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Abstract—Constructing biological circuits in a bottom-up mod-
ular fashion using design methodologies similar to those used in
electronics has gained tremendous attention in the past decade.
The end goal, however, is engineering biological systems and
not only individual components in the context of pursuing
applications useful in improving human health or enhancing the
environment. This article reviews the basics of biological system
design rooted in Metabolic Engineering and Systems Biology and
outlines current system-level modeling, analysis, optimization,
and synthesis with emphasis on some current bottlenecks in
establishing more rigorous design tools and methodologies for
engineering biological systems.

I. INTRODUCTION

Continued interest in engineering biological cellular systems
is driven by the desire to create products or engineer novel
behaviors with current applications for producing pharmaceu-
ticals, repairing defective genes, destroying cancer cells, gen-
erating biofuels, and assisting climate change through carbon
capture. The excitement, however, is about what is yet to be
achieved [1], [2]. Innovations including high-throughput data
technologies such as DNA sequencing [3], the construction of
synthetic gene regulatory circuits using principled engineering
methods [4], [5] and directed evolution approaches [6] will
drive biological engineering in a manner that resembles how,
during the past five decades, IC manufacturing technology
enabled current electronic system design. Systematic and pre-
dictable engineering approaches, and in particular Computer-
Aided Design tools and methodologies, are poised to play
critical roles.

The view that biological systems are engineerable has
emerged from multiple disciplines [7]. Metabolic Engineering
aims to introduce, modify and optimize biochemical reactions
within a living cell to produce novel compounds of industrial
and medical interest. Systems Biology seeks to understand
in quantitative predictable ways the regulation of complex
cellular pathways and intercellular communication with the
purpose of understanding living systems. Emphasizing the
need for standards, abstraction hierarchy, and composability
in engineering biology, Synthetic Biology calls for the assem-
bly of de novo genetic circuitry (gene regulatory networks)
from a set of genetic parts. Conceptually, gene regulatory
networks provide control over the data flow (flux) in a bi-
ological system. Additional efforts come from the disciplines

of molecular biology (dealing with individual macromolecules
of living organisms, genetic engineering focusing on gene
manipulation, cloning, and recombinant DNA technology) and
computational biology (applying computer science, statistics
and applied mathematics to biological problems in the form of
data analysis bioinformatics, molecular modeling, and protein
structure prediction and simulation). Advances have occurred
within each discipline and together shape our understanding of
biology and therefore our ability to engineer it. The analogy is
in the synergy among various design efforts targeting devices,
circuits, architecture, hardware systems and software.

Biological systems and electronics are different. Biologi-
cal cells grow changing size and functional characteristics,
evolve through mutations, die, reproduce, exhibit robustness
to environmental variables such as nutrients, temperature,
and PH balance, and adapt due to redundant components.
While the notion and merits of designing a minimal syn-
thetic biological system have been debated, biological systems
naturally exist as microorganisms and within plants, animals
and humans. Design efforts have typically focused on “re-
engineering” biological systems by integrating novel genetic
material, either naturally existing or synthetic, within the cell
and then tweaking the system to produce a desired behavior
or product. Biological systems themselves are thus design
platforms (chassis) and re-engineering biological systems is
a form of platform-based design. One spectacular success is
designing and implementing a nonnative synthesis pathway in
yeast to produce artemisinic acid, a direct precursor of the anti-
malarial compound artemisinin [8]. In addition to identifying
and inserting an efficient biosynthetic pathway, significant
production of the target compounds required further modifi-
cations to yeast’s metabolic network to remove bottlenecks in
precursor supply and alleviate the accumulation of harmful
intermediates. More recently, a similar approach was adopted
by Pfeifer and co-workers to synthesize the complete antibiotic
erythromycin A (rather than one of its precursors) inE. coli
[3]. “In-human” medicinal applications of synthetic biology to
analyze or control cancer cells will require integrating within
mammalian cells [9]. Considerable effort is required to create
predictive models for each unique biological platform (cellular
organism) and to validate our understanding of both biological
structure and function. Currently, it is more expedient to use
in vivo experimental methods guided by coarse computational978-3-9810801-8-6/DATE12/ c©2012 EDAA



guidance instead of relying on in silico design approaches.
This article provides an engineering perspective on cur-

rent computational methods to model, analyze, optimize, and
synthesize the (re)-engineering of biological systems. Vali-
dation/verification of engineered designs is not specifically
addressed because it is currently conducted experimentally.
Often, the experimental work drives model construction and
refinement and hypothesis generation. The reviewed tech-
niques are complementary to bio/genetic design automation
(G/BDA) tools that target gene regulatory networks [10], [11],
[12].

II. BACKGROUND

A cellular process is represented using a biochemical net-
work consisting of a set of reactions and compounds (Fig-
ure 1(a)). The reactions describe the chemicalprocesses in
livingorganisms. A reaction’s stoichiometry, invariant to the
cell’s operating conditions, specifies the relative number of
atoms consumed or produced due to a chemical reaction. A
biochemical network with m compounds and n reactions is
represented using a m × n stoichiometric matrix N (Figure
1(b)). Each column describes a reaction. A column entry
represents the stoichiometric coefficient of a compound partic-
ipating in the relevant reaction. A column entry is zero if the
compound does not participate in the reaction, positive if the
compound is produced and negative if consumed. Reactions in
a network can be classified as internal or exchange reactions
linking a biochemical network to its external environment, as
defined by the user, providing either uptake or production of
external metabolites. Each row summarizes how a compound
participates in various reactions. When utilizing the N matrix
during analysis, typically only rows corresponding to internal
compounds are included. The matrix can be viewed as a graph
(Figure 1(c)). A pathway refers to a sequence of reactions,
just like in graph theory, however, it is often implied that
the pathway is atomically balanced. Reactions maybe be
reversible, and are sometimes split into forward and reverse
reactions during analysis. A network, once in steady state
(consuming and producing internal compounds at a steady
rate), exhibits a large number of possible functional states
dependent on operating conditions. Flux, the reaction rate or
the turnover rate of the molecules associated with a reaction or
pathway at steady state, characterizes cellular functional states.
Often, however, there are more compounds than reactions, and
only flux ranges can be mathematically determined.

Kinetic models capture dynamic behaviors such as how
fast a reaction occurs as a function of the relevant concentra-
tion. Unlike purely chemical reactions, a biochemical reaction
experiences saturation when catalyzed by an enzyme. An
example reaction rate as a function of substrate concentration
is shown in Figure 1(d), along with the simplest equation, in
Michaelis-Menten form, used to describe enzyme kinetics of
a single-substrate single-enzyme catalyzed reaction. Vmax is
the maximum rate (velocity) for a particular reaction. Vmax

changes if more enzyme is added. The Michaelis-Menten
constant, K ′

m, is determined experimentally and represents the
substrate concentration at which the reaction rate is half of
Vmax. A biochemical system can thus be described by coupled
ordinary differential equations (ODEs). Enzyme kinetics is
however complex and several proposed mathematical models
have been proposed as approximations including S-systems
and convenience kinetics [13]. Parameters are however often
unknown or characterized for specific conditions, and expres-
sion forms are approximations.

III. COMPUTER-AIDED TOOLS

A. Modeling

Functional specification using specialized languages such
as Verilog or SystemC have become common practice when
designing electronics. Within Metabolic Engineering, however,
a model refers to a mathematical representation of an existing
biological system. Creating the model is referred to as a
“reconstruction”. The process is iterative, and, until recently,
manual. For example, the construction of the biochemical
reaction network for Escherichia coli spanned over 15 years
[14]. Manually constructed models often serve a particular
purpose and are therefore partial and only partially validated.

The recent availability of genome, reaction, and organism-
specific databases have allowed for the automatic reconstruc-
tion of genome-scale models represented as stoichiometric
matrices. A protocol encompassing 94 steps details the pro-
cess including obtaining a draft construction from databases,
collecting experimental data, refining the reconstruction by
adding details to ensure that the network is mass- and charge-
balanced and that missing reactions steps are properly flagged,
to test the ability of the model to grow, and to compare against
known properties [15]. The tool, Model SEED, expedites
this process by automating most of the steps but manual
curation is needed to match the quality of those that are
manually constructed [16]. The quality of the model, whether
obtained manually or automatically, is as comprehensive as
the availability of the reconstruction and experimental data.

Kinetic models, while preferable as they provide time-
varying analysis, are difficult to reconstruct. Some reaction-
catalyzing enzymes have a simple structure but many are
complex. Enzymes bind to reactants to form an enzyme-
substrate complex and lower the activation energy, which re-
sults in accelerating the reaction rate. The interaction between
reactant and enzyme varies and the exact molecular aspects
of enzyme-substrate interactions are not fully understood.
Reaction mechanisms are partially or completely unknown
and often experimental conditions under which kinetic pa-
rameters have been determined are not available through the
databases [17]. Importantly, models must be validated in an
in vivo context. Using approximate mathematical models of
the enzyme kinetics and measured data, several methods have
been proposed to estimate the kinetic parameters. The problem
is generally cast as a non-linear optimization. Given a set of
ODEs, the objective function is to minimize the sum-squared
difference between the calculated and measured dependent



Fig. 1. System analysis fundamentals. (a) The systems are modeled as a set of biochemical reactions. (b) Reaction stoichiometry is captured using a
stoichiometric matrix. Zero entries are removed from the matrix for simplicity. (c) The network of reactions can be represented using a graph. (d) Example
equation and graph for reaction rate as a function of substrate concentration. (e) Flux Balance Analysis example to maximize the flux of reaction R3. (f)
Elementary modes for the network in Figure (c).

variables based on a set of parameter choices. The inputs to
the problem are the measured initial values of the independent
variables (e.g. metabolite concentrations). As with other non-
linear optimization problems, guaranteeing a globally optimal
solution is difficult. Using gradient-based local methods that
repeatedly solve the problem with different initial conditions
fail to arrive at satisfactory solutions [10]. It is generally
agreed that global methods, while computationally expensive,
are more appropriate[18]. Despite computational advances in
parameter estimation, the size and complexity of biochemical
networks reconstructed from genome databases has greatly
increased over the years rendering the estimation of kinetic or
regulatory parameters, or fitting against in vitro experimental
data, either impractical or outright infeasible. Often, steady-
state analysis is the only means to analyze a biochemical
system.

B. Analysis

An interesting feature of biochemical networks is that they
exhibit a large number of possible functional states, resulting
in a great variety of phenotypes. At best, metabolic engineers
and system biologists today can utilize known constraints,

such as conservation of mass, energy and momentum, to limit
possible functional states. Flux Balance Analysis (FBA) is a
technique to analyze flux distributions at steady state, when
the net production and consumption rates are equal. Flux for a
reaction i, is typically denoted by vi. Equivalent to Kirchhoff’s
current law, mass conservation at steady state declares that the
rate of consumption and production of internal compounds
must be equal for each metabolite (Figure 1(e)). Specifying
mass balance constraints for all internal compounds generates
a set of linear equations. An objective function can be defined
to correspond to maximizing the flux through a reaction
leading to a desired target metabolite. For example, as shown
in Figure 1(e), specifying the uptake rate of R1 to be 10
and maximizing vR3, results in vR3 equal to 10. There are,
however, several flux distributions that maximize vR3 as the
set of linear equations describing the system is undetermined.
One possible distribution is {10, 15, 10, 5, 5}, corresponding
to the flux in reactions 1 through 5. Another is {10, 10, 10,
0, 0}. Constrained-based analysis has been used to analyze
flux variability, flux coupling, and to identify optimal gene
(reaction) knockout strategies. In recent years, FBA has been
enriched with various extensions, including energy balance



constraints [19], pathway thermodynamics [20], [21], and
multi-objective optimization [22]. See [23] for a review.

Pathways play an important part in the analysis of bio-
chemical networks. Elementary Flux Mode (EFM) analysis is
a pathway analysis technique that decomposes a biochemical
network into an independent set of stoichiometrically balanced
pathways called elementary flux modes (EFMs). When applied
to the example in Figure 1(c), the resulting three elemen-
tary modes are as illustrated in Figure 1(g). A feasible flux
distribution (e.g. {10, 15, 10, 5, 5}) can be expressed as
a linear combination of the flux in the EFMs, (e.g. using
weights 10 and 5 for elementary modes 1 and 2, respectively).
EFM analysis exhaustively enumerates all stoichiometrically
balanced pathways and cycles. Once all EFM are identified,
they can be analyzed individually or within EFM families and
used to make engineering decisions. For example, enhancing
enzyme activities along a particular pathways can increase the
target’s yield. Eliminating competing pathways through gene
knockouts (i.e. eliminate the reactions from the network) can
further enhance yield.

EFM analysis is computationally intractable [24]. Even a
modest size model can have millions of EFMs, and com-
putation time and/or memory become bottlenecks. Dividing
the network into subsystems (modularization) is one approach
[25]. However, the modularization may eliminate some EFMs
that span several subsystems in the larger network [26]. Ab-
stracting the network, e.g. by eliminating redundant pathways,
is yet another approach; however, the abstraction choices
are critical and influence the pathways that are detected
[26]. Parallel implementations [27], [28], [29] and algorith-
mic improvements are possible [30]. Recent analysis using
a parallelized algorithm on Blue Gene/P of IBM enumerated
approximately 49 million EFMs for the S. cerevisiae metabolic
network consisting of 63 reactions and 83 compounds [27].
These results highlight the practical challenge in applying
EFM analysis to comprehensive models of metabolism. Im-
provement in runtime and memory requirements are needed.

From an analysis and redesign perspective, not all ele-
mentary modes are of interest. Avoiding exhaustive enumer-
ation provides an excellent and familiar alternative, similar
to shortest and longest path delay analysis in timing analysis.
Identifying a stoichiometrically balanced pathway was concep-
tually addressed within the context of pathway synthesis [32].
The Dominant Edge algorithm identifies a pathway containing
the best thermodynamic bottleneck reaction, from a source
metabolite to a destination metabolite using Gibbs free energy
change as edge weights[31]. Results for several tests cases
indicated that thermodynamically feasible paths are either
identical, a proper subset, or overlapping with EFMs. The
Dominant-Edge algorithm can be utilized with flux values as
edge weights to identify a path that contains the flux-limiting
reaction, or to find the pathway with the least flux variability.
A method for decomposing a given flux distribution into a set
of constituent elementary modes without initially generating
a full set of elementary modes was proposed [33]. Pathway
analysis methods circumventing explicit enumeration will play

an important computational role in the future.

C. Optimization: Knock outs, Up/Down Regulation

Constrained optimization has played a fundamental role
in developing computational design frameworks to systemat-
ically re-engineer cell behavior, where the goal is to identify
reactions in the system whose fluxes should be changed,
e.g. through gene up-regulation, down-regulation, or knockout,
to achieve a flux distribution in the network that corresponds
to a desired cellular objective. OptKnock identifies gene
knockouts leading to targeted overproductions of chemicals
in E. coli using a bi-level program that can be formulated
as a mixed-integer linear program [21]. OptReg extends this
framework to also consider not only knockouts, i.e. elimina-
tions of reaction fluxes, but also up- and down-regulations
of reaction fluxes [22]. Very recently, OptForce was intro-
duced to distinguish between flux changes that are forced
via genetic modifications and flux changes that are allowed
by the natural variability of the system. The optimization
goal of OptForce is to identify minimal sets of engineering
modifications that must be imposed to overproduce a target
metabolite above a desired threshold [34]. The comparison
results provide information on the set of reactions whose fluxes
must change to overproduce the target. While FBA-based
techniques have significantly advanced strain optimization and
were able to predict successful pathway modifications that
were achieved experimentally by others, the techniques have
limitations. In particular, multiple solutions may maximize the
production of a particular target. Exploring the solution space
and arriving at practical implementation remains difficult.
Moreover, bi-level optimization is computationally inefficient
[35]. OptGene finds gene deletions utilizing genetic algorithms
to find multiple plausible solutions for the flux, and to solve
a non-linear objective function, MOMA, Minimization of
Metabolic Adjustments [36]. Optimizing for MOMA mini-
mizes the Euclidian distance between the new fluxes and the
pre-engineered ones. MOMA has been shown to support the
hypothesis that knockout metabolic fluxes undergo a minimal
redistribution with respect to the flux generation of the pre-
engineered (wild type) system [37]. Genetic Design through
Local Search (GDLS) is based on evolutionary algorithms
and simulated annealing and was shown to have significant
computational speed over Mixed Integer Linear Programming
(MILP) approaches [35].

The precise controlling pathway flux through up/down
regulation of enzyme activity is still not well understood.
Metabolic Control Analysis (MCA) provides a quantitative
framework to describe changes in substrate flux in response to
changes in system parameters such as enzyme activities [38].
A flux control coefficient represents the enzyme’s potential to
affect a metabolite flux if that enzyme concentration is mod-
ified. Enzyme elasticity coefficients represent how a change
in metabolite concentration changes the reaction rate. MCA
provided several key insights. The flux control coefficient of
a particular enzyme is a function of elasticity terms of other
enzymes. Flux values are thus not dependent on the kinetic



properties of a single enzyme, but are a system property
dependent on the kinetic properties of other enzymes. MCA is
in essence a small-signal model, a common analysis technique
to approximate the behavior of nonlinear devices at a particular
DC bias point. While MCA provides a conceptual and quanti-
tative framework, control coefficients computed through MCA
are valid for specific steady states, and are not applicable with
large changes in enzyme amounts, thus limiting the practical
use of MCA in cell re-engineering. The need to characterize
gene expression/flux relationships will become more pressing
due to advances in synthetic biology and the need to tightly
integrate gene circuitry within hosts [45].

D. De novo Pathway Synthesis

Pathway synthesis is the process of identifying a series of
reactions to form a pathway to produce a desirable metabolite,
such as a drug precursor, in a host organism. In some cases, the
choice for a synthesis pathway is obvious. For example, there
is only one known pathway for biosynthesis of 1,3-propanediol
(a building block for synthetic polymers such as laminates and
adhesives) from glycerol. This pathway consists of two reac-
tions, each catalyzed by a singular enzyme. More generally,
the number of alternative pathways for a given target may
be too large for computational and experimental exploration,
especially if the goal is to exploit the diversity of metabolic
enzymes across many different organisms. A database such
as the Kyoto Encyclopedia of Genes and Genomes (KEGG),
which currently lists over 8000 reactions, must be searched to
produce the final product molecule from one or more reactant
metabolites in the host organism. The search process needs
to take into account not only the main reactants, but also
cofactors.

Due to the combinatorial nature of the problem, an ex-
haustive search for candidate pathways is impractical. Over
the past several years, a number of heuristic approaches have
been developed for particular applications (e.g. predicting
novel pathways for degradation of xenobiotics or biosynthesis
of native and nonnative compounds). PathMiner constructs
a synthesis pathway with the objective of minimizing the
transformation cost in the biochemical state space where
compounds define the states and transformations between
compounds define state-transitions [39]. ReTrace is a graph-
theoretical method that constructs plausible synthesis routes
by searching for shortest paths between reactant-product pairs
based on atom mapping [40]. PathPred is another method to
construct plausible reaction pathways based on the chemical
structure transformation patterns of small molecules [41].
PathPred specifically exploits the KEGG RPAIR database,
which contains biochemical structure transformation patterns
for substrate-product pairs (reactant pairs) of known enzy-
matic reactions. OptStrain uses mixed integer programming
to identify stoichiometrically balanced pathways by adding or
deleting reactions to selected host metabolic reaction networks
[42]. A key advantage of this approach is to couple the selec-
tion of reactions with the ranking of the synthesis pathways
in terms of theoretical yields. Success of the optimization

however critically depends on thoroughly pre-processing the
database, which remains a non-trivial task. Another method
for constructing synthesis pathways utilizes a graph-based
probabilistic-search approach and ranking the pathways using
FBA [43]. This approach is promising as when compared to
an exhaustive search enumerating all possible reaction routes
consisting of 10 reaction steps, the search returned nearly
identical distributions of maximal yields, while requiring far
less computing time.

Once candidate pathways are identified, deciding the best
pathway within the selected host system should be based
on a performance metric such as maximal predicted yield.
This evaluation must assess whether the introduction of the
synthesis pathway will negatively impact the host organism’s
capacity for balanced growth. There currently is a lack of data
and consensus on the best synthesis pathway scoring methods.
The number of pathway steps does not necessarily correlate
with yield or the implementation practicality. Thermodynamic
feasibility, which tries to compute the change in the Gibbs free
energy of the reaction along the pathways, is another possible
ranking metric. Metabolic burden is another such metric but
poorly defined. Tighter integration between synthesis and
evaluation, or host pre-characterizing, could computationally
improve finding the optimal pathway.

IV. CONCLUSION

This review of computational tools to engineer biological
systems is cast along traditional engineering tasks including
modeling, analysis, synthesis and optimization. While some
tasks bear conceptual similarities to those in Electronic Design
Automation, modeling is fundamentally different. It aims to
create mathematical models that explain existing complex
design platforms. In contrast, models in electronics accurately
capture hardware and software behaviors. Prototyping is oc-
casionally needed to speed-up the design cycle. In biology,
incomplete models and techniques that don’t account for
noise and variability are insufficient in enabling complete
in silico design cycles. Screening and experimental analysis
will continue to play a critical role in designing biology
until modeling capabilities outpace experimental ones. Until
then, a one-to-one correspondence in design methodologies for
electronics and for biological systems is unlikely. Addressing
grand challenges in health, food, energy and the environment
however will require engineering sophisticated biological sys-
tems. Computational tools that analyze, optimize and explore
large design spaces will play a complimentary role to experi-
mental methods. Creating better predictive computational tools
and developing future integrative tools that address the impact
of gene regulatory networks on hosts and that co-optimize
control and data flow will become a necessity.
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