
Protocol Attacks on Advanced PUF Protocols
and Countermeasures

Marten van Dijk
University of Connecticut
Storrs, CT 06269, USA

E-mail: vandijk@engr.uconn.edu

Ulrich Rührmair
Technische Universität München

80333 München, Germany
E-mail: ruehrmair@ilo.de

Abstract—In recent years, PUF-based schemes have not only
been suggested for the basic security tasks of tamper sensitive key
storage or system identification, but also for more complex cryp-
tographic protocols like oblivious transfer (OT), bit commitment
(BC), or key exchange (KE). These more complex protocols are
secure against adversaries in the stand-alone, good PUF model. In
this survey, a shortened version of [17], we explain the stronger
bad PUF model and PUF re-use model. We argue why these
stronger attack models are realistic, and that existing protocols,
if used in practice, will need to face these.

One consequence is that the design of advanced cryptographic
PUF protocols needs to be strongly reconsidered. It suggests
that Strong PUFs require additional hardware properties in
order to be broadly usable in such protocols: Firstly, they
should ideally be erasable, meaning that single PUF-responses
can be erased without affecting other responses. If the area
efficient implementation of this feature turns out to be difficult,
new forms of Controlled PUFs [3] (such as Logically Erasable
and Logically Reconfigurable PUFs [6]) may suffice in certain
applications. Secondly, PUFs should be certifiable, meaning that
one can verify that the PUF has been produced faithfully and
has not been manipulated in any way afterwards. The combined
implementation of these features represents a pressing and
challenging problem for the PUF hardware community.

Index Terms—(Strong) Physical Unclonable Functions;
(Strong) PUFs; Attack Models; Oblivious Transfer; Bit Com-
mitment; Key Exchange; Erasable PUFs; Certifiable PUFs

I. INTRODUCTION

Today’s electronic devices are mobile, cross-linked and
pervasive, which makes them a well-accessible target for
adversaries. The well-known protective cryptographic tech-
niques all rest on the concept of a secret binary key: They
presuppose that devices store a piece of digital information
that is, and remains, unknown to an adversary. It turns out
that this requirement is difficult to realize in practice. Physical
attacks such as invasive, semi-invasive or side-channel attacks
carried out by adversaries with one-time access to the devices,
as well as software attacks like application programming
interface (API) attacks, viruses or Trojan horses, can lead to
key exposure and security breaks. As Ron Rivest emphasized
in his keynote talk at CRYPTO 2011 [13], merely calling a
bit string a “secret key” does not make it secret, but rather
identifies it as an interesting target for the adversary.

Indeed, one main motivation for the development of Phys-
ical Unclonable Functions (PUFs) is their promise to better

978-3-9815370-2-4/DATE14/ c⃝2014 EDAA

protect secret keys. A PUF is an (at least partly) disordered
physical system P that can be challenged with so-called
external stimuli or challenges c, upon which it reacts with cor-
responding responses r. Contrary to standard digital systems,
these responses depend on the micro- or nanoscale structural
disorder of the PUF. It is assumed that this disorder cannot be
cloned or reproduced exactly, not even by the PUF’s original
manufacturer, and that it is unique to each PUF. Any PUF
P thus implements a unique and individual function fP that
maps challenges c to responses r = fP (c). Tuples (c, r) are
called the challenge-response pairs (CRPs) of the PUF.

Due to its complex internal structure, a PUF can avoid
some of the shortcomings of classical digital keys. It is usually
harder to read out, predict, or derive PUF-responses than to
obtain digital keys that are stored in non-volatile memory.
The PUF-responses are only generated when needed, which
means that no secret keys are present permanently in the
system in an easily accessible digital form. Finally, certain
types of PUFs are naturally tamper sensitive: Their exact
behavior depends on minuscule manufacturing irregularities,
often in different layers of the IC. Removing or penetrating
these layers will automatically change the PUF’s read-out
values. These facts have been exploited in the past for different
PUF-based security protocols. Prominent examples include
identification [12], [4], key exchange [12], and various forms
of (tamper sensitive) key storage and applications thereof, such
as intellectual property protection or read-proof memory [5],
[8], [22].

In recent years, also the use of PUFs in more advanced
cryptographic protocols together with formal security proofs
has been investigated. In these protocols, PUFs with a very
large challenge set and a freely accessible challenge-response
interface are employed. This type of PUF sometimes has been
referred to as Physical Random Function [4] or Strong PUF
[5], [20], [19], [15] in the literature. The (Strong) PUF is used
similar to a physical random oracle in these protocols, which
is passed on between the parties, and which can be read-
out exactly by the very party who currently holds physical
possession of it. Its input-output behavior is assumed to be
so complex that its response to a randomly chosen challenge
cannot be predicted numerically and without direct physical
measurement, not even by a person who had physical access
to the Strong PUF at earlier points in time.



In 2010, Rührmair [14] showed that oblivious transfer can
be realized between two parties by physically transferring a
Strong PUF in this setting. He observed that via the classical
reductions of Kilian [7], this implies PUF-based bit commit-
ment and PUF-based secure multi-party computations. In the
same year, the first formal security proof for a Strong PUF
protocol was provided by Rührmair, Busch and Katzenbeisser
[15]. They present definitions and a reductionist security proof
for Strong PUF based identification. In 2011, Rührmair, Jaeger
and Algasinger [18] discuss an attack on a PUF-based session
key exchange scheme of Tuyls and Skoric [23], in which the
scheme is broken under the provision that it is executed several
times and that the adversary gains access to the PUF more
than once. At CRYPTO 2011 Brzuska, Fischlin, Schröder
and Katzenbeisser [1] adapted Canetti’s universal composition
(UC) framework [2] to include PUFs, giving PUF-protocols
for oblivious transfer (OT), bit commitment (BC), and key
exchange (KE). At CHES 2012, Rührmair and van Dijk [16]
presented a quadratic attack on Brzuska et al.’s OT- and BC-
protocols, showing that their security is not maintained if
optical PUFs or electrical PUFs with challenge length of 64
bits are used in their implementation. Recent work continues
this general line of work: At Eurocrypt 2013 Ostrovsky,
Scafuro, Visconti and Wadia [10] investigated the use of so-
called malicious PUFs, and furthermore extend Brzuska et al.’s
communication model in the UC framework. At IEEE S&P
2013 Rührmair and van Dijk [17] proposed a model equivalent
to malicious PUFs under the name bad PUF model, and a new
attack model (motivated by the attack of [18] that breaks [23])
termed PUF re-use model.

This survey is a shortened summary of [17] and explains
why the bad PUF model and PUF re-use model are realistic
threats and what can possibly be done against these threats.
For a detailed discussion on how to exactly break existing
protocols in the bad PUF model, PUF re-use model, or a
combination of the two, we refer the reader to [17]. The
elementary PUF use as internal key storage element and in
simple identification protocols [11], [12] seems less affected.

a) Organization of this paper: In Section II we discuss
and introduce various attack models for Strong PUF protocols.
Section III discusses the need for two counter measures:
Erasable PUFs and Certifiable PUFs.

II. ATTACK MODELS FOR STRONG PUF PROTOCOLS

Section II-A explains the stand-alone, good PUF model,
where we assume that there is only one single, isolated
protocol execution, and that all parties faithfully generate and
never manipulate PUF hardware. In Sections II-B and II-C we
explain stronger adversarial models:

1) The PUF re-use model [18], [17] extends the stand-
alone, good PUF model in that adversaries are allowed
multiple access to PUFs. Its mildest form is the so-called
one-time posterior access model (PAM), which allows
one-time access to the PUF after a given protocol, and
delimits the adversary to mere CRP-measurement on the
PUF.

2) The Bad PUF model [17], [10] allows fraudulent parties
and adversaries to manipulate PUF hardware and to use
so-called bad PUFs: These are PUFs which look like a
normal PUF from the outside, having a standard CRP-
interface etc., but which have extra properties that allow
cheating.

A. The Stand-Alone, Good PUF Model

In the stand-alone, good PUF model, we make the following
assumptions:

1) The protocol is executed only once in a stand-alone
setting, meaning that the protocol is never re-run, also
not any (sub-)sessions of it. The employed PUF(s)
cannot be accessed or communicated with after the end
of the protocol.

2) The employed PUFs are all “good PUFs”, meaning
that are drawn faithfully from a previously specified
distribution of PUFs and are not modified in any way
afterwards, neither by malicious players nor by external
adversaries. They only have the properties and function-
alities expected by the honest protocol participants.

The stand-alone model is not realistic or efficiently realiz-
able in most practical PUF-applications, but it makes a clean
first scenario for studying the security of PUF-protocols.

B. The PUF Re-Use Model

In order to model the execution of multiple PUF protocols,
Brzuska, Fischlin, Schröder and Katzenbeisser [1] proposed
one possible method how Canetti’s UC-framework [2] can be
adapted to PUFs. For a detailed treatment we refer the readers
to the original paper [1] and the follow-up paper by Ostrovsky,
Scafuro, Visconti and Wadia [10]. We summarize the features
of their model that are most relevant below.

1) It is assumed that all used PUFs are drawn faithfully
from a previously specified distribution of PUFs, a
so-called “PUF-family”, and are not modified in any
way afterwards, neither by malicious players nor by
external adversaries. They only have the properties and
functionalities that honest protocol participants expect
from them. This feature is in common with the above
stand-alone, good PUF model.

2) Only one PUF can be used per protocol session sid.
The PUF is bound to this protocol session and cannot
be used in another session.

3) The adversary does not have physical access to the PUF
between the different subsessions ssid of a protocol.

One implicit assumption of Brzuska et al. is that the adver-
sary cannot access the PUF between different (sub-)sessions,
and that the PUF is never re-used in another protocol session.
However, this assumption seems difficult to guarantee in many
natural PUF applications.

To see this, consider the well-established application sce-
nario of a PUF on a bank card, which has been issued by
a central authority CA and is subsequently used in different
terminals [12], [11]. To be more concrete, let us assume that



the PUF is repeatedly employed for a session key exchange be-
tween the CA and the smart-card/terminals. Since an adversary
could set up fake terminals, add fake readers to the card slots of
terminals, or gain temporary possession of the bank card when
it is employed in different contexts (for example when the user
is paying with it), a realistic assumption is that an adversary
will have repeated temporary physical access to the PUF
between the different key exchange (sub-)sessions. However,
such access is not foreseen in the models and protocols of
Brzuska et al.

The example illustrates that in practice, adversaries and
malicious players may gain access to the PUF at least oc-
casionally between different (sub-)sessions. This constitutes a
new, relevant attack point and motivates an extension of the
model of Brzuska et al. [1]. Ostrovsky et al. [10] deal with
this observation in their own manner: They implicitly assume
a one-time use of the PUF. However, such one-time use and
subsequent destruction or locking away of the PUF results
in substantial practical costs. It constitutes a theoretically
acceptable, but at the same time commercially a somewhat
infeasible measure.

b) The PUF Re-Use Model: We assume that at least a
subset of the PUFs employed in the original protocol is used
on more than one occasion, i.e., not all PUFs are used only
once and destroyed immediately afterwards. The adversary or
malicious parties have access to the PUF more than once,
for example before, after or between different protocols or
protocol (sub-)sessions (if there are any).

The description leaves some detail open, the simple reason
being that many differing variants of the PUF re-use model are
possible. For example, one can distinguish between the type of
adversarial access: (i) full physical access, where the adversary
can attempt arbitrary actions on the PUF, including arbitrary
measurements or active physical modification of the PUF, or
(ii) CRP access, where the adversary’s actions are limited to
the mere measurement of CRPs. One can also differentiate
the number of occasions on which access is possible; or
the relative time of the access, such as before or after the
attacked protocol; or the number of CRPs the adversaries can
read out during his access time. One can further distinguish
between different types of re-use: Is the PUF re-used by
the same parties in another instance of the same protocol,
or by entirely new parties in a different protocol? Instead
of declining through all possible scenarios formally here,
we suggest that such differentiation should be made in the
respective security analyses directly.

There is only one specific instantion we would like to define
explicitly here:

c) The One-Time Posterior Access Model (PAM): In the
PAM, we assume that the adversary has got access to at least
a subset of all PUFs employed in the original protocol on
exactly one occasion after the end of the protocol (or protocol
(sub-)session, if there are any), and is furthermore limited to
the measurement of standard CRPs.

We notice that the PAM is arguably the mildest possible
form of the PUF re-use model. Still, it suffices to successfully

attack many existing schemes as explained in [17].

C. The Bad PUF Model

The other central assumption in the good PUF model is
that the players are not allowed to use “bad”, fraudulent PUF-
hardware with properties beyond the expected PUF function-
ality. This assumption can be difficult to uphold in practice.

To motivate bad PUFs, consider once more the earlier
smart-card example. Let us assume that the CA issues the
card that carries the PUF, and that the CA and the smart-
card/terminals want to run an OT protocol in this setting. We
must assume that the CA is not fully trusted by the smart-
card/terminals (note that if the CA was fully trusted, then
the smart-card/terminals would not require an OT implemen-
tation). However, a malicious CA can cheat easily in this
scenario by putting a malicious PUF-hardware (a “bad PUF”)
instead of a normal PUF on the smart card. To name one
example, the CA could replace the normal PUF by a pseudo
random function (PRF) or a pseudo-random number generator
(PRNG) with a seed s known to the CA. If the PRF will
have the same, digital input-output interface as the normal
PUF, such a step will remain unnoticed. Still, it enables the
CA to simulate and predict all responses of this “bad PUF”
without being in physical possession of it, and to break one of
the essential security features of the purported “PUF” on the
bankcard, namely its unpredictability. Under the assumption
that the CA replaces the PUF by a PRF with a seed known to
the CA, the well-known OT protocols of Rührmair [14] and
Brzuska et al. [1] are no longer secure.

Abstracting from this specific example, the general problem
is that in a typical two-party protocol, one of the parties can
fabricate the PUF, while the other party may only use the
PUF “from the outside” via a (digital) challenge-response
interface. It is hard to verify that there is no unexpected,
malicious functionality on the other side of the interface. From
a practical perspective, this observation is most severe for
electrical Strong PUFs, which are the most widely distributed
Strong PUFs today. But it also holds for integrated optical
PUFs as given by Tuyls and Skoric [23].

This motivates a systematic study of bad PUF attacks.
Generally, we denote by the term bad PUF a hardware system
that looks like a proper PUF from the outside, exhibiting a
input-output behavior indistinguishable from a proper PUF,
but which possesses secret, additional properties that allow
cheating. Its assumed similar input-output behavior shall make
it infeasible to distinguish a bad PUF from a proper PUF by
digital challenge-response measurements. In order to detect
bad PUFs, honest parties would need to physically open the
PUF-hardware and to inspect it thoroughly, as a regular and
dedicated step of the protocol. While detection of bad PUFs
would not even be guaranteed by such a step (adversaries
would presumably develop obfuscation techniques), it would
surely destroy the opened PUF, even if it was non-manipulated.
In addition, the inspection step would be beyond the capabil-
ities of an average user.



This makes bad PUFs a very simple and effective way to
cheat. From an abstract perspective, bad PUFs exploit the fact
that PUFs are real physical objects. Unlike the clean binary
strings exchanged in classical cryptographic protocols, these
objects may bring about unwanted properties. They can act as
real, physical “Trojans” and other malicious hardware.

Even though there is a practically infinite number of possi-
bilities how Strong PUFs can act, two types of bad PUFs that
we focus on are (i) PUFs that are numerically simulatable by
their manufacturer (but by no one else), and (ii) bad PUFs
that “log” or record all challenges that have been applied to
them. Both are particularly easy to implement, but suffice for
attacks on existing protocols as demonstrated in [17].

d) Simulatable Bad PUFs (SIM-PUFs): A simulatable
PUF (or SIM-PUF, for short) is a hardware system that looks
like a PUF, having a challenge-response interface etc., but
which possesses a simulation algorithm Sim. Sim takes as
input any challenge c, and computes in polynomial time the
corresponding response r. It is assumed that Sim has been
derived during the fabrication of the simulatable PUF via the
special construction of the PUF. External parties who merely
have access to the simulatable PUF after fabrication are not
able to derive a simulation model.

In practice there are several possibilities for implementing
simulatable PUFs. A straightforward and very efficient way
is to use a trapdoor one-way permutation or pseudo random
function gs based on a short digital seed s. The hardware of the
simulatable PUF simply implements gs. Whenever the PUF is
interrogated over the digital interface with a challenge c, the
hardware outputs the response r = gs(c).

The party who manufactured the PUF knows both g as well
as seed s and can easily simulate the input-output behavior
of the PUF. Furthermore, if a cryptographically hard pseudo-
random function is used, it is practically infeasible for the
honest parties to distinguish the bad PUF from a proper PUF
with a real, random output.

e) Challenge-Logging Bad PUFs (CL-PUFs): A second
feature that bad PUFs may possess is challenge-logging. A
challenge-logging PUF (CL-PUF for short) with secret chal-
lenge c∗, also called the access challenge, is a malicious piece
of hardware that looks like a proper PUF from the outside
(with a challenge-response interface etc.), but which possesses
the following properties:

1) Except for one input challenge c∗, the challenge-res-
ponse behavior of a CL-PUF is exactly like that of
an underlying, “normal” PUF. Whenever a challenge c
unequal to c∗ is applied to the CL-PUF via its interface,
the challenge is passed on to the underlying PUF. The
corresponding response r is obtained from the latter, and
the CL-PUF uses this response r as its output.

2) The CL-PUF has a non-volatile memory (NVM) module
in which it automatically records all challenges that have
been applied to it.

3) When challenge c∗ is applied to the CL-PUF, it does
not pass on this challenge to the underlying PUF as
usual. Instead, the CL-PUF outputs the entire content

of the non-volatile memory module (i.e., all challenges
that have previously been applied to it) via the challenge-
response interface, and erases the content of the NVM
module.

If the PUF has a large, preferably exponential challenge
set, then the probability that someone by chance inputs c∗

and detects the challenge-logging feature is negligibly small.
Please note that many alternative ways for activating the
output mode of the challenge-logger are conceivable, such as
radiowave triggering etc., and even entirely other forms of
logging and read-out “modes” of the logger are possible (see
below).

Finally, we observe that there are two fundamentally dif-
ferent types of CL-PUFs: PUFs that have been malicously
constructed with a challenge-logger from the start; and CL-
PUFs where a logger-module has been added externally by
malicious parties after their construction. The former seem yet
more easy to implement, but also the second type is a viable
attack strategy. In any way, CL-PUFs act as real, physical
Trojans: They record and store security-critical information
and pass it on to the adversary when he holds possession of
the PUF again.

f) Advanced Bad PUFs: How “bad” can a PUF be?
Having so far focused on simple features, which still suffice
to attack many existing protocols, we now mention one par-
ticularly “super-bad” PUF: A Communicating PUF transmits
the challenge, the response, or both, to fraudulent parties.
The transmission could be carried out in real time, or may
be delayed to later, when the PUF is released from the
control of the honest parties. It is relatively straightforward that
such a feature destroys the security of all existing protocols.
Necessary, but also very costly countermeasures are shielding
the PUF during the protocol and destroying them immediately
afterwards.

Many other examples of advanced bad PUFs are conceiv-
able, see [17]. Actually, any such bad PUF types have to be
taken into consideration when the security of a PUF protocol
is analyzed. But we notice that the earlier, simpler types of
SIM-PUFs and CL-PUFs already suffice for attacking many
protocols.

III. COUNTER MEASURES: THE NEED FOR ERASABLE
AND CERTIFIABLE PUFS

The findings of our analysis are somewhat alarming. They
suggest that attack models and protocol design for “advanced”
Strong PUF protocols should be strongly reconsidered. As
PUFs are hardware systems that can have hidden extra fea-
tures, new strategies become necessary here.

One possible countermeasure is to (i) allow additional
computational assumptions in the protocols; (ii) assume that
the PUFs can be shielded during the course of the protocol
in order to prevent communication between the bad PUF and
malicious parties, in particular, that the PUF is no Communi-
cating PUF; and (iii) to use each PUF only once, destroying
it at the end of the protocol in order to prevent access by
adversaries after the protocol. This path is taken by Ostrovsky



et al. in their work [10]. However, there are some downsides
associated with this approach: The introduction of additional
computational assumption takes away some of the appeal of
Strong PUFs as a new, independent cryptographic primitive.
The effective shielding of PUFs until their destruction is hard
to achieve in concurrent, complex environments. And, perhaps
most importantly, the one-time use and destruction of the used
PUFs after each protocol execution is extremely costly in
practice. It constitutes a theoretically viable, but practically
and commercially essentially infeasible measure. They lead
us to the question whether other approaches for fighting the
PUF re-use model and bad PUFs exist in practice.

Two other, direct countermeasures against the PUF re-use
model and bad PUFs are so-called Erasable and Certifiable
PUFs.

g) Erasable PUFs: Erasable PUFs are Strong PUFs with
the additional feature that single responses can be erased from
the PUF (i.e., made impossible to read out forever) without
affecting any of the other responses. Erasable PUFs have
been considered for the first time by Rührmair, Algasinger
and Jaeger in [18], who also suggest an implementation
based on so-called crossbar structures. This implementation is
very area consuming, however. Area efficient implementations
have not been suggested up to this date. In order to better
understand the challenges and the novelty behind Erasable
PUF design, consider two of the currently most established
Strong PUF designs: Arbiter PUFs [21] and optical PUFs [12].
In both designs, many subparts of the PUF interact in order
to generate a response. If one response shall be altered or
erased, at least one of the subparts must be changed. In the
example of optical PUFs, certain subparts of the scattering
platelet would need to be modified; in the case of the Arbiter
PUF, at least one internal delay value would need to be
altered. But this will necessarily also affect and modify other
responses, contradicting the requirements of an Erasable PUF.
Reconfigurable PUFs [9] are unsuited as Erasable PUFs for
the same reason: Their reconfiguration operation by definition
alters all responses of the PUF in one step. This makes any
previously collected CRPs of the PUF invalid.

If the area efficient, direct implementation of Erasable PUFs
remains difficult in the future, then an alternative strategy
could be equipping Strong PUFs with a surrounding control
logic. This logic is supposed to guard and regulate the ac-
cess to the Strong PUF’s challenge-response interface; such
constructions are also known as Controlled PUFs [3]. Along
these lines, one could construct Logically Erasable PUFs by
letting the control logic maintain some record of the previously
applied and of the erased challenges (e.g., in the form of
an authenticated hash tree). Also Logically Reconfigurable
PUFs (LR-PUFs) as introduced by Katzenbeisser et al. [6]
can be an option in this context. They allow the manufacturer
of the PUF to collect a CRP-list that remains valid even
after many reconfiguration operations. This may suffice to
ensure the security of certain protocols in the PUF re-use
model. We remark, however, that such versions of Controlled
PUFs introduce additional assumptions, for example that it is

impossible to circumvent, modify or tamper the control logic
around the underlying Strong PUF.

h) Certifiable PUFs: A straightforward countermeasure
against bad PUFs seems to “authenticate” or “certify” the PUF
in one way or the other in order to detect bad PUFs. For
example, a trusted authority (TA) could send a list of CRPs
as a “fingerprint” of a genuine PUF to the players before
any protocol execution. On closer inspection, however, this
countermeasure turns out to be very problematic, and pretty
much falls apart.

First of all, the use of a TA that needs to be called in
every single protocol session would make the use of PUFs in
security protocols obsolete. The aspired functionalities could
then be implemented in a much simpler fashion directly via the
TA, avoiding the significant effort of physically transferring a
PUF during the protocol. Secondly, CRP-based authentication
does not rule out externally added malicious hardware, such as
external challenge loggers. The latter do not affect the CRP-
behavior of an existing (and previously certified) PUF.

Meaningful “certification” of a PUF hence requires not only
to “identify” a PUF. It also must (i) exclude that external
parts have been added to the PUF or that the PUF-hardware
has been manipulated; and (ii) it should work offline, i.e.,
it must avoid calling a central TA in every execution of
the protocol. Currently, no protocols or PUF implementations
that realize these two properties have been considered in the
literature. Given the current state of the field, it seems hard to
design such methods, even more so at low costs. As discussed
earlier, physical inspection of the inner configuration of the
PUF as a regular protocol step seems no viable possibility.
Furthermore, if efficient methods for certifying the integrity
of (PUF-)hardware existed, then the same methods could be
applied to protect security modules built on classical keys,
making PUFs obsolete.

Summarizing, Certifiable PUFs are PUFs that allow an
offline certification of the fact that they have only those
properties that the honest parties expect from them. It is
possible to verify that they have been drawn faithfully from
the expected PUF distribution, and that they have not been
modified by anyone in any way afterwards. Currently, however,
no measures whatsoever have been considered in the literature
how such authentication can be achieved.

The combination of certifiability and erasability (or vari-
ants such as logical erasability/reconfigurability) in a single
piece of hardware therefore poses a highly relevant, but very
challenging open problem to the PUF hardware community
and security community at large. It should be resolved in
order to restore the full applicability of Strong PUFs as a
general, broadly, and efficiently usable cryptographic tool. It
would allow PUF protocols in complex environments without
additional computational assumptions, and without an eco-
nomically unrealistic one-time use of PUFs.

IV. SUMMARY

We surveyed a number of attack models for Strong PUF
protocols, including the “PUF re-use model” and the “bad



PUF model”. These models constitute practically relevant and
hard-to-detect attack strategies, and are strongly relevant for
practical PUF usage scenarios. We explained countermeasures,
most notably, the concept of Erasable PUFs and Certifiable
PUFs. Their efficient realization poses an open and challenging
research problem for the PUF hardware community.

REFERENCES

[1] C. Brzuska, M. Fischlin, H. Schröder, and S. Katzenbeisser: Physi-
cal Unclonable Functions in the Universal Composition Framework.
CRYPTO 2011. Full version in Cryptology ePrint Archive, Report
2011/681, 2011.

[2] R. Canetti: Universally Composable Security: A New Paradigm for
Cryptographic Protocols. FOCS 2001: 136-145.

[3] B. Gassend, M. van Dijk, D.E. Clarke, E. Torlak, S. Devadas, and P.
Tuyls: Controlled physical random functions and applications. ACM
TISSEC 10(4), 2008.

[4] B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas: Silicon physical
random functions. ACM CCS 2002.

[5] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls: FPGA Intrinsic
PUFs and Their Use for IP Protection. CHES 2007.

[6] S. Katzenbeisser, C. Koabas, V. van der Leest, A.-R. Sadeghi, G. J. Schri-
jen, and C. Wachsmann: Recyclable PUFs: Logically Reconfigurable
PUFs. Journal of Cryptographic Engineering 1(3): 177-186 (2011).

[7] J. Kilian: Founding cryptography on oblivious transfer. STOC, 1988.
[8] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls: The

Butterfly PUF: Protecting IP on every FPGA. HOST 2008.
[9] K. Kursawe, A. R. Sadeghi, D. Schellekens, P. Tuyls, and B. Skoric:

Reconfigurable physical unclonable functions – Enabling technology for
tamper-resistant storage. HOST 2009.

[10] R. Ostrovsky, A. Scafuro, I. Visconti, and A. Wadia: Universally Com-
posable Secure Computation with (Malicious) Physically Uncloneable
Functions. Eurocrypt 2013.

[11] R. Pappu: Physical One-Way Functions. PhD Thesis, Massachusetts
Institute of Technology, 2001.

[12] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld: Physical One-Way
Functions, Science, vol. 297, 2002.

[13] R. Rivest: Illegitimi non carborundum. Invited keynote talk, CRYPTO
2011.

[14] U. Rührmair: Oblivious Transfer based on Physical Unclonable Func-
tions. TRUST 2010.

[15] U. Rührmair, H. Busch, and S. Katzenbeisser: Strong PUFs: Models,
Constructions and Security Proofs. In A.-R. Sadeghi, P. Tuyls (Editors):
Towards Hardware Intrinsic Security: Foundation and Practice. Springer,
2010.

[16] U. Rührmair and M. van Dijk: Practical Security Analysis of PUF-based
Two-Player Protocols. CHES 2012.

[17] U. Rührmair and M. van Dijk: PUFs in Security Protocols: Attack
Models and Security Evaluations. IEEE S&P 2013.

[18] U. Rührmair, C. Jaeger, and M. Algasinger: An Attack on PUF-
based Session Key Exchange and a Hardware-based Countermeasure:
Erasable PUFs. Financial Cryptography, 2011.

[19] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmid-
huber: Modeling Attacks on Physical Unclonable Functions. ACM CCS,
2010.

[20] U. Rührmair, J. Sölter, and F. Sehnke: On the Foundations of Physical
Unclonable Functions. Cryptology ePrint Archive, Report 2009/277,
2009.

[21] G. E. Suh and S. Devadas: Physical Unclonable Functions for Device
Authentication and Secret Key Generation. DAC 2007.

[22] P. Tuyls, G. J. Schrijen, B. Skoric, J. van Geloven, N. Verhaegh, and R.
Wolters Read-Proof Hardware from Protective Coatings. CHES 2006.

[23] P. Tuyls and B. Skoric: Strong Authentication with Physical Unclonable
Functions. In: Security, Privacy and Trust in Modern Data Management,
2007.


