bounds for systems with sporadic higher loads. Our solution
provides two WCRTs, the baseline “typical” WRCT and a
larger maximum WCRT when higher load is applied. Given
a bound for the sporadic overload, analysis gives an exact
bound of the maximum WCRTs occurrences in a given number
of instances. The result is significantly more expressive than
using maximum WCRTs times only and can, e.g., be used
by control engineers to better bound the system behavior.
Furthermore this approach does not assume any of the strict
contraints of typical probabilistic approaches, such as ran-
domness, independence or stationarity, and can therefore be
used more flexibly and requires less knowledge about the
system to be analyzed. Future work includes the study of
overload propagation in order to provide a fully compositional
approach.

REFERENCES

[1] G. Bernat, A. Burns, and A. Llamosı́, “Weakly hard real-time systems,”
IEEE Trans. Computers, vol. 50, no. 4, pp. 308–321, 2001.

[2] G. Bernat, A. Burns, and M. Newby, “Probabilistic timing analysis: An
approach using copulas,” J. Embedded Computing, vol. 1, no. 2, pp.
179–194, 2005.

[3] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs,” in Proceedings of DATE’03. IEEE Computer Society, 2003,
pp. 190–195.

[4] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the SymTA/S approach,” in IEE
Proceedings Computers and Digital Techniques, 2005.

[5] M. Ivers and R. Ernst, “Probabilistic network loads with dependencies
and the effect on queue sojourn times,” in Proceedings of QSHINE’09,
ser. LNCS, vol. 22. Springer, 2009, pp. 280–296.

[6] M. Jersak, R. Henia, and R. Ernst, “Context-aware performance analysis
for efficient embedded system design,” in Proceedings of DATE’04.
IEEE Computer Society, 2004, pp. 1046–1051.

[7] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proceedings of RTSS’90. IEEE Computer
Society, 1990, pp. 201–213.

[8] J. M. López, J. L. Dı́az, J. Entrialgo, and D. F. Garcı́a, “Stochastic anal-
ysis of real-time systems under preemptive priority-driven scheduling,”
Real-Time Systems, vol. 40, no. 2, pp. 180–207, 2008.

[9] S. Manolache, “Analysis and optimisation of real-time systems with
stochastic behaviour,” Ph.D. dissertation, Linköpings Universitet, 2005.

[10] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,”
IEEE Trans. Software Eng., vol. 23, no. 10, pp. 635–645, 1997.

[11] K. Richter, “Compositional scheduling analysis using standards event
models,” Ph.D. dissertation, TU Braunschweig, 2005.

[12] S. Schliecker, J. Rox, M. Ivers, and R. Ernst, “Providing accurate event
models for the analysis of heterogeneous multiprocessor systems,” in
Proceedings of CODES+ISSS’08. ACM, 2008, pp. 185–190.

[13] S. Stein, J. Diemer, M. Ivers, S. Schliecker, and R. Ernst, “On the
convergence of the SymTA/S analysis,” TU Braunschweig, Tech. Rep.,
2008.

[14] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proceedings of ISCAS’00, vol. 4.
IEEE Computer Society, 2000, pp. 101–104.

[15] T.-S. Tia, Z. Deng, M. Shankar, M. F. Storch, J. S. 0002, L.-C. Wu, and
J. W.-S. Liu, “Probabilistic performance guarantee for real-time tasks
with varying computation times,” in Proceedings of RTAS’95. IEEE
Computer Society, 1995, pp. 164–173.

[16] K. Tindell, A. Burns, and A. J. Wellings, “An extendible approach for
analyzing fixed priority hard real-time tasks,” Real-Time Systems, vol. 6,
no. 2, pp. 133–151, 1994.


