
978-3-9810801-8-6/DATE12/©2012 EDAA

An Architecture-Level Approach for Mitigating the
Impact of Process Variations on Extensible Processors

Mehdi Kamal1, Ali Afzali-Kusha1, Saeed Safari1, Massoud Pedram2
1School of Electrical and Computer Engineering, University of Tehran

2Department of Electrical Engineering-Systems, University of Southern California
{mehdikamal, afzali, saeed}@ut.ac.ir, pedram@usc.edu

Abstract— In this paper, we present an architecture-level
approach to mitigate the impact of process variations on
extended instruction set architectures (ISAs). The proposed
architecture adds one extra cycle to execute custom instructions
(CIs) that violate the maximum allowed propagation delay due to
the process variations. Using this method, the parametric yield of
manufactured chips will greatly improve. The cost is an increase
in the cycle latency of some of the CIs, and hence, a slight
performance degradation for the extensible processor
architectures. To minimize the performance penalty of the
proposed approach, we introduce a new merit function for
selecting the CIs during the selection phase of the ISA extension
design flow. To evaluate the efficacy of the new selection method,
we compare the extended ISAs obtained by this method with
those selected based on the worst-case delay. Simulation results
reveal that a speedup improvement of about 18% may be
obtained by the proposed selection method. Also, by using the
proposed merit function, the proposed architecture can improve
the speedup about 20.7%.

I. INTRODUCTION

Embedded processors are used in many platforms such as cell
phones, digital cameras, network routers, and monitoring
devices. The major issues in embedded systems are
computational speed, power consumption, and system
flexibility. There are two approaches to implement a digital
embedded system. The first is Application Specific Integrated
Circuits (ASIC) where both high speed and low power
dissipation may be achieved with a penalty of higher design
cost and lower flexibility. The other design approach is General
Purpose Processor (GPP) where the speed is lower, the power
consumption is higher, and the flexibility is higher compared to
the ASIC approach. The third method for realizing embedded
systems is Application Specific Instruction-set Processors
(ASIP). The speed, power, and flexibility of this approach is
between the ASIC and GPP solutions [1].

In the ASIP approach, the GPP instruction set is extended
through ASIC design based on the application specific features.
The augmented instructions are determined such that the
desired speed, power, and cost requirements are fulfilled. The
main idea behind using ASIP is to run the hotspot parts of an
application using custom instructions (CIs) and the other parts
of the application on the ALU of the processor [1] [2]. The
extended ISA is contained in Custom Functional Unit (CFU)
which executes instructions in parallel with the ALU. The CIs
enhance the processor speed by reducing the number of
instructions as well as the accesses to the cache and register
file. In addition, they lower the power consumption.

The ISA extension flow starts by extracting the Data Flow
Graph (DFG) of the hotspot parts (which are the parts to which
most of the execution time belongs) of the application. Next,
all the subgraphs (CIs) that meet the predefined constraints,
such as, convexity, propagation delay, and I/O, are extracted
from DFG of hotspot parts. The last phase of the ISA extension
flow is the selection phase. In the selection phase, the best CIs
are chosen from the candidate set. The CIs are selected based
on the merit value which in most cases is the achieved speedup
when the CIs are used. Figure 1 depicts the design flow.

Figure 1. ISA extension design flow.

In conventional (deterministic) design flows, the nominal
gate parameters are used during the design of digital systems.
In sub-100nm technologies, however, complexities in the
manufacturing of the transistors with very small sizes have
caused significant variations in transistor parameters (such as
threshold voltage and effective channel length), which in turn
has led to uncertainties in the delay and power consumption of
the circuits/gates [3]. This uncertainties cause the parameters in
the fabricated chip to be different (less or more) from those
specified in design time. In the deterministic ISA extension
approach, the worst-case or nominal delay of the primitives
(e.g., AND, ADD, SHIFT) are used to extract the latency of the
identified CIs during the design time. Due to the die-to-die or
within-die variations, the CI latency would be different from
the one considered in the design time. If we design based on
the worst-case delay, the process variation may not have

impact on the critical paths of the design. Using this approach,
we however lose the speedup of the extended ISA [4]. On the
other hand, when the extended ISA is generated based on the
nominal delay, the performance yield of the extended ISA
would be much less than one. This originates from the fact that
the CI propagation delay becomes greater than the clock
period, and hence, the CI could not complete its execution in
one clock cycle. Hence, due to delay uncertainty, if the
performance yield of the extended ISA is smaller than one,
some of the manufactured extended ISA chips will not work
properly.

In this paper, we propose an architecture which gives two
cycles to the CIs which cannot complete their execution in one
cycle due to the delay variation. In this technique, after
fetching such a CI, the pipeline will be stalled by forcing the
processor controller to allow some CIs to execute in two clock
cycles. This is performed using the extra hardware added for
the extended ISA. Due to these extra cycles, the speedup
achieved through using the extended ISA is lowered. To
minimize the impact of the extra cycles on the overall speedup,
the selection of the CIs should be performed by considering
this reduction as a selection parameter. This is performed by
using a merit function which includes this parameter. The rest
of the paper is organized as follows. Section II briefly reviews
the related works while the proposed architecture and the
design flow idea are described in Section III. The experimental
setup and the results are discussed in Section IV. Finally,
Section V concludes the paper.

II. RELATED WORK

In this section, we review some of the works related to the
techniques which have been proposed to lessen the impacts of
the process variation on the processors as well as some prior
works on ISA extension. In [5], two compile time techniques
were proposed to handle non-uniform latency of different
integer functional units (IFUs) in VLIW processors. In the
proposed approach, the highly affected IFUs are turned off
whenever the processor does not require them for running an
application and turned on when required. An architectural
technique (Trifecta) to mitigate the timing variations in critical
pipeline stages is proposed in [6]. In the proposed technique,
the inputs that make the critical path delay exceed the one-
cycle delay are detected (circuit level speculation) and let the
path to complete its operation in two-cycles.

In [7], a technique to tackle the performance reduction in
the presence of process variation for out-of-order processors is
presented. In this technique, the instructions, based on their
dependency on each other, categorized in two groups. The
instruction which no instruction depends on its result, are
executed on a long-latency unit. On the other hand, if another
instruction depends on its result, this instruction should be
executed in a short-latency unit. In [8], two fine-grained post-
fabrication techniques are proposed to mitigate the timing
fluctuation. The voltage interpolation and variable pipeline
latency are the two methods proposed in this paper. In [9],
first, the process variation impacts on the propagation delay of
the pipeline stages are investigated. Then, an architectural
technique to decrease the impacts of the timing fluctuation on
the performance of pipelined processors based on the cycle

time stealing is proposed. In addition to the time borrowing
techniques discussed in [7] and [8], a method which controls
the clock speed in multi-issue processors is suggested in [10].
The method categorized the runtime of the program in two
different phases, Low-ILP (Instruction Level Parallelism)
phases, and High-ILP phases. In each phase, the impact of the
process variation is lowered by changing the clock speed.

In the field of ISA extension, many techniques have been
proposed. These include the techniques for increasing the
quality of the selected CIs as well as decreasing the runtime of
the algorithms for the CI identification (see, e.g., [1]). The
proposed methods were all based on the deterministic
approach. In [4], a statistical design flow for the ISA extension
was proposed. The proposed design flow used the statistical
approach in the both identification and selection phases where
the performance yield was defined as a new constraint in the
ISA extension flow.

The prior work focused on the processors multi-cycle
pipeline stages and also out-of-order processors. In embedded
applications, for the extensible processors, the in-order
architecture is the more common. In this paper, we assume
that the baseline processor is an in-order processor. The
proposed architecture and the design method may be used for
out-of-order processors as well. In the next section, we
describe our proposed architecture for reducing the process
variation impact. Also, the merit function which is used in the
selection phase is discussed.

III. PROPOSED ARCHITECTURE

In this section, we describe the proposed technique which is
based on the fact that the worst-case delays of the CIs are
smaller than two clock periods. Thus, by adding one extra
cycle to CIs, we are able to complete the execution without
worrying about the process variations. Next we describe the
technique in more details.

In the presence of the process variations, the path delays are
defined by PDFs (probability density functions). Due to the
statistical nature of the path delays, the timing-critical circuit
outputs in some manufactured chips will meet the predefined
maximum propagation delay threshold while the others will
violate the delay. Let us define the timing-critical outputs as the
outputs that may violate the maximum delay threshold. At the
design time, using the process variation modeling and also the
statistical static timing analysis (SSTA), the critical outputs of
each CI can be identified. Hence, to check whether or not these
critical outputs indeed violate the clock period, they must be
tested after the chip is manufactured. This test is performed
during the chip test phase where the CI propagation delay is
evaluated to determine the CIs whose worst-case path delays
are greater than one clock period.

More precisely, if the process variation modeling and
SSTA are used, the CIs may be selected based on their worst-
case delay (µ+3σ). In this situation where no selected CI
violates the maximum clock period, and hence, the proposed
architecture is not needed to be used in the extensible
processor. This approach, however, may not lead to a
considerable speed enhancement due to very limited number of
CIs which may be selected. In the approach suggested in this
work, the critical paths are specified in the design time and

only these outputs are tested in the test phase. Another use of
this modeling is in the merit function that is used to minimize
the speedup reduction due to the extra clock cycle added to the
CIs whose worst-case path delay plus some margin for flip-flop
clock to output delay and setup time can be larger than the
specified clock period. Each CI may have several output bits
(i.e., 32-bit). Among them, only those bits that are on the
critical paths should be considered in the test phase. So, the set
of critical outputs of a CI is defined as

 {∀ ∈ , ∃ > 0	 ⇒ + > } (1)

where µi and σi are mean and sigma values of the ith output,
MPD denotes Maximum Propagation Delay, and ki is a
positive real number.

Now, we explain our proposed architecture that adds the
additional clock cycles for the CIs that require them. In
addition, we describe the merit function that is used to lower
the speedup degradation due to addition of the extra clock
cycle. Figure 2 shows the proposed architecture when it is used
with a five-stage pipelined processor. The proposed
architecture consists of two main parts, which are the controller
and the checker. The checker is used to detect the propagation
delay violation of those CI outputs that have been reported as
the timing-critical outputs during the design time. These
outputs are tested by injecting proper test vectors during the
test time. If an output violates the maximum propagation delay,
the CI corresponding to this output is added to a look-up table
(LUT) in the controller part.

Figure 2. A five stage pipelined extensible processor enhaced with
proposed architecture.

During the test time, the test vectors are injected into the
CFU. The test vectors, which are extracted using the test delay
method [11], are applied through the processor instruction
issue unit. To test the CI outputs, the specific test vector should
be written to the register file. We need m instructions to load
the test vector where m is equal to the number of input ports of
the CI that is under the test. After loading the test vector, by
fetching a CI, the corresponding test vector is applied to the CI.
Finally, the output of the CI must be checked. To check the CI
output, a new instruction that compares the output of the
execution stage with a known (expected) value of the specified
register is defined. If the CI output is not equal to this value,
the op-code of the CI is added to the LUT inside the controller.
If the CI under the test contains more than one output port,
each output must be checked separately. If any of these outputs

fails to match the expected value, the CI’s op-code will be
added to the LUT.

During the test time, based on the op-codes of the CIs
which need two cycles to complete their execution phase, the
contents of the LUT are updated. Therefore, in the application
runtime, when each instruction is fetched, the controller unit
checks the instruction op-code in the LUT. For any op-code
present in the LUT, the controller sends a signal to the
processor controller to stall the pipeline for one clock cycle,
thereby allowing the CI instruction to complete its execution
phase without any timing violations. During the extra cycle, we
must ensure that the inputs of the CFU are preserved.
Therefore, the pipeline controller must also freeze values of the
input registers of the CFU during the extra cycle.

The proposed architecture alleviates the problem of
manufacturing-induced process variations (e.g., Vth or L
variability effects). It, however, adds one extra cycle degrading
the overall speedup of the extensible processor. To lower this
speed deterioration, we suggest a new merit function for the
selection phase. In the conventional approaches, the merit
function is defined based on the speedup of the CIs. The
speedup of a CI is defined as

 . = # × # . − .
− . ℎ	

(2)

where CIi.S is the speedup of the ith CI (CIi) which is equal to
the number of clock cycles saved at the runtime of the
application when the CIi is used. Here #Iteration denotes the
execution frequency of the basic block to which CIi belongs,
#CIi.SW denotes the number of clocks that the CI needs to run
by the base processor, and, IOi.Penalty is the number of extra
accesses to the register file for reading data from or writing
data in (when the number of the CI I/O ports is more than the
number of the register file read/write ports). The second term in
the above equation is the number of clocks needed for
executing CIi on the CFU (we assume CIs can be multi-cycle
as well as single cycle instructions.) In this fraction,
CIi.CriticalPathDelay denotes the propagation delay of the CI
critical path and Clock Period is the desired clock period for
the extended processor. For the sake of simplicity (but without
loss of generality), we assume CIs are selected when their
nominal delay is less than the Clock Period, and hence, the . 	 term is equal to one. Also, we

assume, the CIs I/O ports are equal to the R/W ports of the
register file, and thus, . is equal to zero. Hence, the
speedup of a CI may be calculated as

 . = # × # . − # . (3)

where #CIi.Clock is the number of clocks that the CI needs to
complete its execution. The value of #CIi.Clock is one unless,
due to the process variation, CIi.CriticalPathDelay is greater
than the MPD, in which case it will be set to two. When

#CI.SW of a CI is two and the CI executes in two cycles, the
CI.S becomes zero indicating that there will not be any runtime
speedup by using this CI. As the number of these CIs
increases, the overall speedup of the extensible processor
reduces. When #CI.SW is larger than two, there is still some
speedup even if the CI requires one extra cycle. Let us define
the parameter CI.SW_Impact as
 . _ 	 = 	 # . − 2# . − 1 (4)

The value of this parameter changes between 0 (when #CI.SW
is two) and 1 (when #CI.SW is infinity). Larger values mean
smaller undesirable impacts of the extra cycle. Hence, due to
the delay variation, it is better to use the CIs with the
SW_Impact values close to one. To increase the chance of
selecting these CIs, we propose a merit function defined as
follows

If (CIi.PY = 1)
CIi.Merit = CIi.S

else
If (CIi.SW_Impact = 0)

CIi.Merit = 0;
else

CIi.Merit = CIi.S × (1+ α × CIi.SW_Impact)

(5)

where CIi.PY is the performance yield of the ith CI and α is the
weight of CIi.SW_Impact in the merit value. The merit value is
equal to the conventional merit value when the performance
yield of the CI is equal to 1. When the performance yield is less
than 1, if the CIi.SW_Impact	 is equal to zero, the merit value
will become zero; else, the conventional merit value will be
scaled by (1 + α × CIi.SW_Impact).	Note that, in this approach,
we need to model the process variation in the design cycle to
extract the performance yield of the CIs.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

The extracting ISA design flow was implemented by the C#
language. To assess the efficacy of the design flow, the custom
instructions of a bunch of benchmarks were extracted. The
selected benchmarks included IP-Sec and MD5 from
PacketBench [12], lms and adpcm from SNU-RT benchmark
suits [13], and G271 Decode and bitcounter from MiBench
 [14]. Using GCC (GNU Complier Collection), the DFG and
the hotspot of these applications were generated and fed to the
ISA extension design flow. The implemented design flow was
adapted from [4]. The candidate CIs were identified based on
the exact method proposed in [1] with the number of I/O ports
and maximum propagation delay as the constraints considered
in this phase. In the selection phase, we used the greedy
approach to select the best CIs.

We used the canonical form to model the delay
variation [15]. To model the canonical delay form of the gates,
we used the HSPICE model of gates in a 45nm technology [16].

By using the SSTA method proposed in [15], the canonical
delay form of the primitives were calculated. All the primitive
delay models were gathered in a library that was used in the
design flow to perform SSTA on CIs. Also, for the sake of
simplicity without loss of generality, we assumed that there
were only the random variations of Leff and Vth. We assumed
the variation for both Vth and Leff were equal to
σVth,rdn/Vth,0=σLeff,rnd/Leff,0= 10%, where the Vth,0 and Leff,0 are the
mean values of the threshold voltage, and the effective channel
length of the transistors. The variations were applied to the
HSPICE model of the primitive gate in the 45nm technology.

Finally, to evaluate the proposed architecture, we have
invoked C# to model the architecture. Using the above
statistical parameters, the speedups of one thousand samples of
the 5-stage MIPS processor shown in Figure 2 were obtained.
For each sample, based on the PDF (normal distribution) of the
CIs, random delay values were assigned to the outputs of each
CI. For the delays which were greater than the MPD, two clock
cycles were used for the CI execution.

In the rest of this section, two different speedups are
reported. One is the design time speedup which represents the
speedup of the extended ISA when all CIs execute in one clock
cycle. This means that the CI delays in none of the
manufactured chips were larger than the MPD. The second is
the speedup of the extensible processor which indicates the
speedup of the CI when the impacts of the process variation on
their delays are considered. This means that some CI delays in
the manufactured chips were larger than the MPD, and hence,
the corresponding CIs execute in two clock cycles.

B. Results

To study the speedup of the extensible processor using the
proposed architecture, we extracted the extended ISA under
three different cases. In the first case (“1”), the performance
yields of the extracted CIs were assumed to be 100%. In this
case, the CIs were selected based on the worst-case delay. In
the second case (“0.8”), the performance yield constraint was
considered and the selection algorithm was forced to select CIs
while the performance yield of the CFU was greater than 80%.
This meant

 ∀ , . ≥ 0.8 (6)

Note that in this case the probability of a CI that violates

the MPD is equal to 0.2, while this probability in first case is
zero. In the last case (“NC”) where the performance yield was
not considered in the selection process, the CIs were selected
based on their nominal delay. In this case, since the possibility
of violating the delay constraint by the process variation is not
considered in the CI selection process, the chance of violating
the MPD by the selected CIs is larger than the other two cases
leading to a smaller performance yield for this case.

Figure 3 depicts the CFU speedup reported in the design
time. The results show in all cases the highest speedup belongs
to the “NC” case while the worst-case design (case “1”) has the
lowest speedup. Also, in all the cases, except for IP_Sec and
lms, the speedup is higher for lower performance yields where
there are more options for selecting CIs. This is due to the fact

that the delay variation is either not considered (the “NC” case)
or partially tolerated (the “0.8” case). For IP_Sec and lms, since
decreasing the performance yield does not change considerably
the extended ISA, the CFU speedup is remained approximately
constant.

0

0.5

1

1.5

2

2.5

adpcm bitcounter G721decode IP-Sec lms MD5

Sp
ee

du
p

1 0.8 NC

Figure 3. The speedup of the extended ISA reported in the design time.

The speedups of the extensible processors under the
predefined three cases are presented in Figure 4. In Figure 4(a),
in each case, the minimum and maximum of the extensible
processor speedups are reported. When the CIs were selected
based on their worst-case delay, the delay fluctuation had no
effect on the CFU, and hence, the speedup of the extensible
processor was constant. In the other cases, the speedup was
different from one chip (sample) to other one.

The results show that the highest maximum speedup is
achieved when the CIs are selected based on the nominal delay
(the “NC” case). Additionally, for all the benchmarks, except
for IP-Sec, the highest minimum speedup belongs to the “NC”
case. These results of Figure 4(a) suggest that, in most cases,
the higher design time speedups of lower performance yield
cases (the “NC” and “0.8” cases) are not completely cancelled
out by the MPD violations of some selected CIs in these cases.
To show this more clearly, Figure 4(b) shows the difference
between the design time speedup and the extensible processor
average and minimum speedups. Note that for the “1” case, the
design time and extensible processor speedups are the same. In
all the cases, except for the IP-sec benchmark, the higher
reduction (indicated by the dashed line) belongs to the “NC”
case. However, the average speedup of the extensible processor
for this case is still higher due to the larger design time
speedup. For the case of the IP-Sec benchmark, the design time
speedups of the extended ISA were almost the same in all the
two cases of “0.8” and “NC” (see Figure 3). When the design
was performed for the “NC” case, the number of paths
violating the MPD increased (from 105 in the “0.8” case to 111
in the “NC” case). The increase reduced the average speedup.
A similar argument is applied when comparing the cases of
“0.8” and “1”. As the results of Figure 3 and Figure 4(a) show,
in the case of the lms benchmark, the speedups for the cases of
“0.8” and “NC” were similar. The reason was that the same CIs
were chosen in the selection phase. Finally, note that figures
predict a higher speedup of 18% (11.8%) in the case of “NC”
(“0.8”) compared to the design based on the worst-case delay
(“1”).

As mentioned before, to improve the efficacy of the
proposed architecture, we have offered a new merit function.
Figure 5 shows the minimum and the average speedup under
two different merit functions. In the first case, the CIs are
extracted based on the conventional merit function while in the
second case they are extracted based on the proposed merit

function (Equation (5)). Additionally, the CIs were extracted
without considering the performance yield (“NC”) for this
study. The results show that, in all the cases, the speedups are
increased when the proposed merit function is utilized. The
comparison between the speedups of the conventional and
proposed merit function shows that the maximum improvement
is for the MD5 benchmark which is about 4.3%, while the
minimum is for the G721decode which is about 0.4%. On
average, the speedup increase is about 2.18%. Finally, the
comparison of this results with the worst-case design (Figure 4)
indicates that the highest gain belongs to the MD5 benchmark
(~47.84% improvement), and the lowest one belongs to the IP-
Sec (~5.55% reduction). Also, the average improvement was
about 20.66%.

0

0.5

1

1.5

2

2.5

1 0.8 NC 1 0.8 NC 1 0.8 NC 1 0.8 NC 1 0.8 NC 1 0.8 NC

Min Max

(a)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

ad
pc

m
(1

)

ad
pc

m
(0

.8
)

ad
pc

m
(N

C)

bi
tc

ou
nt

er
(1

)

bi
tc

ou
nt

er
(0

.8
)

bi
tc

ou
nt

er
(N

C)

G7
21

de
co

de
(1

)

G7
21

de
co

de
(0

.8
)

G7
21

de
co

de
(N

C)

IP
-S

ec
(1

)

IP
-S

ec
(0

.8
)

IP
-S

ec
(N

C)

lm
s(

1)

lm
s(

0.
8)

lm
s(

N
C)

M
D5

(1
)

M
D5

(0
.8

)

M
D5

(N
C)

Sp
ee

du
p

Design Time Extensible Processor(Min) Extensible Processor(AVG)

(b)

Figure 4. a) Minimum and maximum average speedups of the extended
ISA when enhanced with the proposed architecture. b) Design time
speedup vs. extensible processor speedup

0

0.5

1

1.5

2

2.5

adpcm bitcounter G721decode IP-Sec lms MD5

Sp
ee

du
p

Conventional (Min) Proposed (Min) Conventional (AVG) Proposed (AVG)

Figure 5. The ability of the proposed merit function in increasing the
speedup of the extended ISA enhanced with the proposed architecture.

One solution to mitigate the process variation effect is to
increase the clock period [10]. Similarly, one can take the same
measure in the case of the extensible processors by increasing
the clock period to the maximum worst-case delay of the
selected CIs. We have compared the speedups of these two
techniques in Figure 6, where ALM and CPM stands for the
proposed Architecture Level Method and increasing Clock
Period Method, respectively. Note that, in the ALM (CPM), we
used proposed (conventional) merit function in selection phase.
The results show that, in all the cases, except for bitcounter and
IP-Sec, the proposed method outperforms the CPM. For the IP-
Sec case, the CPM method is better than the proposed method
in this paper. However, in bitcounter, the results show that in
more than 95% of the extensible processors, the proposed
method provides more speedup in comparison to the CPM.

0

0.5

1

1.5

2

2.5

adpcm bitcounter G721decode IP-Sec lms MD5

Sp
ee

du
p

ALM(min) CPM ALM(AVG)

Figure 6. Speedup comparison between the ALM and CPM methods.

V. CONCULUSION

In this paper, we proposed an architecture level method to
reduce the process variation impact on extensible processors.
The proposed architecture concentrated on the CIs whose
latencies were greater than the clock period of the extensible
processor. It forced the pipeline processor to let these CIs to
use one more clock cycle for their execution. In this method, by
running an initialization procedure, these CIs for each chip are
determined only one time before its first use. In this procedure,
the op-code of the CIs are stored in a look-up table. During the
runtime, the system checks the op-codes and lets some of them
to be executed with one extra cycle. The results show that the
speedup of this method is 18% greater than that of the design
based on the worst-case delay. Additionally, to improve the
ability of the proposed architecture, we modified the
conventional merit function which was used in the design flow
of the ISA extension. In the modified merit function, the CIs
which adding one more clock cycle to their executions
decrease the performance yield less were selected. The results
showed that using both proposed architecture and merit
function at the same time improved the speedup about 20.7%
in comparison to the worst-case approach. Finally, we
compared the efficacy of the proposed technique with that of
the technique where the clock period is increased. The results
showed that the proposed technique reached a better speedup
for most of the benchmarks with an average improvement of
about 9.3%.

REFERENCE
[1] C. Galluzi, and K. Bertels, “The Instruction-set Extension Proble: A

Survey,” in ACM Transaction on Reconfigurable Technology and
Systems, vol. 4, no. 2, pp. 18-1:18-28, May, 2011.

[2] L. Pozzi, K. Atasu, and P. Ienne, “Exact and Approximate Algorithms
for the Extension of Embedded Processor Instruction Sets,” in IEEE
Transaction on CAD, vol. 25, no. 7, pp. 1209-1229, July 2006.

[3] Y. Xie and Y. Chen, “Statistical High-Level Synthesis under Process
Variability,” in IEEE Transaction Design and Test Computers, vol. 26,
pp.78-87, 2009.

[4] M. Kamal, A. Afazli-Kusha, and M. Pedram, ”Timing Variation-Aware
Custom Instruction Extension Technique,” in Proceedings of the Design,
Automation and Test in Europe (Date), 2011, pp. 1517-1520.

[5] N. V. Mujadiya, “Instruction scheduling for VLIW processors under
variation scenario,” in Proceedings of the 9th international conference
on Systems, architectures, modeling and simulation (SAMOS), 2009, pp.
33-40.

[6] P. Ndai, N. Rafique, M. Thottethodi, and S. Ghosh, ”Trifecta: a
nonspeculative scheme to exploit common, data-dependent subcritical
paths,” in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 18, pp. 53-65, 2009.

[7] T. Sato and S. Watanabe, “Uncriticality-directed scheduling for tackling
variation and power challenges,” in Proceeding of 10th international
Symposium on Quality Electronic Design (ISQED), 2009, pp. 820-825.

[8] X. Liang, G.Y. Wei, and D. Brooks, “Revival: A variation-tolerant
architecture using voltage interpolation and variable latency,” in
Proceeding of 35th International Symposium on Computer Architecture
(ISCA-35), 2008, pp. 191-202.

[9] A. Tiwari, S.R. Sarangi, and J. Torrellas, “ReCycle: pipeline adaptation
to tolerate process variation,” in Proceedings of the 34th annual
International Symposium on Computer Architecture (ISCA), 2007, pp.
323-334.

[10] E. Chun, Z. chishti, and T.N. Vijaykumar, “Shapeshifter: Dynamically
changing pipeline width and speed to address process variations,” in
Proceedings of 41st IEEE/ACM International Symposium on
Microarchitecture, 2008, pp. 411-422.

[11] M. L. Bushnell and V. D. Agrawal, Essentials of electronic testing for
digital, memory, and mixed-signal VLSI circuits: Springer Netherlands,
2000.

[12] R. Ramaswamy and T. Wolf, “PacketBench: A tool for workload
characterization of network processing,” in Proc. of IEEE International
Workshop on Workload Characterization, October 2003, pp. 42-50.

[13] SNU-RT Real Time Benchmarks.[Online]. Available:
http://archi.snu.ac. kr/realtime/benchmark/.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proceedings of Inernational. workshop
on workload characterization, 2001, pp. 3-14.

[15] R. Chen and H. Zhou, “Fast estimation of timing yield bounds for
process variations,” in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, pp. 241-248, 2008.

[16] FreePDK, AFree OpenAccess 45nm PDK and Cell Library for
university, http:// www.eda.ncsu.edu.

