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Abstract—At the Electronic System Level (ESL), design vali-
dation often relies on discrete event (DE) simulation. Recently,
parallel simulators have been proposed which increase simulation
speed by using multiple cores available on today’s PCs. However,
the total order of time in DE simulation is a bottleneck that
severely limits the benefits of parallel simulation. This paper
presents a new out-of-order simulator for multi-core parallel DE
simulation of hardware/software designs at any abstraction level.
By localizing the simulation time and carefully handling events
at different times, a system model can be simulated following a
partial order of time. Subject to automatic static data analysis at
compile time and table-based decisions at run time, threads can
be issued early which reduces the idle time of available cores. Our
experiments show high performance gains in simulation speed
with only a small increase of compile time.

I. INTRODUCTION

ESL design models specified in System-level Description

Languages (SLDLs), such as SystemC [8] and SpecC [7], are

usually validated using simulation. The simulator is a regular

discrete event (DE) simulator. Within a single process, mul-

tiple concurrent threads emulate the parallelism in the design

model. Typically, the multi-threading model is cooperative (i.e.

non-preemptive), which simplifies the communication through

events and variables in shared memory. Recent works [10],

[11], [2] aim to utilize the parallel computation resources

available in multi-core CPUs that are common in today’s host

PCs. Here, an extended simulation kernel uses OS kernel

threads and additional synchronization for running multiple

threads in parallel on the available cores. However, the number

of threads that can run in parallel at each scheduling step

is often very limited. The inner loops for delta-cycle and

simulation time update in DE simulation severely limit the

usable parallelism.

In this work, we relax the global in-order event and timing

update based on compile-time automatic static analysis of the

threads and their potential conflicts. Using the analysis results,

our extended simulation kernel can then at run-time quickly

decide whether or not any conflicts between candidate threads

exist. If not, it issues threads early (with local timestamps). In

turn, parallelism is maximized and simulation speed increases.

In other words, we extend parallel ESL simulation by

aggressive out-of-order execution for higher simulation speed

while maintaining all SLDL semantics and accurate timing.

After a brief discussion of related work, Section II motivates

our idea using a simple DVD player example. Section III

presents our out-of-order parallel DE simulation in detail and

Section IV shows its higher simulation speed in experiments.

A. Related Work

Parallel Discrete Event Simulation (PDES) is a well-studied

subject [1], [6], [9]. Two major synchronization paradigms

exist, namely conservative and optimistic [6]. Conservative

PDES ensures in-order event execution. In contrast, the op-

timistic paradigm assumes that every event is safe when

executed and rolls back when this proves incorrect. Often, the

temporal barriers in the model prevent effective parallelism in

conservative PDES, while rollbacks in optimistic PDES are

expensive in implementation and execution.

C-based SLDLs use DE simulation driven by events and

simulation time advances. To interpret “zero-delay” semantics

of SLDLs, the notion of delta-cycles imposes a partial order

on the events that happen at the same time [8]. PDES with

delta-cycle notion has been also been explored. For example,

[10], [11], [3], [2] extend the SystemC and SpecC kernels

respectively to allow parallel simulation on multi-core pro-

cessors. [10], [11], [2] apply PDES to SystemC and SpecC

targeting symmetric multi-processing (SMP) architectures by

using conservative synchronization. However, as an obstacle,

the global simulation time is shared by all threads.

II. MOTIVATION

While the reference simulators for both SystemC and SpecC

are single-threaded, parallel approaches like [10], [2] take

advantage of the fact that several threads running at the same

simulation time and delta-cycle can be issued in parallel.

However, even these PDES approaches impose a total order on

event delivery and time advance which makes delta- and time-

cycles absolute barriers for thread execution. More specifically,

when a thread finishes its execution for a cycle, it has to wait

until all other active threads complete their execution for the

same cycle. Only then the simulator advances to the next delta

or time cycle. Additionally available CPU cores are idle until

all threads have reached the cycle barrier.

As a motivating example, Fig. 1 shows a high-level model

of a DVD player which decodes a stream with H.264 video

and MP3 audio data using separate decoders. Since video and

audio frames are data independent, the decoders run in parallel.

Both output the decoded frames according to their rate, 30

FPS for video (delay 33.3ms) and 38.28 FPS for audio (delay

26.12ms).978-3-9810801-8-6/DATE12/ c©2012 EDAA



Unfortunately, regular PDES approaches cannot exploit the

parallelism in this example. Fig. 2(a) shows the thread schedul-

ing along the time line. Except for the very first scheduling

step, only one thread can run at any time. Note that it is

not data dependency but only the global timing that prevents

parallel execution in the simulator.

In this paper, we break the simulation-cycle barrier and let

data-independent threads run out-of-order and in parallel. By

carefully analyzing potential data dependencies and coordi-

nating local time stamps for each thread, we fully maintain

accuracy in simulation semantics and time. Fig. 2(b) shows

this idea for the DVD player example. The MP3 and H.264

decoders run in parallel and maintain their own time stamps.

As a result, we significantly reduce the simulator run time.

III. OUT-OF-ORDER PARALLEL SIMULATION

Regular DE simulation imposes a total order on event pro-

cessing and time advancing, reducing the potential for parallel

execution. We now propose a new out-of-order simulation

scheme where timing is only partially ordered. We localize

the global simulation time (time, delta) for each thread and

allow threads without potential data or event conflicts to run

ahead of time while other working threads are still running

with earlier timestamps. To avoid any read-after-write (RAW),

write-after-read (WAR), and write-after-write (WAW) hazards

on shared variables, we use static analysis to detect potentially

conflicting code segments.

A. Definitions

To formally describe our out-of-order PDES algorithm, we

introduce the following notations:

1) We define simulation time as tuple (t, δ) where t =time,

δ =delta-cycle, and order time stamps as follows:

• equal: (t1, δ1) = (t2, δ2), iff t1 = t2, δ1 = δ2
• before: (t1, δ1) < (t2, δ2), iff t1 < t2, or t1 = t2, δ1 < δ2
• after: (t1, δ1) > (t2, δ2), iff t1 > t2, or t1 = t2, δ1 > δ2

2) Each thread th has its own time (tth, δth).
3) Since events can be notified multiple times and at differ-

ent simulation times, we note an event e notified at (t, δ)
as tuple (ide, te, δe) and define: EVENTS= ∪EVENTSt,δ

where EVENTSt,δ = {(ide, te, δe) | te = t, δe = δ)}
4) For regular DE simulation, typically several sets of

queued threads are defined, such as QUEUES = {READY,

RUN, WAIT, WAITFOR}. These sets exist at all times and
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Fig. 1. High-level model of a DVD player with video and audio streams.
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(b) Out-of-order parallel DE schedule

Fig. 2. DE scheduling of the high-level DVD player model
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(a) Static states in regular PDES
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(b) Dynamic states in out-of-order PDES

Fig. 3. States and transitions of simulation threads (simplified).

threads move from one to the other during simulation,

as shown in Fig. 3(a).

Now, for our out-of-order PDES, we define multiple sets

with different time stamps, which we dynamically create

and delete as needed, as illustrated in Fig. 3(b).

Specifically, we define:

• QUEUES = {READY, RUN, WAIT, WAITFOR, JOINING,
COMPLETE}

• READY = ∪READYt,δ , READYt,δ={th | th is ready to run
at (t, δ)}

• RUN = ∪RUNt,δ , RUNt,δ={th | th is running at (t, δ)}
• WAIT = ∪WAITt,δ , WAITt,δ={th | th is waiting since (t, δ)

for events (ide, te, δe), where (te, δe) ≥ (t, δ)}
• WAITFOR = ∪WAITFORt,δ , WAITFORt,δ={th | th is wait-

ing for simulation time advance to (t, 0)}
• JOINING = ∪JOININGt,δ , JOININGt,δ={th | th created

child threads at (t, δ), and waits for them to complete}
• COMPLETE = ∪COMPLETEt,δ , COMPLETEt,δ = {th | th

completed its execution at (t, δ)}

Note that our implementation orders theses sets by

increasing time stamps for efficiency.

5) Initial state at the beginning of simulation:

• t = 0, δ = 0
• THREADS = {throot}
• RUN = RUN0,0 = {throot}
• READY = WAIT = WAITFOR = COMPLETE =

JOINING = ∅

6) Invariant: Let THREADS be the set of all existing threads.

Then, at any time, the following conditions hold:

• THREADS = READY ∪ RUN ∪ WAIT ∪ WAITFOR ∪
JOINING ∪ COMPLETE

• ∀ At1,δ1 , Bt2,δ2 ∈ QUEUES:
At1,δ1 6= Bt2,δ2 ⇔ At1,δ1 ∩Bt2,δ2 = ∅



At any time, each thread belongs to exactly one set, and this

set determines its state. Determined by the scheduler, threads

change state by transitioning between the sets, as follows:

• READYt,δ → RUNt,δ: thread becomes runable (is issued)
• RUNt,δ → WAITt,δ: thread calls wait for an event
• RUNt,δ → WAITFORt′,0, where t < t′ = t+ delay: thread calls

waitfor(delay)
• WAITt,δ → READYt′,δ′ , where (t, δ) < (t′, δ′): thread waiting for

an event notified at (t′, δ′) becomes ready to run
• JOININGt,δ → READYt′,δ′ , where (t, δ) ≤ (t′, δ′): child threads

completed and their parent becomes ready to run again
• WAITFORt,δ → READYt,δ , where δ = 0: simulation time ad-

vances to (t, 0), making one or more threads ready to run

The thread and event sets evolve during simulation as

illustrated in Fig. 3. Whenever the sets READYt,δ and RUNt,δ

are empty and there are no WAIT or WAITFOR queues with

earlier timestamps, the scheduler deletes READYt,δ and RUNt,δ,

as well as any events with the same timestamp EVENTSt,δ.

B. Out-of-order Scheduling Algorithm

Algorithm 1 shows the scheduling algorithm of our out-

of-order parallel DE simulator. At each scheduling step, the

scheduler first evaluates notified events and wakes up corre-

sponding threads in WAIT. If a thread becomes ready to run,

its local time advances to (te, δe + 1) where (te, δe) is the

timestamp of the notified event (line 5 in Algorithm 1). After

event handling, the scheduler cleans up any empty queues and

expired events and issues qualified threads for the next delta-

cycle (line 18). Next, any threads in WAITFOR are moved to the

READY queue corresponding to their waiting time and issued

for execution if qualified (line 28). Finally, if no thread can

run (RUN = ∅), the simulator reports a deadlock and quits1.

Note that our scheduling is aggressive. The scheduler issues

threads for execution as long as idle CPU cores and threads

without any conflicts (HasNoConflicts(th)) are available.

Note also that we can easily turn on/off the parallel out-of-

order execution at any time by setting the numCPUs variable.

For example, when in-order execution is needed during debug-

ging, we set numCPUs = 1 and the algorithm will behave the

same as the traditional DE simulator where only one thread is

running at all times.

C. Static Conflict Analysis at Compile-Time

We use static analysis of the application code to determine

whether or not a thread is qualified to run early/out-of-order.

In particular, we have to prevent parallel data access to

shared variables, namely read-after-write (RAW), write-after-

read (WAR), and write-after-write (WAW).

Fig. 4 shows a simple example of a WAW conflict where

two threads th1 and th2 write to the same variable i at different

times. Simulation semantics require that th1 executes first and

sets i to 0 at time (5, 0), followed by th2 setting i to its final

value 1 at time (10, 0). Now, if our simulator would issue

the threads th1 and th2 out-of-order, we would create a race

condition, making the final value of i non-deterministic. Thus,

we must not schedule th1 and th2 out-of-order. Note, however,

1The condition for a deadlock is the same as for a regular DE simulator.

that th1 and th2 can run in parallel after their second wait-for-

time statement (which we will refer to as a second segment)

if the functions f() and g() are independent.

1) Thread Segments and Segment Graph: Switching back

and forth between RUNNING and WAITING, threads execute

different segments of their code. Notably, two threads with

shared variables typically conflict only in few segments of their

execution. Thus, we can refine our thread conflict analysis by

using the following definitions:

Algorithm 1 Out-of-order PDES Algorithm

1: /* trigger events */
2: for all th ∈ WAIT do

3: if ∃ event (ide, te, δe), th awaits e, and (te, δe) ≥ (tth, δth) then
4: move th from WAITtth,δth

to READYte,δe+1

5: tth = te; δth = δe + 1
6: end if

7: end for
8: /* clean up subsets */
9: for all READYt,δ and RUNt,δ do

10: if READYt,δ = ∅ and RUNt,δ = ∅ and WAITFORt,δ = ∅ then

11: delete READYt,δ , RUNt,δ , WAITFORt,δ , EVENTSt,δ

12: merge WAITt,δ into WAITnext(t,δ); delete WAITt,δ

13: end if
14: end for

15: /* issue qualified threads (delta cycle) */
16: for all th ∈ READY do
17: if RUN.size < numCPUs and HasNoConflicts(th) then

18: issue th
19: end if
20: end for
21: /* handle wait-for-time threads */
22: for all th ∈ WAITFOR do
23: move th from WAITFORtth,δth

to READYtth,0

24: end for
25: /* issue qualified threads (time advance cycle) */
26: for all th ∈ READY do
27: if RUN.size < numCPUs and HasNoConflicts(th) then
28: issue th
29: end if

30: end for
31: /* if the scheduler hits this case, we have a deadlock */
32: if RUN = ∅ then
33: report deadlock and exit
34: end if

• Segment si: code portion executed by a thread between two

scheduling steps.

• Segment Boundary vi: SLDL statements which call the

scheduler, i.e. wait, waitfor, par. Note that segments si
and segment boundaries vi form a directed graph. si is

the segment followed by segment boundary vi. vi can be

followed by multiple segment boundaries, and si can be

composed of multiple code portions.

• Segment Graph (SG): SG=(V, E), where V = {v | v is

a segment boundary}, E={eij | eij is the code portion

between vi and vj , where vj is reached after vi}.

• Segment Conflict Table (CTab[N, N]): CTab[i, j] = false,

iff there is no data conflict between the segments si and

sj ; otherwise, CTab[i, j] = true. N is the total number

of segments in the application code.

Fig. 5 shows a simple source code example and its Control

Flow Graph (CFG). From the CFG, we derive the Segment

Graph (SG) by converting every scheduler call (i.e. wait,



Algorithm 2 Build the Segment Graph

1: newSegList = BuildSegmentGraph(currSegList, stmnt)
2: {
3: switch (stmnt.type) do
4: case STMNT COMPOUND:
5: newL = currSegList
6: for all subStmnt ∈ Stmnt do
7: newL = BuildSegmentGraph(newL, subStmnt)
8: end for
9: case STMNT IF ELSE:

10: ExtendAccess(stmnt.conditionVar, currSegList)
11: tmp1 = BuildSegmentGraph(currSegList, subIfStmnt)
12: tmp2 = BuildSegmentGraph(currSegList, subElseStmnt)
13: newL = tmp1

⋃
tmp2

14: case STMNT WHILE:
15: ExtendAccess(stmnt.conditionVar, currSegList)
16: helperSeg = new Segment
17: tmpL = new SegmentList; tmpL.add(helperSeg)
18: tmp1 = BuildSegmentGraph(tmpL, subWhileStmnt)
19: if helperSeg ∈ tmp1
20: then remove helperSeg from tmp1 end if

21: for all Segment s ∈ tmp1
⋃

currSegList do
22: s.nextSegments

⋃
= helperSeg.nextSegments

23: end for
24: newL = currSegList

⋃
tmp1; delete helperSeg

25: case STMNT PAR:
26: newSeg = new Segment; totalSegments ++
27: for all Segment s ∈ currSegList do
28: s.nextSegments.add(newSeg) end for

29: tmpL = new SegmentList; tmpL.add(newSeg)
30: for all subStmnt ∈ stmnt do
31: BuildSegmentGraph(tmpL, subStmnt) end for
32: newL = NULL
33: case STMNT WAIT:
34: case STMNT WAITFOR:
35: newSeg = new Segment; totalSegments++
36: for all Segment s ∈ currSegList do
37: s.nextSegments.add(newSeg); end for
38: newL = new SegmentList; newL.add(newSeg)
39: case STMNT EXPRESSION:
40: if stmnt is a function call f() then
41: newL = BuildSegmentGraph(currSegList, f.topstmnt)
42: else
43: ExtendAccess(stmnt.expression, currSegList)
44: newL = currSegList
45: end if
46: case ...: /* other statements omitted for brevity */
47: end switch

48: return newL;
49: }

waitfor) into nodes and all possible flows of control into edges.

Here segment node 3 corresponds to the wait e2 statement.

From there, control reaches either node 4 (wait e3) through

blocks e, g, h or node 5 (wait e4) through blocks e, g, j.

For the general case, our compiler uses Algorithm 2 to

traverse an application’s CFG following all branches, function

calls and threads, and recursively build the corresponding SG.

2) Computing the Segment Conflict Table: Based on the

SG, we can easily compute a table of conflicting segments.

First, we compile for each segment a variable access list

which contains all variables accessed in the segment. Each

entry is a tuple (Symbol, AccessType) where Symbol is the

variable and AccessType specifies read-only (R), write-only

(W), read-write (RW), or pointer access (Ptr).

For example, a statement a = a + b creates an access list

{a(RW), b(R)}.

Our compiler computes the variable access lists for each

segment during the generation of the SG (line 43 in Al-

gorithm 2, ExtendAccess()). Note that we currently do not

perform any pointer analysis (future work). Instead, we con-

servatively mark all segments with pointer accesses (Ptr) as

conflicting. However, we do follow port mappings through the

structural hierarchy of the design model and store the actual

target variables in the access list.

Finally, we create the segment conflict table CTab[N,N ]
by comparing the access lists for each segment pair. If two

segments si and sj share any variable with access type (W) or

(RW), or there is any pointer access by si or sj , then we mark

this as a conflict: CTab[i, j] = CTab[j, i] = true. Otherwise,

there is no conflict: CTab[i, j] = CTab[j, i] = false.

Algorithm 3 Scheduling Conflict Detection

1: bool HasNoConflicts(Thread th)
2: {
3: for all th2 ∈ RUN where (th2.t, th2.δ) 6= (th.t, th.δ) do
4: if (Conflict(th, th2)) then return false end if
5: end for
6: for all th2 ∈ READY where (th2.t, th2.δ) < (th.t, th.δ) do

7: if (Conflict(th, th2)) then return false end if
8: end for
9: for all th2 ∈ WAIT where (th2.t, th2.δ) < (th.t, th.δ) do

10: if (Conflict(th, th2)) then return false end if

11: end for
12: return true
13: }
14: bool Conflict(Thread th1, Thread th2)
15: {
16: if (th2 may enter another segment before (th1.t, th1.δ)) then
17: return true end if
18: if (CTab[th.segID, th2.segID]) then

19: return true end if
20: return false
21: }

3) Scheduling Conflict Detection: While the segment graph

and conflict table are built at compile time, the simulator needs

to check at run-time whether an available thread at a particular

segment can be issued out-of-order, i.e. without conflict. To

do this efficiently, we use a table-lookup in CTab[i, j] and

only run our out-of-order scheduler when a CPU core is idle.

In order to provide the scheduler with the next segment

a given thread is about to execute, our compiler instruments

the SLDL code such that the segment ID is passed to the

scheduler as an additional argument when the thread executes

a wait, waitfor, or other scheduling statement. At run-time,

the scheduler then calls the HasNoConflicts(th) function to

determine whether or not to issue the thread th early. As

shown in Algorithm 3, the HasNoConflicts(th) function checks

for potential conflicts with all parallel running threads (in

RUN), as well as all waiting threads in the READY and WAIT

queues with an earlier time stamp than th. Note that each

check can be performed in constant time (O(1)) due to the

table-lookup in function Conflict(th1, th2).

waitfor 5; 

i = 0; 
waitfor 10; 

f(); 
… 

waitfor 10; 

i = 1; 
waitfor 10; 

g(); 
… 

int i; 

thread th1 thread th2 shared  

variable 

Fig. 4. Write-after-write (WAW) conflict between two parallel threads.
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Fig. 5. Converting SLDL source code to control flow and segment graph.

IV. EXPERIMENTS AND RESULTS

We have implemented the proposed out-of-order parallel

simulator in a SpecC2-based system design environment [5]

and conducted experiments on three multi-media applications

shown in Fig. 6. To demonstrate the benefits of our out-of-

order PDES, we compare the compiler and simulator run times

with the traditional single-threaded reference and a regular

parallel implementation [2] without out-of-order scheduling.

All experiments have been performed on the same host PC

with a 4-core CPU (Intel(R) Core(TM)2 Quad) at 3.0 GHz.

TABLE I
EXPERIMENTAL RESULTS FOR THE ABSTRACT DVD PLAYER EXAMPLE

Single-thread Multi-core
Simulator: reference Regular PDES Out-of-order PDES

compile time 0.71s 0.88s / -19.3% 0.96s / -26.0%

simulator time 7.82s 7.98s / -2.0% 3.89s / +101.0%

#segments N 50

total conflicts in CTab[N,N ] 160/2500 (6.4%)

#threads issued 1008

#threads issued out-of-order 791 (78.47%)

TABLE II
OUT-OF-ORDER PDES STATISTICS FOR JPEG AND H.264 EXAMPLES

JPEG Image Encoder

TLM abstraction: spec arch sched net

#segments N 42 40 42 43

total conflicts 199/1764 184/1600 199/1764 212/1849
in CTab[N,N ] (11.3%) (11.5%) (11.3%) (11.5%)

#threads issued 271 268 268 4861

#threads issued 176 173 176 2310
out-of-order (64.9%) (64.5%) (65.7%) (47.5%)

H.264 Video Decoder

TLM abstraction: spec arch sched net

#segments N 67 67 69 70

total conflicts 512/4489 518/4489 518/4761 518/4900
in CTab[N,N ] (11.4%) (11.5%) (10.88%) (10.57%)

#threads issued 923017 921732 937329 1151318

#threads issued 179581 176500 177276 317591
out-of-order (19.46%) (19.15%) (18.91%) (27.58%)

A. An Abstract Model of a DVD Player

Our first experiment uses the DVD player model shown

in Fig. 6(a). Similar to the model discussed in Section II, a

H.264 video and a MP3 audio stream are decoded in parallel.

However, this model features four parallel slice decoders

which decode separate slices in a H.264 frame simultaneously.

Specifically, the H.264 stimulus reads new frames from the

2Due to its similarity, our results are equally applicable to SystemC [4].
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Fig. 6. Example design models for out-of-order PDES experiments.

input stream and dispatches its slices to the four slice decoders.

A synchronizer block completes the decoding of each frame

and triggers the stimulus to send the next one. The blocks in

the model communicate via double-handshake channels.

According to profiling results, the workload ratio between

decoding one H.264 frame with 704x566 pixels and one

44.1kHz MP3 frame is about 30:1. Further, about 70% of the

decoding time is spent in the slice decoders. The resulting

workload of the major blocks is shown in the diagram.

Table I shows the statistics and measurements for this

model. Note that the conflict table is very sparse, allowing

78.47% of the threads to be issued out-of-order. While the

regular PDES loses performance due to in-order time barriers

and synchronization overheads, our out-of-order simulator

shows twice the simulation speed.

B. A JPEG Encoder Model

Our second experiment uses the JPEG image encoder model

shown in Fig. 6(b). The stimulus reads a BMP color image

with 3216x2136 pixels and performs color-space conversion

from RGB to YCbCr. Since encoding of the three color

components (Y, Cb, Cr) is independent, our JPEG encoder

performs the DCT, quantization and zigzag modules for the

colors in parallel, followed by a sequential Huffman encoder

at the end. The JPEG monitor collects the encoded data and

stores it in the output file.

To show the increased simulation speed also for models at

different abstraction levels, we have created four models (spec,

arch, sched, net) with increasing amount of implementation

detail, down to a network model with detailed bus transactions.

Table II lists the PDES statistics and shows that, for the

JPEG encoder, about half or more of all threads can be issued

out-of-order. Table III shows the corresponding compiler and

simulator run times. While the compile time increases similar

to the regular parallel compiler, the simulation speed improves

by about 138%, more than 5 times the gain of the regular

parallel simulator.



TABLE III
EXPERIMENTAL RESULTS FOR THE JPEG IMAGE ENCODER AND THE H.264 VIDEO DECODER EXAMPLES

Single-thread Multi-core
Simulator: reference Regular parallel Out-of-Order parallel

compile simulator compile time simulator time compile time simulator time
time [sec] time [sec] [sec] / speedup [sec] / speedup [sec] / speedup [sec] / speedup

spec 0.80 2.23 1.10 / -27.3% 1.84 / +21.2% 1.13 / -29.2% 0.93 / +139.8%
JPEG arch 1.09 2.23 1.35 / -20.0% 1.80 / +23.9% 1.37 / -21.2% 0.93 / +140.0%

Encoder sched 1.14 2.24 1.41 / -19.9% 1.83 / +22.4% 1.43 / -21.0% 0.92 / +143.5%
net 1.34 2.90 1.59 / -17.6% 2.33 / +24.5% 1.63 / -19.6% 1.26 / +130.1%

spec 12.35 97.16 13.91 / -11.2% 97.33 / -0.2% 18.13 / -31.9% 60.33 / +61.1%
H.264 arch 11.97 97.81 12.72 / -5.9% 99.93 / -2.1% 18.46 / -35.2% 60.77 / +61.0%

Decoder sched 18.18 100.20 18.84 / -3.5% 100.18 / +0.0% 24.80 / -26.7% 60.96 / +64.4%

net 18.57 111.07 19.52 / -4.9% 106.14 / +4.6% 26.06 / -28.7% 66.25 / +67.7%

C. A Detailed H.264 Decoder Model

Our third experiment simulates a complex parallel video

decoder based on the H.264/AVC standard [12]. Fig. 6(c)

shows a high-level block diagram of our model. While this

model is similar at the highest level to the video part of the

abstract DVD player, it contains many more blocks at lower

levels which implement the complete H.264 reference applica-

tion consisting of about 40,000 lines of code. Internally, each

slice decoder consists of complex H.264 decoder functions

entropy decoding, inverse quantization and transformation,

motion compensation, and intra-prediction. For our simulation,

we use a video stream of 1079 frames and 1280x720 pixels

per frame, each with 4 slices of equal size.

Our simulation results for this industrial-size design are

listed in the lower half of Table II and Table III, again

for four models at different abstraction levels, including a

network model with detailed bus transactions. Due to the large

complexity of the models, the compile time increases by up

to 35.2%3. This, however, is insignificant when compared to

the much longer simulator run times.

While the regular parallel simulator shows almost no im-

provement in simulation speed, our proposed simulator shows

more than 60% gain since many of the threads can be issued

out-of-order (see Table II).

V. CONCLUSIONS AND FUTURE WORK

High simulator performance is critical for the efficient

validation of ESL design models. In this paper, we have

presented a new out-of-order scheduling technique for multi-

core parallel simulation of system-level design models with

hardware and software components. Our approach breaks the

simulation-cycle barrier of traditional simulation by localizing

the simulation time for parallel threads, carefully delivering

notified events, and handling a dynamically managed set of

simulation queues. Potential data conflicts between parallel

threads are prevented by careful compile-time analysis of the

segment graph of the application. Using conflict table look-

ups, our out-of-order scheduler can quickly make decisions at

run-time and issue more parallel threads than regular PDES,

resulting in significant speed-up on multi-core hosts.

Experimental results show that, with only a small increase

in compile time, our simulator is significantly faster than the

3We are aware of several opportunities for optimizing the static analysis at
compile-time and will address this in future work.

traditional single-threaded reference implementation, as well

as a regular multi-core parallel simulator.

Our out-of-order PDES technique fully maintains SLDL

simulation semantics and is applicable, without loss of accu-

racy, to C-based system-level models at any abstraction level.

In future work, we will optimize the static code analysis and

look into additional methods to further improve the simulation

speed.
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