
978-3-9810801-8-6/DATE12/©2012 EDAA 

An Architecture-Level Approach for Mitigating the 
Impact of Process Variations on Extensible Processors 

Mehdi Kamal1, Ali Afzali-Kusha1, Saeed Safari1, Massoud Pedram2 
1School of Electrical and Computer Engineering, University of Tehran 

2Department of Electrical Engineering-Systems, University of Southern California 
{mehdikamal, afzali, saeed}@ut.ac.ir, pedram@usc.edu 

 
 

Abstract— In this paper, we present an architecture-level 
approach to mitigate the impact of process variations on 
extended instruction set architectures (ISAs). The proposed 
architecture adds one extra cycle to execute custom instructions 
(CIs) that violate the maximum allowed propagation delay due to 
the process variations. Using this method, the parametric yield of 
manufactured chips will greatly improve. The cost is an increase 
in the cycle latency of some of the CIs, and hence, a slight 
performance degradation for the extensible processor 
architectures. To minimize the performance penalty of the 
proposed approach, we introduce a new merit function for 
selecting the CIs during the selection phase of the ISA extension 
design flow. To evaluate the efficacy of the new selection method, 
we compare the extended ISAs obtained by this method with 
those selected based on the worst-case delay. Simulation results 
reveal that a speedup improvement of about 18% may be 
obtained by the proposed selection method. Also, by using the 
proposed merit function, the proposed architecture can improve 
the speedup about 20.7%. 

I. INTRODUCTION 

Embedded processors are used in many platforms such as cell 
phones, digital cameras, network routers, and monitoring 
devices. The major issues in embedded systems are 
computational speed, power consumption, and system 
flexibility. There are two approaches to implement a digital 
embedded system. The first is Application Specific Integrated 
Circuits (ASIC) where both high speed and low power 
dissipation may be achieved with a penalty of higher design 
cost and lower flexibility. The other design approach is General 
Purpose Processor (GPP) where the speed is lower, the power 
consumption is higher, and the flexibility is higher compared to 
the ASIC approach. The third method for realizing embedded 
systems is Application Specific Instruction-set Processors 
(ASIP). The speed, power, and flexibility of this approach is 
between the ASIC and GPP solutions [1]. 

In the ASIP approach, the GPP instruction set is extended 
through ASIC design based on the application specific features. 
The augmented instructions are determined such that the 
desired speed, power, and cost requirements are fulfilled. The 
main idea behind using ASIP is to run the hotspot parts of an 
application using custom instructions (CIs) and the other parts 
of the application on the ALU of the processor [1] [2]. The 
extended ISA is contained in Custom Functional Unit (CFU) 
which executes instructions in parallel with the ALU. The CIs 
enhance the processor speed by reducing the number of 
instructions as well as the accesses to the cache and register 
file. In addition, they lower the power consumption. 

The ISA extension flow starts by extracting the Data Flow 
Graph (DFG) of the hotspot parts (which are the parts to which 
most of the execution time belongs) of the application. Next, 
all the subgraphs (CIs) that meet the predefined constraints, 
such as, convexity, propagation delay, and I/O, are extracted 
from DFG of hotspot parts. The last phase of the ISA extension 
flow is the selection phase. In the selection phase, the best CIs 
are chosen from the candidate set. The CIs are selected based 
on the merit value which in most cases is the achieved speedup 
when the CIs are used. Figure 1 depicts the design flow. 

 
Figure 1. ISA extension design flow. 

In conventional (deterministic) design flows, the nominal 
gate parameters are used during the design of digital systems. 
In sub-100nm technologies, however, complexities in the 
manufacturing of the transistors with very small sizes have 
caused significant variations in transistor parameters (such as 
threshold voltage and effective channel length), which in turn 
has led to uncertainties in the delay and power consumption of 
the circuits/gates  [3]. This uncertainties cause the parameters in 
the fabricated chip to be different (less or more) from those 
specified in design time. In the deterministic ISA extension 
approach, the worst-case or nominal delay of the primitives 
(e.g., AND, ADD, SHIFT) are used to extract the latency of the 
identified CIs during the design time. Due to the die-to-die or 
within-die variations, the CI latency would be different from 
the one considered in the design time. If we design based on 
the worst-case delay, the process variation may not have 



impact on the critical paths of the design. Using this approach, 
we however lose the speedup of the extended ISA  [4]. On the 
other hand, when the extended ISA is generated based on the 
nominal delay, the performance yield of the extended ISA 
would be much less than one. This originates from the fact that 
the CI propagation delay becomes greater than the clock 
period, and hence, the CI could not complete its execution in 
one clock cycle. Hence, due to delay uncertainty, if the 
performance yield of the extended ISA is smaller than one, 
some of the manufactured extended ISA chips will not work 
properly. 

In this paper, we propose an architecture which gives two 
cycles to the CIs which cannot complete their execution in one 
cycle due to the delay variation. In this technique, after 
fetching such a CI, the pipeline will be stalled by forcing the 
processor controller to allow some CIs to execute in two clock 
cycles. This is performed using the extra hardware added for 
the extended ISA. Due to these extra cycles, the speedup 
achieved through using the extended ISA is lowered. To 
minimize the impact of the extra cycles on the overall speedup, 
the selection of the CIs should be performed by considering 
this reduction as a selection parameter. This is performed by 
using a merit function which includes this parameter. The rest 
of the paper is organized as follows. Section II briefly reviews 
the related works while the proposed architecture and the 
design flow idea are described in Section III. The experimental 
setup and the results are discussed in Section IV. Finally, 
Section V concludes the paper. 

 

II. RELATED WORK 

In this section, we review some of the works related to the 
techniques which have been proposed to lessen the impacts of 
the process variation on the processors as well as some prior 
works on ISA extension. In  [5], two compile time techniques 
were proposed to handle non-uniform latency of different 
integer functional units (IFUs) in VLIW processors. In the 
proposed approach, the highly affected IFUs are turned off 
whenever the processor does not require them for running an 
application and turned on when required. An architectural 
technique (Trifecta) to mitigate the timing variations in critical 
pipeline stages is proposed in  [6]. In the proposed technique, 
the inputs that make the critical path delay exceed the one-
cycle delay are detected (circuit level speculation) and let the 
path to complete its operation in two-cycles. 

In  [7], a technique to tackle the performance reduction in 
the presence of process variation for out-of-order processors is 
presented. In this technique, the instructions, based on their 
dependency on each other, categorized in two groups. The 
instruction which no instruction depends on its result, are 
executed on a long-latency unit. On the other hand, if another 
instruction depends on its result, this instruction should be 
executed in a short-latency unit. In  [8], two fine-grained post-
fabrication techniques are proposed to mitigate the timing 
fluctuation. The voltage interpolation and variable pipeline 
latency are the two methods proposed in this paper. In  [9], 
first, the process variation impacts on the propagation delay of 
the pipeline stages are investigated. Then, an architectural 
technique to decrease the impacts of the timing fluctuation on 
the performance of pipelined processors based on the cycle 

time stealing is proposed. In addition to the time borrowing 
techniques discussed in [7] and [8], a method which controls 
the clock speed in multi-issue processors is suggested in  [10]. 
The method categorized the runtime of the program in two 
different phases, Low-ILP (Instruction Level Parallelism) 
phases, and High-ILP phases. In each phase, the impact of the 
process variation is lowered by changing the clock speed. 

In the field of ISA extension, many techniques have been 
proposed. These include the techniques for increasing the 
quality of the selected CIs as well as decreasing the runtime of 
the algorithms for the CI identification (see, e.g., [1]). The 
proposed methods were all based on the deterministic 
approach. In  [4], a statistical design flow for the ISA extension 
was proposed. The proposed design flow used the statistical 
approach in the both identification and selection phases where 
the performance yield was defined as a new constraint in the 
ISA extension flow.  

The prior work focused on the processors multi-cycle 
pipeline stages and also out-of-order processors. In embedded 
applications, for the extensible processors, the in-order 
architecture is the more common. In this paper, we assume 
that the baseline processor is an in-order processor. The 
proposed architecture and the design method may be used for 
out-of-order processors as well. In the next section, we 
describe our proposed architecture for reducing the process 
variation impact. Also, the merit function which is used in the 
selection phase is discussed. 

 

III. PROPOSED ARCHITECTURE 

In this section, we describe the proposed technique which is 
based on the fact that the worst-case delays of the CIs are 
smaller than two clock periods. Thus, by adding one extra 
cycle to CIs, we are able to complete the execution without 
worrying about the process variations. Next we describe the 
technique in more details. 

In the presence of the process variations, the path delays are 
defined by PDFs (probability density functions). Due to the 
statistical nature of the path delays, the timing-critical circuit 
outputs in some manufactured chips will meet the predefined 
maximum propagation delay threshold while the others will 
violate the delay. Let us define the timing-critical outputs as the 
outputs that may violate the maximum delay threshold. At the 
design time, using the process variation modeling and also the 
statistical static timing analysis (SSTA), the critical outputs of 
each CI can be identified. Hence, to check whether or not these 
critical outputs indeed violate the clock period, they must be 
tested after the chip is manufactured. This test is performed 
during the chip test phase where the CI propagation delay is 
evaluated to determine the CIs whose worst-case path delays 
are greater than one clock period.  

More precisely, if the process variation modeling and 
SSTA are used, the CIs may be selected based on their worst-
case delay (µ+3σ). In this situation where no selected CI 
violates the maximum clock period, and hence, the proposed 
architecture is not needed to be used in the extensible 
processor. This approach, however, may not lead to a 
considerable speed enhancement due to very limited number of 
CIs which may be selected. In the approach suggested in this 
work, the critical paths are specified in the design time and 



only these outputs are tested in the test phase. Another use of 
this modeling is in the merit function that is used to minimize 
the speedup reduction due to the extra clock cycle added to the 
CIs whose worst-case path delay plus some margin for flip-flop 
clock to output delay and setup time can be larger than the 
specified clock period. Each CI may have several output bits 
(i.e., 32-bit). Among them, only those bits that are on the 
critical paths should be considered in the test phase. So, the set 
of critical outputs of a CI is defined as 

 {∀ ∈ , ∃ > 0	 ⇒ + > } (1) 

 
where µi and σi are mean and sigma values of the ith output, 
MPD denotes Maximum Propagation Delay, and ki is a 
positive real number. 

Now, we explain our proposed architecture that adds the 
additional clock cycles for the CIs that require them. In 
addition, we describe the merit function that is used to lower 
the speedup degradation due to addition of the extra clock 
cycle. Figure 2 shows the proposed architecture when it is used 
with a five-stage pipelined processor. The proposed 
architecture consists of two main parts, which are the controller 
and the checker. The checker is used to detect the propagation 
delay violation of those CI outputs that have been reported as 
the timing-critical outputs during the design time. These 
outputs are tested by injecting proper test vectors during the 
test time. If an output violates the maximum propagation delay, 
the CI corresponding to this output is added to a look-up table 
(LUT) in the controller part. 

 

 
Figure 2. A five stage pipelined extensible processor enhaced with 
proposed architecture. 

During the test time, the test vectors are injected into the 
CFU. The test vectors, which are extracted using the test delay 
method  [11], are applied through the processor instruction 
issue unit. To test the CI outputs, the specific test vector should 
be written to the register file. We need m instructions to load 
the test vector where m is equal to the number of input ports of 
the CI that is under the test. After loading the test vector, by 
fetching a CI, the corresponding test vector is applied to the CI. 
Finally, the output of the CI must be checked. To check the CI 
output, a new instruction that compares the output of the 
execution stage with a known (expected) value of the specified 
register is defined. If the CI output is not equal to this value, 
the op-code of the CI is added to the LUT inside the controller. 
If the CI under the test contains more than one output port, 
each output must be checked separately. If any of these outputs 

fails to match the expected value, the CI’s op-code will be 
added to the LUT.  

During the test time, based on the op-codes of the CIs 
which need two cycles to complete their execution phase, the 
contents of the LUT are updated. Therefore, in the application 
runtime, when each instruction is fetched, the controller unit 
checks the instruction op-code in the LUT. For any op-code 
present in the LUT, the controller sends a signal to the 
processor controller to stall the pipeline for one clock cycle, 
thereby allowing the CI instruction to complete its execution 
phase without any timing violations. During the extra cycle, we 
must ensure that the inputs of the CFU are preserved. 
Therefore, the pipeline controller must also freeze values of the 
input registers of the CFU during the extra cycle. 

The proposed architecture alleviates the problem of 
manufacturing-induced process variations (e.g., Vth or L 
variability effects). It, however, adds one extra cycle degrading 
the overall speedup of the extensible processor. To lower this 
speed deterioration, we suggest a new merit function for the 
selection phase. In the conventional approaches, the merit 
function is defined based on the speedup of the CIs. The 
speedup of a CI is defined as 

 . = # × # . − .
− . ℎ	  

(2) 

 
where CIi.S is the speedup of the ith CI (CIi) which is equal to 
the number of clock cycles saved at the runtime of the 
application when the CIi is used. Here #Iteration denotes the 
execution frequency of the basic block to which CIi belongs, 
#CIi.SW denotes the number of clocks that the CI needs to run 
by the base processor, and, IOi.Penalty is the number of extra 
accesses to the register file for reading data from or writing 
data in (when the number of the CI I/O ports is more than the 
number of the register file read/write ports). The second term in 
the above equation is the number of clocks needed for 
executing CIi on the CFU (we assume CIs can be multi-cycle 
as well as single cycle instructions.) In this fraction, 
CIi.CriticalPathDelay denotes the propagation delay of the CI 
critical path and Clock Period is the desired clock period for 
the extended processor. For the sake of simplicity (but without 
loss of generality), we assume CIs are selected when their 
nominal delay is less than the Clock Period, and hence, the . 	  term is equal to one. Also, we 

assume, the CIs I/O ports are equal to the R/W ports of the 
register file, and thus, .  is equal to zero. Hence, the 
speedup of a CI may be calculated as 
 
 . = # × # . − # .  (3)

 
where #CIi.Clock is the number of clocks that the CI needs to 
complete its execution. The value of #CIi.Clock  is one unless, 
due to the process variation, CIi.CriticalPathDelay is greater 
than the MPD, in which case it will be set to two. When 



#CI.SW of a CI is two and the CI executes in two cycles, the 
CI.S becomes zero indicating that there will not be any runtime 
speedup by using this CI. As the number of these CIs 
increases, the overall speedup of the extensible processor 
reduces. When #CI.SW is larger than two, there is still some 
speedup even if the CI requires one extra cycle. Let us define 
the parameter CI.SW_Impact as 
 . _ 	 = 	 # . − 2# . − 1  (4) 

 

The value of this parameter changes between 0 (when #CI.SW 
is two) and 1 (when #CI.SW is infinity). Larger values mean 
smaller undesirable impacts of the extra cycle. Hence, due to 
the delay variation, it is better to use the CIs with the 
SW_Impact values close to one. To increase the chance of 
selecting these CIs, we propose a merit function defined as 
follows 

 

If (CIi.PY = 1)  
CIi.Merit = CIi.S 

else 
If (CIi.SW_Impact = 0)  

CIi.Merit = 0; 
else 

CIi.Merit = CIi.S × (1+ α × CIi.SW_Impact) 

(5) 

 

where CIi.PY is the performance yield of the ith CI and α is the 
weight of CIi.SW_Impact in the merit value. The merit value is 
equal to the conventional merit value when the performance 
yield of the CI is equal to 1. When the performance yield is less 
than 1, if the CIi.SW_Impact	 is equal to zero, the merit value 
will become zero; else, the conventional merit value will be 
scaled by (1 + α × CIi.SW_Impact).	Note that, in this approach, 
we need to model the process variation in the design cycle to 
extract the performance yield of the CIs. 

 

IV. RESULTS AND DISCUSSION  

A. Experimental Setup 

The extracting ISA design flow was implemented by the C# 
language. To assess the efficacy of the design flow, the custom 
instructions of a bunch of benchmarks were extracted. The 
selected benchmarks included IP-Sec and MD5 from 
PacketBench  [12], lms and adpcm from SNU-RT benchmark 
suits  [13], and G271 Decode and bitcounter from MiBench 
 [14]. Using GCC (GNU Complier Collection), the DFG and 
the hotspot of these applications were generated and fed to the 
ISA extension design flow. The implemented design flow was 
adapted from  [4]. The candidate CIs were identified based on 
the exact method proposed in  [1] with the number of I/O ports 
and maximum propagation delay as the constraints considered 
in this phase. In the selection phase, we used the greedy 
approach to select the best CIs.  

We used the canonical form to model the delay 
variation [15]. To model the canonical delay form of the gates, 
we used the HSPICE model of gates in a 45nm technology [16]. 

By using the SSTA method proposed in  [15], the canonical 
delay form of the primitives were calculated. All the primitive 
delay models were gathered in a library that was used in the 
design flow to perform SSTA on CIs. Also, for the sake of 
simplicity without loss of generality, we assumed that there 
were only the random variations of Leff and Vth. We assumed 
the variation for both Vth and Leff were equal to 
σVth,rdn/Vth,0=σLeff,rnd/Leff,0= 10%, where the Vth,0 and Leff,0 are the 
mean values of the threshold voltage, and the effective channel 
length of the transistors. The variations were applied to the 
HSPICE model of the primitive gate in the 45nm technology. 

Finally, to evaluate the proposed architecture, we have 
invoked C# to model the architecture. Using the above 
statistical parameters, the speedups of one thousand samples of 
the 5-stage MIPS processor shown in Figure 2 were obtained. 
For each sample, based on the PDF (normal distribution) of the 
CIs, random delay values were assigned to the outputs of each 
CI. For the delays which were greater than the MPD, two clock 
cycles were used for the CI execution. 

In the rest of this section, two different speedups are 
reported. One is the design time speedup which represents the 
speedup of the extended ISA when all CIs execute in one clock 
cycle. This means that the CI delays in none of the 
manufactured chips were larger than the MPD. The second is 
the speedup of the extensible processor which indicates the 
speedup of the CI when the impacts of the process variation on 
their delays are considered. This means that some CI delays in 
the manufactured chips were larger than the MPD, and hence, 
the corresponding CIs execute in two clock cycles. 

B. Results 

To study the speedup of the extensible processor using the 
proposed architecture, we extracted the extended ISA under 
three different cases. In the first case (“1”), the performance 
yields of the extracted CIs were assumed to be 100%. In this 
case, the CIs were selected based on the worst-case delay. In 
the second case (“0.8”), the performance yield constraint was 
considered and the selection algorithm was forced to select CIs 
while the performance yield of the CFU was greater than 80%. 
This meant 

 ∀ , . ≥ 0.8 (6) 

 
Note that in this case the probability of a CI that violates 

the MPD is equal to 0.2, while this probability in first case is 
zero. In the last case (“NC”) where the performance yield was 
not considered in the selection process, the CIs were selected 
based on their nominal delay. In this case, since the possibility 
of violating the delay constraint by the process variation is not 
considered in the CI selection process, the chance of violating 
the MPD by the selected CIs is larger than the other two cases 
leading to a smaller performance yield for this case.  

Figure 3 depicts the CFU speedup reported in the design 
time. The results show in all cases the highest speedup belongs 
to the “NC” case while the worst-case design (case “1”) has the 
lowest speedup. Also, in all the cases, except for IP_Sec and 
lms, the speedup is higher for lower performance yields where 
there are more options for selecting CIs. This is due to the fact 



that the delay variation is either not considered (the “NC” case) 
or partially tolerated (the “0.8” case). For IP_Sec and lms, since 
decreasing the performance yield does not change considerably 
the extended ISA, the CFU speedup is remained approximately 
constant. 
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Figure 3. The speedup of the extended ISA reported in the design time. 

The speedups of the extensible processors under the 
predefined three cases are presented in Figure 4. In Figure 4(a), 
in each case, the minimum and maximum of the extensible 
processor speedups are reported. When the CIs were selected 
based on their worst-case delay, the delay fluctuation had no 
effect on the CFU, and hence, the speedup of the extensible 
processor was constant. In the other cases, the speedup was 
different from one chip (sample) to other one.  

The results show that the highest maximum speedup is 
achieved when the CIs are selected based on the nominal delay 
(the “NC” case). Additionally, for all the benchmarks, except 
for IP-Sec, the highest minimum speedup belongs to the “NC” 
case. These results of Figure 4(a) suggest that, in most cases, 
the higher design time speedups of lower performance yield 
cases (the “NC” and “0.8” cases) are not completely cancelled 
out by the MPD violations of some selected CIs in these cases. 
To show this more clearly, Figure 4(b) shows the difference 
between the design time speedup and the extensible processor 
average and minimum speedups. Note that for the “1” case, the 
design time and extensible processor speedups are the same. In 
all the cases, except for the IP-sec benchmark, the higher 
reduction (indicated by the dashed line) belongs to the “NC” 
case. However, the average speedup of the extensible processor 
for this case is still higher due to the larger design time 
speedup. For the case of the IP-Sec benchmark, the design time 
speedups of the extended ISA were almost the same in all the 
two cases of “0.8” and “NC” (see Figure 3). When the design 
was performed for the “NC” case, the number of paths 
violating the MPD increased (from 105 in the “0.8” case to 111 
in the “NC” case). The increase reduced the average speedup. 
A similar argument is applied when comparing the cases of 
“0.8” and “1”. As the results of Figure 3 and Figure 4(a) show, 
in the case of the lms benchmark, the speedups for the cases of 
“0.8” and “NC” were similar. The reason was that the same CIs 
were chosen in the selection phase. Finally, note that figures 
predict a higher speedup of 18% (11.8%) in the case of “NC” 
(“0.8”) compared to the design based on the worst-case delay 
(“1”). 

As mentioned before, to improve the efficacy of the 
proposed architecture, we have offered a new merit function. 
Figure 5 shows the minimum and the average speedup under 
two different merit functions. In the first case, the CIs are 
extracted based on the conventional merit function while in the 
second case they are extracted based on the proposed merit 

function (Equation (5)). Additionally, the CIs were extracted 
without considering the performance yield (“NC”) for this 
study. The results show that, in all the cases, the speedups are 
increased when the proposed merit function is utilized. The 
comparison between the speedups of the conventional and 
proposed merit function shows that the maximum improvement 
is for the MD5 benchmark which is about 4.3%, while the 
minimum is for the G721decode which is about 0.4%. On 
average, the speedup increase is about 2.18%. Finally, the 
comparison of this results with the worst-case design (Figure 4) 
indicates that the highest gain belongs to the MD5 benchmark 
(~47.84% improvement), and the lowest one belongs to the IP-
Sec (~5.55% reduction). Also, the average improvement was 
about 20.66%. 

0

0.5

1

1.5

2

2.5

1 0.8 NC 1 0.8 NC 1 0.8 NC 1 0.8 NC 1 0.8 NC 1 0.8 NC

Min Max

 
(a) 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

ad
pc

m
(1

)

ad
pc

m
(0

.8
)

ad
pc

m
(N

C)

bi
tc

ou
nt

er
(1

)

bi
tc

ou
nt

er
(0

.8
)

bi
tc

ou
nt

er
(N

C)

G7
21

de
co

de
(1

)

G7
21

de
co

de
(0

.8
)

G7
21

de
co

de
(N

C)

IP
-S

ec
(1

)

IP
-S

ec
(0

.8
)

IP
-S

ec
(N

C)

lm
s(

1)

lm
s(

0.
8)

lm
s(

N
C)

M
D5

(1
)

M
D5

(0
.8

)

M
D5

(N
C)

Sp
ee

du
p

Design Time Extensible Processor(Min) Extensible Processor(AVG)

 
(b) 

Figure 4. a) Minimum and maximum average speedups of the extended 
ISA when enhanced with the proposed architecture. b) Design time 
speedup vs. extensible processor speedup 
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Figure 5. The ability of the proposed merit function in increasing the 
speedup of the extended ISA enhanced with the proposed architecture. 



One solution to mitigate the process variation effect is to 
increase the clock period  [10]. Similarly, one can take the same 
measure in the case of the extensible processors by increasing 
the clock period to the maximum worst-case delay of the 
selected CIs. We have compared the speedups of these two 
techniques in Figure 6, where ALM and CPM stands for the 
proposed Architecture Level Method and increasing Clock 
Period Method, respectively. Note that, in the ALM (CPM), we 
used proposed (conventional) merit function in selection phase. 
The results show that, in all the cases, except for bitcounter and 
IP-Sec, the proposed method outperforms the CPM. For the IP-
Sec case, the CPM method is better than the proposed method 
in this paper. However, in bitcounter, the results show that in 
more than 95% of the extensible processors, the proposed 
method provides more speedup in comparison to the CPM. 
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Figure 6. Speedup comparison between the ALM and CPM methods. 

V. CONCULUSION 

In this paper, we proposed an architecture level method to 
reduce the process variation impact on extensible processors. 
The proposed architecture concentrated on the CIs whose 
latencies were greater than the clock period of the extensible 
processor. It forced the pipeline processor to let these CIs to 
use one more clock cycle for their execution. In this method, by 
running an initialization procedure, these CIs for each chip are 
determined only one time before its first use. In this procedure, 
the op-code of the CIs are stored in a look-up table. During the 
runtime, the system checks the op-codes and lets some of them 
to be executed with one extra cycle. The results show that the 
speedup of this method is 18% greater than that of the design 
based on the worst-case delay. Additionally, to improve the 
ability of the proposed architecture, we modified the 
conventional merit function which was used in the design flow 
of the ISA extension. In the modified merit function, the CIs 
which adding one more clock cycle to their executions 
decrease the performance yield less were selected. The results 
showed that using both proposed architecture and merit 
function at the same time improved the speedup about 20.7% 
in comparison to the worst-case approach. Finally, we 
compared the efficacy of the proposed technique with that of 
the technique where the clock period is increased. The results 
showed that the proposed technique reached a better speedup 
for most of the benchmarks with an average improvement of 
about 9.3%. 
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