
Formal Verification of Taint-propagation Security Properties in a Commercial SoC Design

Pramod Subramanyan
Princeton University

psubrama@princeton.edu

Divya Arora
Intel Corporation

divya.arora@intel.com

Abstract—SoCs embedded in mobile phones, tablets and
other smart devices come equipped with numerous features that
impose specific security requirements on their hardware and
firmware. Many security requirements can be formulated as taint-
propagation properties that verify information flow between a set
of signals in the design. In this work, we take a tablet SoC design,
formulate its critical security requirements as taint-propagation
properties, and prove them using a formal verification flow. We
describe the properties targeted, techniques to help the verifier
scale, and security bugs uncovered in the process.

I. INTRODUCTION

We live in a world where a cellphone can unlock itself
by “recognizing” an authorized face [1], serve as a virtual
wallet [2] when we go shopping, and play a high-definition
movie [3] while we wait in the checkout line. And all this
while letting our friends know our whereabouts! All these
features have tremendous implications on end-user security
and privacy, and are achieved through protections distributed
across hardware (HW), firmware (FW) and software (SW).
To further complicate things, the end-user is not always the
“victim” in a security exploit. For example, SoCs may contain
high-value assets like the ability to unwrap DRM (Digital
Rights Management) keys, where the end-user is the most
likely adversary. Another example is the SIM lock capability
that binds the end-user to a carrier and helps the phone
manufacturer recover the costs of a subsidized device. Add
to these, the competing security expectations by the device
manufacturer and the chip manufacturer and we get a long list
of complex protections that an SoC needs to support.

Security of a product is only as good as its weakest link.
Hence, a comprehensive validation of its security requirements
is paramount. In this paper, we present a methodology for
formal verification of hardware security requirements in a
commercial tablet SoC design. The key insight is that many
security requirements can be formulated as taint-propagation
properties and this is the most natural way of expressing prop-
erties related to information flow and access control. Structural
path analysis to identify security relevant logic for further
manual review has been tried before [4]. In this work, we per-
form automated formal analysis of taint-propagation properties
using a formal verification tool. We translate several high-level
security requirements into taint-propagation properties and
prove them using the tool. We discuss techniques to overcome
the capacity limitations of the verifier and briefly mention the
uncovered security vulnerabilities. To limit exposure, details
of the SoC design and the vulnerabilities are abstracted out.

II. BACKGROUND

Fig. 1(a) shows a high-level block diagram of our SoC,
which is targeted at tablets for 2015. It comprises several host

CPU cores that run the operating system and user applications.
A Network-on-Chip (NoC) fabric connects the host CPU to
memory and other IP blocks like display, camera, etc. In this
work, we focused on the Security Controller IP (SCIP) which
is magnified in Fig. 1(b). The SCIP comprises an off-the-shelf
microcontroller (µC) which executes authenticated FW (SCIP
FW), a memory management unit (MMU) to enable privilege
separation on the µC, on-chip ROM and RAM, and several
crypto-accelerators. This SCIP HW/FW provides a number of
security features like secure boot, DRM, etc.

A taint-propagation property has the following elements:

• src: RTL signals “seeded’ with the taint.
• dest: signals to which the taint must not propagate for the

property to be satisfied.
• conditions: temporal logic expressions that must be true

at various points in the taint propagation, e.g. when the
taint starts or when it ends.

Confidentiality requirements can be verified by setting a
hardware secret as the src and the data bus of an external
interface as the dest. Similarly, integrity can be verified by
setting an untrusted interface as the src and a sensitive signal
as the dest. The formal verification tool we used analyzes taint-
propagation properties and either proves each property or finds
a counterexample showing a functional path from src to dst.

III. SCIP SECURITY PROPERTIES

We analyzed the architecture and design of the SCIP and
selected three broad areas to verify. After experimentation, we
converged on a set of properties which represent the core
security requirements for each area. The areas are detailed
below and also depicted in Fig.1(b).

A. CKey Secrecy:

Security Requirement: CKey (Chip Key) is a hardware key,
used in DRM application flows. SCIP FW can use CKey for
encryption or decryption by configuring a crypto-engine to
get the key directly from HW. However, to reduce the attack
surface, even SCIP FW is not allowed to read the CKey.

Verification Strategy: Phrasing the question “can SCIP FW
read the CKey?” as a taint-propagation property was straight-
forward, but beyond the tool’s capacity. Fortunately, taint-
propagation properties can be decomposed along the structural
path between src and dest. Instead of asking “Can A reach C?”,
we can ask “Can A reach B and can B reach C?”, where B
is some signal on the structural path. We also had to guide
the tool to ignore certain paths. For instance, a path that goes
through the encryption logic and uses the CKey is a legitimate
taint, but uninteresting from the perspective of CKey secrecy.

978-3-9815370-2-4/DATE14/ c©2014 EDAA



Microcontroller

ROM

RAM

Host Interface

MMU

Access Control 

Block

AES engine

Other 

Peripherals

CKeyCore 0

Host CPUs

Core n

Fabric 1

Display

Camera

Graphics

Fabric 2

SCIP...

Area A: Ckey 

secrecy

(a) SoC Block Diagram (b) SCIP Block Diagram

Area C: NoC 

access control

Area B: User / 

Supervisor 

separation

Fig. 1. SoC architecture and block diagram of the Security Controller IP that we analyzed.

B. User/Supervisor (U/SU) Mode Separation:

Security Requirement: SCIP µC can run FW in User or Su-
pervisor mode. The MMU performs logical to physical address
translation and also enforces read/write/execute access controls
on the physical address range. Once the MMU is configured,
User FW should not be able to access privileged memory or
I/O directly. Note this security requirement is applicable to
almost all modern processors and microcontrollers.

Verification Strategy: Formulation of this property required
more creativity and domain knowledge. We identified HW lo-
cations which could enable User FW to break mode separation
and created distinct properties with each of them as dest. These
properties also needed a src-precondition to ensure the taint
was started by a User instruction. To specify the precondition,
we had to add some book-keeping logic to the µC pipeline.
We also had to initialize the formal model to a state where the
MMU was properly configured. Finally, we had to abstract
some µC blocks and reduce the number of MMU entries in
the design to make the proofs scale.

C. NoC Access Control:

Security Requirement: SCIP is a sensitive IP and transactions
from other untrusted IPs, including those initiated by Host SW
should not be able to write to SCIP internal registers. NoC
access control is a common security property which applies
to many sensitive IPs in the SoC and a methodology to verify
these properties in one IP can be ported easily to others and
added to the SoC regression suite.

Verification Strategy: Property formulation was straightfor-
ward but we had to introduce some assumptions to get full
proofs. The underlying insight here was that a counter-example
could be of 2 types: (a) incoming transaction can write to an
SCIP register or (b) incoming transaction can “influence” the
value written to SCIP register by the µC. We excluded (b) by
disconnecting the µC interface and obtained full proofs.

IV. RESULTS

Since SCIP had been previously validated through
simulation-based tests and manual reviews, we were expecting
proofs of correctness rather than bugs. However, the formal
methodology uncovered two RTL logic bugs and both were
also demonstrated through exploits in the pre-si environment.

CKey disclosure bug: This bug uncovered a sequence of
transactions whereby SEC FW could “trick” the crypto-engine

into thinking that it had deleted the CKey from a temporary
register while the key was still available for the FW to read.

U/SU separation bug: This bug involved the interaction
between an unaligned store and a prior store instruction and
could be exploited by User FW to write to MMU registers.

In our experience, a variety of security requirements can
be phrased as taint-propagation properties and be formally
verified even in complex, real-world designs. It is also easier
to debug counter-examples for these properties, as the flow of
tainted information is clearly visible in the counter-example
trace. A key advantage of this methodology is the ability to
specify an intuitive “high-level” taint-propagation property and
then have the tool search through the space of all transac-
tion/instruction sequences to find issues. Both bugs we found
involved sequences of seemingly unrelated instructions that
would have been quite hard to find through manual review,
simulation-based testing or even temporal logic assertions.
Even when the formal tool is unable to scale, assumptions can
be intelligently added to reduce the search space and yield
constrained but useful proofs (e.g., see §III-C). For example,
in the NoC Access Control scenario, our assumptions allowed
us to prove that a significant subset of attacks were impossible.

V. CONCLUSIONS

In this work, we analyzed the security controller of a
tablet SoC, formulated its critical security requirements as
taint-propagation properties, and proved them using a formal
verification tool. We described the properties proved and
techniques to help the verifier scale. While the objective of
this work was to test a new methodology, it can easily be
extended to get coverage on security properties throughout the
SoC. We believe our work demonstrates that taint-propagation
properties are an intuitive and effective technique for verifying
a large class of hardware security properties.

REFERENCES

[1] Android Documentation: Camera.Face. https://developer.android.com/
reference/android/hardware/Camera.Face.html, 2011.

[2] Google Wallet. http://www.google.com/wallet/, 2013.
[3] Widevine DRM. http://www.widevine.com/, 2013.
[4] David W. Palmer and Parbati Kumar Manna. An Efficient Algorithm for

Identifying Security Relevant Logic and Vulnerabilities in RTL Designs.
In Proc. of HOST, 2013.


