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Abstract—This paper presents a novel mapping optimization
technique for mixed critical multi-core systems with different
reliability requirements. For this scope, we derived a quantitative
reliability metric and presented a scheduling analysis that certi-
fies given mixed-criticality constraints. Our framework is capable
of investigating re-execution, passive replication, and modular
redundancy with optimized voter placement, while typical hard-
ening approaches consider only one or two of these techniques.
The proposed technique complies with existing safety standards
and is power-efficient, as demonstrated by our experiments.

I. INTRODUCTION

Today’s multi-core systems with mixed-criticality come with
a great performance potential, but also with strong require-
ments in terms of reliability [1]. An automotive or avionic
system is a typical example, where control, signal processing,
and multimedia applications co-exist with different safety
and reliability requirement levels. Functional safety levels are
defined by the International Electro-technical Commission in
IEC 61508 [2], and specialized for the automotive domain in
ISO 26262 [3]. This paper addresses the case of transient faults
in mixed-criticality systems. Re-execution and replication are
conventional hardening techniques [4]–[6], that come with
respective overheads in terms of time and resources. Selecting
one of these techniques is an optimization trade-off. When
related to typical mapping/scheduling optimization trade-offs,
the number of options in the design space is dramatically
increasing. Several research efforts have been focusing on the
fault-tolerant mapping optimization problem [4], [5], [7].

In terms of reliability model, Bolchini et al. [5] considered
fault-tolerance, fault-detection, and fault-ignorance as three
levels of mixed-criticality, but without any quantitative mod-
eling. A probabilistic reliability model for a two-level mixed-
criticality system was proposed by Axer et al. [6], where
detection is achieved by a special case of replication, dual
modular redundancy (DMR), and faults are tolerated by re-
executions. The model derives the time to the first failure, but
it is not clear how it can be applied for a certain failure rate
per hour as specified in safety standards. Our technique has
the advantage of considering a continuous range of mixed-
criticality levels, enabled by a probabilistic reliability model.

In terms of system hardening, the proposed approach is
generic, being able to incorporate any technique. Pop et al. [4],
for instance, can only consider re-execution and replication.

Passive replication, where replicated tasks are conditionally
instantiated on request, is not possible there because the static
scheduling cannot consider such conditional executions. In
[7], passive replication can be taken into account as a fault-
tolerance pattern, but without any worst-case performance
guarantee. Grouped voter placement is proposed in [5] to
reduce the overhead of voting procedures. However, they do
not consider the side-effect of grouping, i.e., grouping may
result in violation of reliability constraints if too many tasks
are grouped without intermediate checkings. In the proposed
approach, besides all the hardening techniques mentioned
above, passive replication is also included and the voters are
judiciously assigned in a grouped manner to satisfy reliability
constraints.

The contribution of this paper is twofold: First, we propose a
reliability-aware mapping optimization technique with general
mixed-criticality levels enabled by a probabilistic reliabil-
ity model, which is compatible with the existing standards.
Second, the proposed technique is a generic framework that
considers re-execution, active/passive replication, and the com-
bination thereof, as well as judicious voter placement.

II. SYSTEM MODEL

A. Target Architecture and Application

We assume a network-on-chip (NoC) based multi-core
system A := (CL, nw), characterized by a set of clusters
CL and an on-chip network nw. The on-chip network nw is
characterized by its bandwidth limit bwnw. A cluster cl ∈ CL
consists of a set of processors Pcl connected through an intra-
cluster communication medium, such as a shared bus or a
crossbar, characterized similarly to the on-chip network by
an upper-bound on bandwidth bwcl.1 Each processor p ∈ Pcl

is characterized by its typep, leakage power statp, dynamic
power dynp, and a constant fault rate per time unit λp.
Constant fault rate for a processor is popularly assumed as
shown in [9], [10].

Multiple applications with different levels of criticality are
sharing the system, each of them being described as a task
graph such as a Kahn process network (KPN). An application
set is defined as T , whose elements are the task graphs t :=
(Vt, Et, prt, ft) ∈ T . Each task graph t consists of a set of

1We do not consider faults in the communication links, since they are
usually protected by low-level error-resilient techniques [8].978-3-9815370-2-4/DATE14/ c⃝2014 EDAA



(a) h(v0) = (0, 3, 0, T ),
h(v1) = (1, 0, 0, F )

(b) h(v0) = (0, 3, 0, T ),
h(v1) = (0, 3, 0, T )

(c) h(v0) = (0, 2, 1, T ),
h(v1) = (0, 2, 1, T )

(d) h(v0) = (0, 3, 0, F ),
h(v1) = (0, 3, 0, T )

Fig. 1: Hardening examples: (a) triplication of v0 and re-
execution of v1, (b) triplication for both, (c) passive repli-
cation, and (d) selective voter placement with grouping.

tasks Vt, a set of channels Et, an invocation period prt ∈ Z,
and a reliability constraint ft ∈ (0, 1]. The reliability constraint
ft denotes the number of maximum allowable failures per unit
time. The lower the reliability constraint ft is, the higher the
criticality level is. An instance of the task graph is released
every prt time units, and the probability of unsafe execution
should be smaller than ft.

Each task v ∈ Vt of the task graph t is characterized
by (bcetv, acetv, wcetv, vev, dtv), i.e., best/average/worst-case
execution time (BCET/ACET/WCET), voting overhead, and
detection overhead. The voting overhead vev is related to
replication, while detection dtv overhead includes fault de-
tection, storing/restoring the context, and rolling-back for re-
execution. These will be explained in more detail in the
following subsection. A channel e := (srce, dste) ∈ Et

represents a data dependency from task srce to dste and each
transmission causes a data transfer of size se.

B. Fault Management

Choosing an appropriate hardening technique for a task v ∈
V can be defined as a function h : V → N×N×N×{T, F},
where V is a set of all tasks in the system (

∪
t∈T Vt), which

can have different degrees of re-execution, active replication,
passive replication, and voter existence, respectively (i.e., the
three natural numbers and one boolean value).

Re-execution: In re-execution scheme, it is assumed that
a fault is locally detected at the end of the task execution.
Therefore, other than the overhead imposed by re-executing
the task, the detection comes with additional overhead dtv . In
case of re-execution, all the stateful values are rolled-back to
the initial state and the same task instance is executed again. In
Figure 1(a) v1 of a simple producer(v0)-consumer(v1) applica-
tion is hardened by re-execution, that is, h(v1) = (1, 0, 0, F ).
In this case, the task graph topology remains unchanged, but

the task wcetv is modified to

wcet′v = (wcetv + dtv)× (k + 1) (1)

with k being the maximum number of re-executions.
Replication: Replication uses multiple instances of the

hardened task mapped on different cores. The degree of repli-
cation is usually larger than two, to enable majority voting. For
a task that is only duplicated, only detection is possible which
is the use case of [6]. Contrary to re-execution, replication will
modify the task graph topology. The replication is called active
if all replicated tasks are always executed at runtime. Task v0 is
actively triplicated in Figure 1(a), that is, h(v0) = (0, 3, 0, T ).

In passive replication, not all cloned tasks are proactively
instantiated, but only on request of the voter. This is par-
ticularly beneficial when the system is to be optimized to
minimize average utilization or average power dissipation. Let
us take the example in Figure 1(c) where h(v0) = h(v1) =
(0, 2, 1, T ). v∗,0 and v∗,1, are actively duplicated. Then, when
a faulty situation is detected by the voter, a third replica v∗,2
is instantiated to break the tie (highlighted with dashed arrows
in the figure).

Selective voter placement: Replication scheme can further
be optimized by judicious voter placement. In some cases, two
(or more) consecutive tasks can be clustered and replicated in
a group, instead of individually. By doing so, less resources
are needed for voting, and the overhead of the replicated
communication channels is reduced. Suppose the example
given in Figure 1(d), where v0 and v1 are grouped and
replicated together, sharing the voter vt01. Compared with
a naive voter placement with a similar h function shown in
Figure 1(b), three communication channels are reduced, by
removing redundant copies before/after the voter. The voting
overhead is also reduced by half.

However, the grouped voter placement may come with
reliability loss with respect to the naive strategy, as the
existence of faults is checked less frequently. For instance,
supposing that two faults are happening in the same iteration
on v0,1 and v1,0, respectively, the naive approach is safe, as
it separately detects the two faults. In the case of a grouped
voter placement, this cannot be tolerated since two (out of
three) input values to the voter vt01 are defective. Another
possible drawback is in terms of re-execution latency. If a
fault is detected at vt1 (Figure 1(c)), the execution of v1,2 is
enough. But if v0 does not have a voter in Figure 1(c), we
would have to restart from v0,2 since it is not clear where
exactly the fault happened.

C. Problem Definition

Inputs: Given a target architecture A and a set of
applications T with mixed-criticality requirements,

Outputs: determine a hardening technique h that results in
a modified application T ′, and for each v such that v ∈ Vt

and t ∈ T ′ determine a mapping map, where map : V → P
is mapping tasks to processors, with V =

∪
t∈T ′ Vt and P =∪

cl∈CL Pcl.



Constraints: The output values are valid as long as
bandwidth, schedulability, and reliability constraints are all
satisfied. Due to space limitation, only the intra-cluster com-
munication bandwidth constraint is described: For all edges
e ∈ E =

∪
t∈T Et such that map(srce) ̸= map(dste) and

map(dste) ∪map(srce) ∈ cl, the following equation holds:∑
se/prsrce ≤ bwcl. (2)

Objectives: The proposed technique is not
specific to a certain objective, thus any formulatable
objectives can be minimized/maximized. In this
work, we minimize the average power consumption,
i.e., minimize {

∑
p∈P (statp + dynp · up)}, with

up =
∑

∀v,t,v∈Vt∧map(v)=p acetv/prt the average utilization
of processor p.

III. EVALUATION OF RELIABILITY AND SCHEDULABILITY

In this section, we explain how reliability and schedulability
constraints are evaluated in the proposed mapping optimization
framework. 2

A. Reliability Quantification

The probability that a task v running on processor p
experiences a failure fr(v) is denoted as:

fr(v) = wcetv · λv (3)

That is, the processor executing task v has a constant failure
rate λv , and the longer the execution time is, the more
vulnerable to faults the system is. When more than one tasks of
a task graph run concurrently, the expected failure probability
per unit time is the sum of individual probabilities. That is,
supposing S(v) ⊂ Vt be a task set that can be executed
concurrently with v ∈ Vt,

∑
vi∈S(v)∪{v} fr(vi) ≤ ft must

hold to satisfy the reliability constraint of task graph t. How
to compute fr(v) with hardening techniques is explained in
what follows.

Re-execution: If task v is hardened by re-execution of
degree k, that is, it can be re-executed on the same core at
most k times, the failure probability of v becomes:

frrx,k(v) = ((wcetv + dtv) · λv)
k+1 (4)

Additionally, the timing overhead dtv is considered for de-
tection, state storing/restoring, and rolling-back. Compared to
(3), the system goes faulty only if all k + 1 trials are faulty.

Replication: When task v is hardened by active replication
of degree k, a system-level failure occurs when more than
half of the replicas, i.e., k′ = ⌈k/2⌉ replicas, are faulty. In
other words, a set of faults of cardinality less than k′ can be
tolerated by this hardening technique. The failure rate frrp,k
can be calculated as follows:

frrp,k(v) =
∑

i

{∏
j∈Hi

wcetvj · λvj

}
+ vev · λvtv

(5)

2For brevity, we use simplified terms wcetv , dtv , vev , and λv instead
of wcetv(typemap(v)), dtv(typemap(v)), vev(typemap(v)), λmap(v),
respectively, omitting the index of mapped processors in what follows.

with vev being the accumulated overhead for the voter vtv and
Hi is defined as a set of indices of k′ or more faulty replicated
instances of the original task v.

Two failure scenarios are possible in this case. In one
scenario, k′ or more replicas go out of order due to faults.
The first term of the equation enumerates all the combinations
of k′ faulty replicas. If k = 3 and k′ = 2, for instance, all
possible cases are H1 = {1, 2}, H2 = {1, 3}, H3 = {2, 3},
and H4 = {1, 2, 3}. The second scenario is when the voter
task itself goes defective, which is taken into consideration in
the second term.

We also consider passive replication, where the failure rate
is computed with (5), similar to active replication. Only that,
in passive replication, a task v is hardened with k1 active
replicas and k2 passive replicas. A failure happens if either
half of the total active or passive replicas go out of order or
there is a fault in the voter. Therefore, for passive replication,
we use equation (5) with k′ = ⌈(k1 + k2)/2⌉, which in fact
gives a conservative bound of failure rate.

B. Schedulability Analysis

The fault-management technique chosen for each task to
enhance the reliability may cause uncertain behaviors. If a task
is passively replicated, for instance, not all replicas are always
invoked but only on request of the voter. These conditional
executions complicate the scheduling analysis. Moreover, due
to the well-known scheduling anomaly [11], it cannot be
naively assumed that all the replicas are invoked every time
for the worst case. This issue can be addressed by using
existing scheduling analysis techniques that support variable
task execution times [11], [12]. The original WCET of a task
v is modified to wcet′v as shown in Equation (1) in case of
re-execution, while the behavior of passively replicated tasks
can be modeled by allowing zero BCET. Though we adopt a
holistic scheduling analysis technique proposed in [12], it can
be replaced with any existing technique as long as the variable
execution time is supported.

IV. EVALUATION AND CONCLUSION

We show the effectiveness of the proposed technique with
two synthetic (Synth-1,Synth-2) and three real-life examples.
A cruise control application, Control is taken from [13] and
enriched with three additional synthetic applications, Synth-
a/b/c, to increase the benchmark complexity. Two more control
benchmarks, “medium/large distributed non-preemptive real-
time CORBA application” (DT-med/large) are borrowed from
[14]. In order to impose more complexity and uncertainty, the
invocation period and execution time of constituent tasks are
enlarged by 20 times for DT-med/large. The SIL standard,
defined in IEC 61508 [2], is used to specify the criticality
levels of the applications. It contains four levels with level 4
being the most dependable (10−8 ∼ 10−9 failures per hour)
and level 1 being the least (10−5 ∼ 10−6 failures per hour).
We assume that the target multi-core architecture has 4-16
processors on 2-8 clusters. The detection overhead dt for all
tasks is set to 10 ms, while the voting overhead ve varies from



TABLE I: Power dissipation of different hardenings [W]
Synth-1 Synth-2 DT-med DT-large Cruise

Base 3.39 3.64 4.62 5.41 9.56
BaseP 3.39 3.62 4.54 4.93 8.64
BasePV 2.71 3.57 3.95 4.68 7.92

1 to 2 ms excluding communication overhead. The fault rate
λ of the processors is calculated for the 50 nm technology
according to [10] as 868 FIT (Failure-in-Time, i.e. , expected
failures for one billion device-hours of operation). The power
dissipation of the processor is statp = 0.5W and dynp =
0.9W . Since the defined problem is NP complete, we adopt
an Evolutionary Algorithm (EA) based optimization.

a) Effects of Passive Replication and Selective Voter
Placement: Effects of passive replication and selective voter
placement are shown separately in the comparison. Previous
approaches [4], [5], [7] that only consider re-execution, active
replication, and the combination thereof are set as a baseline
Base in Table I. Passive replication is additionally considered
in BaseP. Finally, all possibilities including passive replication
and selective voter placement of the proposed technique are
included in BasePV. BasePV always outperforms the others,
demonstrating once more that considering passive replication
and selective voter placement at the same time is beneficial.
In the table, it is also shown that Synth-1 and Synth-2 do
not take advantage of the passive replication in BaseP, since
it has very tight latency constraints. And for such a case,
the passive replication and re-execution do not show much
additional benefit.

b) Impact of Various Reliability Levels: As explained so
far, the quantitative reliability model proposed in this paper
leads to an efficient design, enabling the distinction between
several mixed reliability levels. To illustrate this fact, different
reliability requirements were assigned to the four applications
in the Cruise benchmark. For this experiment, all of hardening
techniques are deployed. When the optimization does not
include any reliability concerns (i.e., all applications have
the lowest reliability requirement level, SIL 1), the optimized
average power dissipation was 1.96 W. On the contrary, when
the system is maximally enhanced for reliability with all
applications having SIL 4, the power dissipation was 9.56 W.
In this case, the system hardening was done at the cost of about
7.6 W. Leveraging on the proposed quantification model, we
assign different levels to the four applications, i.e., (4, 3, 2, 1)
for Control, Synth-a, Synth-b, and Synth-c, respectively. In
such a mixed criticality configuration, the optimized power
was 7.92W, the cost of system hardening being reduced by
1.64 W. In absence of faults, the WCRT of Control is 406 ms,
while WCRT with faults is 576 ms when the deadline is given
as 600 ms. Note that all of hardening techniques, including
re-execution, active replication, and passive replication, are
properly used with selective voter placements.

c) Conclusion: In this paper, we propose a reliability-
aware mapping optimization technique for multi-core systems
with mixed criticality. To enable a comparative and quan-

titative evaluation of the optimized mapping, a probability
based reliability metric is proposed. In order to have more
general and complete coverage of hardening techniques, pas-
sive replication and selective voter placement are judiciously
adopted with respect to the given constraints. The proposed
reliability model is verified with existing standards and real-
life examples. Experimental results prove the effectiveness of
the proposed approach.
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[12] J. Kim et al., “A novel analytical method for worst case response time
estimation of distributed embedded systems,” in Proceedings of the
50th Annual Design Automation Conference, ser. DAC ’13, Austin,
Texas: ACM, 2013, 129:1–129:10.

[13] N. Kandasamy et al., “Dependable communication synthesis for
distributed embedded systems,” in Computer Safety, Reliability, and
Security, Springer, 2003, pp. 275–288.

[14] G. Madl et al., “Tutorial for the open-source dream tool,” Univ.
California, Irvine, CA, CECS Tech. Rep, 2006.


