
ABACUS: A Technique for Automated Behavioral
Synthesis of Approximate Computing Circuits

Kumud Nepal, Yueting Li, R. Iris Bahar, Sherief Reda
School of Engineering, Brown University, Providence, RI 02912

Email: {kumud nepal, yueting li, iris bahar, sherief reda}@brown.edu

Abstract—Many classes of applications, especially in the
domains of signal and image processing, computer graphics,
computer vision, and machine learning, are inherently tolerant to
inaccuracies in their underlying computations. This tolerance can
be exploited to design approximate circuits that perform within
acceptable accuracies but have much lower power consumption
and smaller area footprints (and often better run times) than
their exact counterparts. In this paper, we propose a new class of
automated synthesis methods for generating approximate circuits
directly from behavioral-level descriptions. In contrast to previous
methods that operate at the Boolean level or use custom mod-
ifications, our automated behavioral synthesis method enables
a wider range of possible approximations and can operate on
arbitrary designs. Our method first creates an abstract synthesis
tree (AST) from the input behavioral description, and then
applies variant operators to the AST using an iterative stochastic
greedy approach to identify the optimal inexact designs in an
efficient way. Our method is able to identify the optimal designs
that represent the Pareto frontier trade-off between accuracy
and power consumption. Our methodology is developed into
a tool we call ABACUS, which we integrate with a standard
ASIC experimental flow based on industrial tools. We validate
our methods on three realistic Verilog-based benchmarks from
three different domains — signal processing, computer vision
and machine learning. Our tool automatically discovers optimal
designs, providing area and power savings of up to 50% while
maintaining good accuracy.

I. INTRODUCTION

A wide domain of applications, in general and embedded
computation, show resilience to inaccuracies in their under-
lying computations. This type of error immunity in various
applications can be exploited by creating approximate versions
of their implementations that result in lower power consump-
tion and smaller area footprints. Using approximate or inexact
circuits in general, is attractive for classes of applications that
are inherently tolerant to errors, which include signal and
image processing, computer graphics, computer vision, and
machine learning classifiers [1]. The computations of these
applications do not necessarily need to be very precise in order
to achieve the desired task. These applications show resiliency
to certain kinds of inaccuracies for various reasons ranging
from redundancies in large input data-sets, non-existence of
a unique golden result, or the aggregating nature of the
algorithms leading to errors averaging out [2].

There have been various research works in approximate
circuits focusing on issues such as optimizing design met-
rics like area and power. From a conceptual point of view,
these existing circuit approximation techniques aim to gen-

erate approximate circuits by either low-level modifications
or through application-specific modifications. For example,
numerous techniques have been proposed to generate approx-
imate variants for standard building-block circuit components
(e.g., adders or multipliers) [3]–[5]. Techniques that operate
on an entire circuit either change the underlying synthesis
algorithm used by the compiler [6], [7], or modify the circuit
directly using user-defined application-specific changes as in
the case of digital signal processing applications [8], [9].
Yet other techniques purposely use fault-prone components
or circuits at unreliable operating conditions, not necessarily
changing the logic level implementation, to give advantages in
speed and/or power [10].

Our approach, to the best of our knowledge, is the first
to operate directly at the behavioral descriptions of circuits
to automatically generate approximate variants. We name our
technique ABACUS after Automated Behavioral Aproximate
Circuit Synthesis. ABACUS creates an abstract synthesis tree
(AST) from the input behavioral description, and then ap-
plies transformation operators to the AST within an iterative
stochastic greedy approach to identify optimal designs that rep-
resent the Pareto frontier trade-off between accuracy and power
consumption. Additionally, the tool fits within standard ASIC
and FPGA flows, and we use industrial-strength simulation
and compilation techniques to evaluate the design metrics of
our designs. To evaluate our tool, we created three behavioral
Verilog benchmarks from three different domains: a perceptron
classifier implementation representing a common algorithm
used in machine learning, a Sum of Absolute Difference (SAD)
based block matching algorithm commonly used in computer
vision, and lastly, a 25-tap FIR filter implementation popular
in the signal processing domain.

Compared to previous methods, ABACUS has the following
advantages.

• ABACUS automatically generates approximate designs
from input behavioral descriptions. Behavioral de-
scriptions capture the algorithmic structure of the
circuits, and thus, ABACUS transformations are of
global nature rather than limited to a particular sub-
circuit. Furthermore, ABACUS can be applied to
generic circuits with no need or limited need for
application domain knowledge.

• The process of generating the variants is transparent to
the design flow, and thus, different design flows (e.g.,
ASICs or FPGAs) can be used and subsequently all
standard synthesis optimization techniques are appli-
cable on the approximate variants.978-3-9815370-2-4/DATE14/ c©2014 EDAA

• The outcome approximate variant designs from ABA-
CUS are still expressed in behavioral or RTL code,
which makes them easier to understand by the de-
signers if needed.

• The accuracy of the approximate variants are evaluated
using standard test benches that are most relevant for
application operation.

• Complementary methods for approximate circuit gen-
eration (e.g., using an approximate adder, or volt-
age scaling or even using fault-prone circuitry in
implementation) may be still used creating further
approximation possibilities.

• ABACUS can be applied on an entire design or in
modular parts of it giving it good scalability with
various designs.

Our novel approach opens a new direction of research
for approximate circuit synthesis and intelligent design space
exploration. The rest of the paper is organized as follows:
Section II discusses previous work done in approximate circuit
design. Section III focuses on our methodology used in the
design and development of ABACUS. We present the results
our technique in Section IV and conclude in Section V with
a summary of our findings and a brief discussion on future
work.

II. PREVIOUS WORK

Given that power has emerged as a pressing issue for com-
puting systems, new techniques have been proposed to devise
approximate computing circuits in digital signal processing and
emerging domains such as machine learning and data mining.
Circuits in these areas, because of their error resilience, are
explored on the principle of trading accuracy in exchange for
better performance or power efficiency. In this section, we
describe some of these works closely related to our own.

Two main methodologies have been used to achieve higher
power efficiency. Voltage over-scaling is widely used in early
works to manage dynamic power consumption for CMOS
circuits, due to the quadratic decrease of switching power with
supply voltage [10]. In more recent years, logical approxi-
mation has been studied as an alternative approach, where
the Boolean functions of the underlying cores in computing
circuits, such as adders and multipliers, are approximated
for less complex design implementations [11]–[13]. As sig-
nal processing, machine learning or data mining applications
went through rapid development and grew to be much more
complex and power consuming, the benefits that these con-
ventional methodologies can offer have become somewhat
limited. Hence the effort of circuit approximation has been
shifted to exploring the possibility of multi-level circuits or
architecture-level approximation, for instance, as proposed
in [14], [15]. Nevertheless, these efforts are either confined
to logic approximation or demand high application-specific
knowledge.

Whereas previous works in approximate circuit synthesis
mostly focused on Boolean level or custom modifications, our
work aims to synthesize approximate design variants from
generic input behavioral descriptions in an entirely automated
fashion. Behavioral descriptions capture the algorithmic intent

simula'on	 compila'on	
&	 synthesis	

original design files

testbenches

variant 1 variant 2

power

accuracy

original
design

variants

ASIC
or FPGA

design flow

Fig. 1. Incorporation of ABACUS within standard design flows.

of the circuit; and thus raising the level of abstraction enables
a larger range of approximations that are not possible to apply
at low-level design specifications. We draw inspiration for
our work from the recent advances in software engineering
targeted for automatic bug identification as proposed in [16],
but investigate methods that are suitable for hardware designs.

III. METHODOLOGY

As discussed in Section I and Section II, existing circuit
approximation techniques aim at generating approximate vari-
ants for standard sub-circuits (e.g., adders), given their Boolean
descriptions, or through manual modifications for specific
applications (e.g., DSPs). In contrast, we aim to generate
approximate circuit variants for any system from its high-level
behavioral description.

In a basic design flow, the behavioral or register transfer
level (RTL) code is first generated by the designers from the
design specifications. The code is then simulated functionally
using a number of representative testbenches and the simula-
tion results are evaluated to verify correctness of operation.
The code is then compiled and synthesized to a netlist using
a design compiler, which also takes as input a standard cell
library for ASICs or the look-up table and cluster architecture
for FPGAs. The netlist is afterwards placed and routed to
get the final area, timing, and power metrics. We integrate
ABACUS with traditional ASIC/FPGA flows but instead of
synthesizing a single exact code, multiple approximate code
variants are also synthesized at the RTL/behavioral level. As
illustrated in Figure 1, these variants are pushed through
the standard design flow, and the approximate outcomes are
compared with the original exact design in terms of functional
accuracy and hardware design metrics such as power, area and
timing. The evaluated outcomes are then plotted and a Pareto
frontier is computed to identify the approximate designs that
give the optimal accuracy-power trade-off.

To achieve our goal of generating approximate behavioral
variants, we propose (i) to capture the exact RTL or behavioral
hardware description language (HDL) design in an Abstract
Syntax Tree (AST) structure; (ii) create the approximate design

original exact
design description

AST modified AST approximate
design description

Fig. 2. Overall methodology of ABACUS.

variants through transformations to the AST; and (iii) finally
write back the modified AST into readable RTL or behavioral
HDL design. The three steps are illustrated in Figure 2. The
new approximate design is then pushed through the standard
ASIC/FPGA flow for evaluation in terms of accuracy and other
design metrics. In an AST, each node represents an action
to be taken by the behavioral code, or an object to be acted
upon [17]. Building an AST for a HDL syntax automatically
captures all the concurrency that is in the design. Compared to
a regular parsing tree, the AST captures the logical structures
of the statements and shows less of the grammar structure,
which makes it a better candidate to analyze and transform
the code. Compared to control flow graphs, ASTs are easier
to use to produce readable code. The novelty in our ABACUS
approach allows us to make automated transformations to
any generic HDL design without the need to have any a
priori knowledge of the functionality or the semantics of the
design. Hence, a much broader range of transformations can
be explored at the high level, leading to a superior design that
what could not be achieved with prior approaches.

There are two key questions we address in our approach:

1. What kind of transformations can be applied to HDL-
based ASTs? Generating approximate AST variants
from the original AST requires the application of
HDL-aware transformations that lead to syntactically
correct, yet approximate HDL designs. In Section
III-A, we propose a set of transformations that can be
applied to the AST to generate meaningful approxi-
mate HDL designs.

2. How do we avoid the explosive increase in design
search space resulting from these transformations?
The application of a set of operators combinatorially
to the original design can lead to an exponential num-
ber of variant designs that need to be explored. Given
the size of modern designs and runtimes of typical
design flows, this approach is clearly infeasible in
terms of total runtime. Thus, we propose in Section
III-B an approach to effectively explore the design of
possible approximate designs and identify the ones
that provide the optimal trade-offs between accuracy
and hardware design metrics.

A. Generating HDL-based Approximate Transformations

We present a set of transformation operators that
can be applied to the original HDL-based AST to
yield meaningful approximate designs for error-resilient
applications. Whenever any of these transformations is
invoked, ABACUS automatically traverses through the AST
and searches for places in the AST where the change could
be applied. We propose and implement the following five
transformation operators in ABACUS:

1. Data Type Simplifications: For applications dealing with
massive data, truncating the size of intermediate signals may
be a good way to achieve savings on power, since it reduces the
requirements for the underlying hardware, especially for fixed-
point arithmetic operations. ABACUS is capable of performing
truncation in two ways: first, by resetting a number of the least
significant bits to zero, and second by truncating a certain
number of significant bits for operands during binary arith-
metic operations and then shifting the result of the operation
to get the approximation. The latter transformation yields more
significant power and area savings.

2. Operation Transformations: Another proposed operator is to
substitute an arithmetic operation with one or more arithmetic
approximate operations that use less power and hardware area.
For example, arithmetic additions could be replaced by bitwise
ORs or a multiplication could be replaced by shifts and an
addition. Also, a standard adder or multiplier could be replaced
by an approximate unit from the ones proposed in the literature
[11]–[13]. Thus, our behavioral-based approach can easily
leverage approximate Boolean arithmetic circuits.

3. Arithmetic Expression Transformations: There are cases
where near similar arithmetic structures appear in the same
statement description. Through a transformation, these near-
similar structures could be transformed to approximate similar
structures in which case they could be shared and simplified.
For instance, we can approximate the expression (wi × xi +
wj × xj) with substitutions to the variables or the constants,
such as substituting xj by xi leading to (wi + wj) × xi or
substituting wj by wi leading to wi×(xi+xj), thus saving one
multiplier. We can simplify computations by sharing common
or similar operands and get good approximations.

4. Variable-to-Constant Substitution Transformations: Simula-
tion results of the original design contain useful information
about the numerical characteristics of the design variables.
This information can guide the transformation operations. For
instance, if an intermediate variable derived from a certain
arithmetic operation appears to be a constant or has a small
standard deviation in the simulation results, then we can sub-
stitute it with a constant based on its average value, thus saving
its computational circuit. ABACUS implements this feature by
reading simulation results from the original exact design to
identify design variables that are constant or are within a 10%
standard deviation. These design variables are candidates for
substitution by a constant based on their simulation results.

5. Loop Transformations: ABACUS automatically unrolls loops
in behavioral descriptions. Loop unrolling is typically used
as a compiler transformation technique; however, in our case
we use automatic unrolling in the pre-compiler phase of the
behavioral description of an algorithm. Loop unrolling opens
the door for the application of other simplification operators.
In addition, the unrolling can be done in an approximate way
by skipping certain iterations and substituting the outcomes of
these iterations from the results of prior iterations.

B. Effective Design Space Exploration

Application of the proposed operator transformations can
lead to a combinatorial explosion in possible approximate
design variants, as there are multiple operators, where each
operator can be applied at several locations, and the AST

resultant from one operator can be used as input for another
operator in a chain of transformation. To effectively explore
the search space of possible design outcomes and identify the
Pareto frontier of optimal trade-off designs, we propose the fol-
lowing iterative stochastic greedy algorithm that continuously
evolves the approximate designs by doing multiple iterations
of transformations to identify the Pareto frontier that gives the
optimal tradeoff between accuracy and power.

Algorithm Approximate Design Space Exploration
Input: original exact design
Output: approximate design variants
1. Let O1 = original design
2. while i ≤ N
3. while j ≤M
4. do pick a transformation operator at random;
5. apply the operator to Oi to yield Aj ;
6. evaluate accuracy of Aj over input data sets
7. if accuracy of Aj is within threshold
8. then
9. synthesize Aj ;
10. V = V ∪Aj ;
11. Use results from Steps 6 and 9 to

evaluate the fitness, Fj , of Aj ;
12. else goto step 4;
13. identify Ak, k ∈ {1, . . . ,M}, with best Fj ;
14. let Oi+1 = Ak;
15. return V

ABACUS couples a simulation tool and a synthesis tool
respectively to evaluate accuracy and design metrics. The
algorithm goes through N iterations, where each iteration
attempts M transformation operators. In steps 4-6 above,
a transformation operator is picked at random with some
probability and applied to the current design and the results
are evaluated for accuracy. Accuracy of an approximate design
is averaged over a number of input training data sets. If the
average accuracy measure meets an accuracy threshold then
the design is considered a valid variant and passed on to the
synthesis tool in Step 9. The accuracy threshold is pre-set to
filter out bad design variants from the good approximate ones.
A design with accuracy less than this threshold will not be
synthesized and is not further considered for use with the tool.
Using the accuracy results from Step 6 and the synthesis results
from step 9, the design variant is evaluated for fitness, which
is defined as

fitness = α1 × accuracy + α2 × power + α3 × area (1)

α1 > α2 > α3. In step 13, all M variants are ranked and
the design with the highest rank for fitness is used in the
subsequent iterations as the parent design for transformations
as given in Step 14. ABACUS repeats these generations of
transformations greedily to get the best area and power saving
results under the allowed inaccuracy budget until it reaches the
defined limit for number of generations.

Whether an operator transformation is applied or not is
dependent on a probability function to ensure no bias towards
a particular operator. Furthermore, for a given operator, the
location where an operator is applied is also randomized with
a probability to ensure no bias towards a particular location.
Thus the sequence of applied transformations is stochastic in
nature. During the iterative greedy procedure, ABACUS keeps

a log of accuracy, area and power values of each design variant
used along the way. A wide range of optimal designs at various
accuracy and power savings can be obtained in this manner
and help in creating the Pareto frontier for tradeoff between
accuracy and other metrics. The designs that pass the final
generation of mutations are also ranked for fitness; the highest
ranked design represents the behavioral description that comes
closest to the allowed arithmetic inaccuracy and is better in
terms of power and area utilization in that order.

Our methodology avoids explosive design space explo-
ration by constricting the design choices using a greedy heuris-
tic. If every variant generated per generation were to be used
as an originating design for further design transformations,
the run-time needed for a full evaluation would increase with
the number of generations as a geometric series. Lets say,
there are N iterations and M designs per generation. This
would mean that without the greedy approach, the number
of designs to be used as transformation seeds would increase
as M0 + M1 + M2 + M3 + ... + MN , or mathematically,
(1−MN+1)

(1−M) . With ABACUS, the number of designs increases
linearly with N so the final number of designs to be used
for exploration would be MN . The speedup in runtime would
hence be (1−MN+1)

MN(1−M) . So for 20 iterations with 5 variants per
generation, the speedup would be about 1.2× 1012.

IV. EXPERIMENTAL RESULTS

We have implemented our ABACUS tool and integrated it
with a standard industrial-strength flow comprised of Synopsys
Design Compiler and Mentor Graphics ModelSim. Our initial
AST parsing front end was based on the ODIN-II tool [18].
We used 45 nm technology libraries. Our three circuits and
their test benches are coded in behavioral Verilog. These test
cases are briefly described as follows.

1. FIR filter: A 25-tap FIR filter takes in a 308×242 grayscale
image and convolves it with a 5×5 low-pass filter coefficient
matrix, essentially creating a blur-effect. The quality of an
approximate version of this design is assessed using Mean-
Squared Error (MSE). The MSE for the original FIR filter
circuit was computed with an 8-bit fixed point coefficient and
image input compared against a floating point implementation
done in software.

2. Perceptron Classifier: Perceptron classifier is a commonly
used application in machine learning. A perceptron takes an
input data, denoted by vector x, and predicts the class (e.g., -1
or +1) of x by computing sign(wTx), where w is the weight
vector and sign(·) is a function that outputs 1 if its argument is
positive and -1 otherwise. The perceptron essentially defines
a hyperplane to separate the training data into two classes.
Perceptrons are also capable of classifying non-linearly sep-
arable points by mapping the input points to another space
where they are linearly separable, i.e., sign(wTφ(x)), where
φ(·) is the mapping function. Our perceptron test case uses a
quadratic function to map the input space. The input data set
consisted of 1000 randomly generated two-dimensional points
from two classes. Classification results were compared against
the ground-truth and hence, the total percentage change in
classification outputs was considered as the accuracy metric.

Design Class of Application #Lines Area (um2) Power (mW) Quality Measure Quality
FIR filter Signal Processing 265 16711.18 0.94 MSE 98.63%
perceptron Machine Learning 188 19183.12 1.28 classification error 82.88%

block matching Computer Vision 1277 42532.87 5.51 PSNR 30.44 dB

TABLE I. CHARACTERISTICS OF TEST CASES.

0.0

5.0

10.0

15.0

20.0

25.0
30.0 30.1 30.2 30.3 30.4 30.5 30.6

Po
w

er
 S

av
in

g
(%

)
PSNR (dB)

Block Matcher -10.0

0.0

10.0

20.0

30.0

40.0
75.0 80.0 85.0 90.0 95.0 100.0

Po
w

er
 S

av
in

g
(%

)

Accuracy (%)

FIR 0.0

10.0

20.0

30.0

40.0

50.0

60.0
60.0 65.0 70.0 75.0 80.0 85.0

Po
w

er
 S

av
in

g
(%

)

Accuracy (%)

Perceptron

Fig. 3. Results from various approximate designs and the Pareto Frontier for the three test benches.

3. Block Matcher: Block matching is a technique commonly
used in motion estimation and video compression applications.
Block matching partitions a given frame into non-overlapping
rectangular blocks and tries to find the block from the ref-
erence frame in a given search range that best matches the
current block. The measure of similarity between the blocks
is computed by sum of the differences. For our design, we
perform full search block matching over a search window in
a reference frame to determine the best match for a block in a
current frame. Our particular test case works on 16×16 block
sizes from a 352×288 frame sequence. The quality of a design
is assessed using the PSNR.

The main hardware design characteristics and quality of
these test benches are summarized in Table I. For each design,
a total of six data sets were used to train and evaluate ABACUS.
Three data sets were to used to generate the approximate
designs as described in Section III, and another three were
used to assess the accuracy of ABACUS for the experiments
of this section. Using different data sets in the experimen-
tal results eliminates possibility of generating approximate
variants overfitted for one particular set of input data. In all
experiments, we report the average accuracy of the three data
sets. We used weights of 0.8, 0.12 and 0.08 as α1, α2 and α3

respectively in Equation 1 for fitness evaluation. ABACUS was
applied to the computational data-path parts of the designs,
but the control signals in the designs were not modified.
Using ABACUS, we were able to automatically apply multiple
iterations of transformations on each test bench to identify the
approximate designs with optimal trade-offs between accuracy
and power. Figure 3 plots the accuracy vs. power saving results
for all approximate designs generated by ABACUS for the
perceptron, block matching, and FIR designs, respectively. The
x-axis gives accuracy and the y-axis gives power savings. A
subset of all these points create a Pareto Frontier (solid red
line), where the frontier points do not dominate each other
in both power and accuracy. The runtimes of ABACUS are
mostly dominated by the runtime of the ASIC design flow.
On a Intel Core 2 Quad machine at 2.40 GHz with 6 GB
RAM, it took 140 seconds, 130 seconds and 529 seconds for
generating one instance of the FIR, perceptron and the block
matching benchmarks respectively. A total of 10 generations
with 5 iterations were run for the FIR design and the perceptron

Design #Iter Accuracy Accuracy Power Area
Threshold Achieved Saving Saving

FIR 10 90.9% 93.9% 10.4% 15.8%
perceptron 10 76.2% 82.9% 33.2% 38.3%

blockmatching 15 28.0 dB 30.0 dB 23.0% 19.4 %

TABLE II. RESULTS FROM ABACUS FOR THE THREE TEST BENCHES
FOR AN ALLOWED 8% DEGRADATION TO ACCURACY.

design and 15 generations with 6 iterations were run for the
block matching design.

In Table II, we highlight results from the best approximate
designs that allowed for a maximum of 8% degradation in ac-
curacy compared to the original designs. The results show that
we are able to attain significant savings in power consumption
(ranging from 10% to 33%) with these approximate designs
with very modest degradation in accuracy. Figure 4 illustrates
the results from the perceptron approximate design of Table II.
Figure 4.a gives the true classification of the data points into
the two classes (class A and class B). Figure 4.b gives the
classification of both the original and approximate hardware
(HW) designs on the same data points. The true-true case is
when both HW designs correctly predicted the classes of the
data points, while the false-false case is when HW designs
incorrectly predicted the classes of the data points. The false-
true case is when the original design predicted incorrectly, but

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

True−True True−False False−True False−False

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Class A Class B

(a) (b)

Fig. 4. (a) Classification of input data into two classes, (b) comparison
between original and approximate designs.

18
.5%

	 9.7
6%

	

14
.36

%
	

36
.6%

	

26
.05

%
	

21
.73

%
	

15
.2%

	 11
.93

%
	

27
.10

%
	 42
.5%

	

21
.48

%
	

39
.95

%
	

0%	
5%	
10%	
15%	
20%	
25%	
30%	
35%	
40%	
45%	

Pe
rc
en

ta
ge
	

Power	 Saving	 (Conven=onal)	 Power	 Saving	 (ABACUS)	
Area	 Saving	 (Conven=onal)	 Area	 Saving	 (ABACUS)	

Perceptron	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Block	 Matcher	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 FIR	 Filter	

Fig. 5. Results for use of conventional technique by use of approximate
multipliers compared to results from ABACUS.

Design Data Operators Arithmetic
Types Expressions

FIR 16 13 2
perceptron 4 2 1

blockmatching 95 91 33

TABLE III. NUMBER OF SOME OF THE MAJOR TRANSFORMATIONS
MADE IN THE THREE BENCHMARKS.

the approximate design predicted correctly. Finally, the true-
false case is when the original design predicted correctly, but
the approximate design incorrectly. The figure shows very few
points in the true-false case, and almost balanced in number by
points in the false-true case. As a result the approximate design
attains comparable accuracy to the original, while achieving
33.2% power savings.

We also compared the results generated by ABACUS to a
commonly used technique in approximation as described in
Section II, where approximate versions of standard compo-
nents are used in place of the accurate ones. We truncated 3 bits
off a set of multipliers for the perceptron and block matching
implementations and 3 bits off a set of adders for the FIR
implementation. Results are shown in Figure 5 for designs
that maintain same accuracy. Our method obtains superior
results for all three benchmarks. This validates our claim that
ABACUS is capable of making global arbitrary approximations
that may not be obvious to the designer but produce better
results. Finally, Table III breaks down the amount of data
types, operators and arithmetic expressions transformed by
ABACUS for the three designs in Figure 5.

V. CONCLUSIONS

With ABACUS we have successfully developed a new
approach for approximation of circuits that is capable of
generating and synthesizing circuits with reasonable error
tolerance and significantly less area consumption and power
dissipation. While these metrics can be highly application
dependent, we were able to show with our three test cases that
we can get over 30% savings on both power and area for some
designs. ABACUS requires no application domain knowledge
and applies global transformations that are not obvious to a
designer. These features make it unique to some of the previous
work in the field of approximate circuits. As future work, we
plan on instrumenting genetic mutation algorithms in ABACUS

alongside or as an enhancement to our iterative greedy heuristic
for design mutation and selection. In addition, we are consider-
ing incorporating improved optimization techniques for design
space exploration and multi-objective optimization [19], [20]
into our methodology. Finally, we also plan on complementing
ABACUS with voltage scaling to realize further power savings.

REFERENCES

[1] Y.-K. Chen, J. Chhugani, P. Dubey, C. Hughes, D. Kim, S. Kumar,
V. Lee, A. Nguyen, and M. Smelyanskiy, “Convergence of Recognition,
Mining, and Synthesis Workloads and its Implications,” Proceedings of
the IEEE, vol. 96, no. 5, pp. 790–807, 2008.

[2] S. Chakradhar and A. Raghunathan, “Best-effort computing: Re-
thinking Parallel Software and Hardware,” in DAC, 2010, pp. 865–870.

[3] L. N. Chakrapani, K. K. Muntimadugu, A. Lingamneni, J. George,
and K. V. Palem, “Highly Energy and Performance Efficient Embedded
Computing through Approximately Correct Arithmetic: A mathematical
Foundation and Preliminary Experimental Validation,” in CASES, 2008,
pp. 187–196.

[4] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“Impact: Imprecise Adders for Low-power Approximate Computing,”
in ISLPED, 2011, pp. 409–414.

[5] J. Huang and J. Lach, “Exploring the Fidelity-Efficiency Design Space
using Imprecise Arithmetic,” in DAC, 2011, pp. 579–584.

[6] M. Choudhury and K. Mohanram, “Approximate Logic Circuits for Low
Overhead, Non-intrusive Concurrent Error Detection,” in DATE, 2008,
pp. 903–908.

[7] D. Shin and S. Gupta, “Approximate Logic Synthesis for Error Tolerant
Applications,” in DATE, 2010, pp. 957–960.

[8] J. George, B. Marr, B. E. S. Akgul, and K. V. Palem, “Probabilistic
Arithmetic and Energy Efficient Embedded Signal Processing,” in
CASES, 2006, pp. 158–168.

[9] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra, “ERSA: Error
Resilient System Architecture for probabilistic applications,” in DATE,
2010, pp. 1560–1565.

[10] A. Chandrakasan and R. Brodersen, “Minimizing Power Consumption
in Digital CMOS Circuits,” Proceedings of the IEEE, vol. 83, no. 4,
pp. 498–523, 1995.

[11] J. Huang, J. Lach, and G. Robins, “A Methodology for Energy-Quality
Tradeoff using Imprecise Hardware,” in DAC, 2012, pp. 504–509.

[12] P. Albicocco, G. Cardarilli, A. Nannarelli, M. Petricca, and M. Re,
“Imprecise Arithmetic for Low Power Image Processing,” in Asilomar
Conference on Signals, Systems and Computers, 2012, pp. 983–987.

[13] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
Digital Signal Processing using Approximate Adders,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 32, no. 1, pp. 124–137, 2013.

[14] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “SALSA: Systematic Logic Synthesis of Approximate Circuits,”
DAC, 2012, pp. 796–801.

[15] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T.
Chakradhar, “Scalable Effort Hardware Design: Exploiting Algorithmic
Resilience for Energy Efficiency,” in DAC, 2010, pp. 555–560.

[16] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic Pro-
gram Repair with Evolutionary Computation,” ACM Communications,
vol. 53, no. 5, pp. 109–116, May 2010.

[17] S. S. Muchnick, Advanced Compiler Design & Implementation. Mor-
gan Kaufmann, 2003.

[18] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “ODIN II -
An Open-source Verilog HDL Synthesis Tool for CAD Research,” in
FCCM, 2010, pp. 149–156.

[19] K. Nepal, O. Ulusel, R. I. Bahar, and S. Reda, “Fast Multi-objective
Algorithmic Design Co-exploration for FPGA-based Accelerators,” in
FCCM, 2012, pp. 65–68.

[20] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A Fast Elitist Non-
dominated Sorting Genetic Algorithm for Multi-objective Optimization:
NSGA-II.” Springer, 2000, pp. 849–858.

