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Abstract—Thermal constraints limit the time for which a
processor can run at high frequency. Such thermal-throttling
complicates the computation of response times of jobs. For
multiple processors, a key decision is where to allocate the next
job. For distributed thermally-throttled procesosrs, we present
COOLIP with a simple allocation policy: a job is allocated to
the earliest available processor, and if there are several available
simultaneously, to the coolest one. For Poisson distribution of
inter-arrival times and Gaussian distribution of execution de-
mand of jobs, COOLIP matches the 95-percentile response time
of Earliest Finish-Time (EFT) policy which minimizes response
time with full knowledge of execution demand of unfinished
jobs and thermal models of processors. We argue that COOLIP
performs well because it directs the processors into states such
that a defined sufficient condition of optimality holds.

I. INTRODUCTION

Most processors offer a range of operating frequencies

which can be changed at runtime. For instance, the AMD

Opteron 2218 series processor has five P-states with per-

formance varying up to 2.6x [1]. The P-states with higher

frequency can execute tasks faster, but consume more power.

Choosing the appropriate P-state that balances performance

and power objectives is a key challenge.

Besides power, another main concern is on-chip tempera-

ture. The current practice is to execute at high frequency for

managed, short durations of time such that safe temperature

thresholds are not exceeded. Consider the example of Turbo

Boost in the Intel Sandy Bridge processors [2]. Turbo Boost

can run the processor at up to 1.2-1.3x the Thermal Design

Power (TDP). However, the high frequency can be sustained

only for up to 30-60s. Subsequently, the processor must run at

nominal TDP and build up a thermal budget. Thus, availability

of high operating frequencies is thermally-throttled.

Multiple distributed processors may provide a solution to

thermal-throttling. Under moderate utilization, some proces-

sors may have the thermal budget to execute at high frequency

and absorb a burst of workload. After this, it may be the turn

of other processors to execute at higher frequency. To take

advantage of such thermal-multiplexing, we need a good policy

to allocate incoming jobs on the processors. In this work, we

study an allocation policy for homegeneous thermally-throttled

processors to minimize the response time of jobs.

Allocating jobs considering thermal effects has been studied

in two different domains. First, in the data-center context, job
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allocation is used to minimize response times and the high

cooling costs [3], [4]. Second, for chip multi-processors, job

allocation is used to meet deadlines and peak temperature

requirements [5], [6]. In both these domains, job allocation

is co-optimized along with the control of cooling mechanism

in data-centers and custom frequency scaling in chip multi-

processors. In contrast, we follow the approach suggested in

[7] with a separation of concerns. The temperature is managed

by some given policy, in our case by thermal-throttling of the

processor, and the job allocation tries to minimize response

time given such thermal-throttling. Apart from a decoupled

design, this approach helps identify basic principles which can

then be verified for the co-optimized case.

We present COOLIP, which stands for COOLest among

Idle Processors. A job is allocated to the earliest available

processor, and if there are several available simultaneously, to

the coolest one. We study the 95-percentile response time of a

trace of jobs with Poisson distribution of inter-arrival times and

a Gaussian distribution of execution demands. Recent results

highlight the importance of optimizing the tail of the response

time distribution in data-centers [8]. We show that COOLIP,

which only requires the current temperatures, performs similar

to the Earliest Finish-Time (EFT) policy, which computes the

optimal allocation decision to minimize response time with

full knowledge of execution demand of unfinished jobs and

thermal models of processors. This result is observed for

varying ranges of the number of processors, the utilization and

the workload parameters. We argue that this surprisingly good

performance of COOLIP is because it directs the processors

into states such that often a specific sufficient condition holds.

This condition guarantees that the allocation made by COOLIP

minimizes the response time of the next job.

The rest of the paper is organized as follows. In Section II

we specify the thermal and workload models. In Section III we

prove a sufficient condition under which a simple allocation

policy optimally minimizes the response time of the next job.

Based on this result, we define COOLIP in Section IV and

compare its performance with other policies in Section V.

II. SYSTEM MODEL

We consider Np homogeneous thermally-throttled processors

executing a trace of jobs in First-Come-First-Serve order.

Thermal Model: In system-level studies, the thermal-

model of a processor is specified as an equivalent RC network

[9], [5], [10]. For such a model, for each frequency F at which



TABLE I
THERMAL MODEL OF AN EXAMPLE SYSTEM

T∞

IDL
T∞

LO
T∞

HI
τ FLO FHI

300 330 380 1 1 1.5

Fig. 1. Example of thermal-throttling
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the processor operates, the evolution of temperature follows

T (t) = T (0) + (T∞
F − T (0))(1− exp(−t/τ)), t ≥ 0, (1)

where T∞
F is the steady-state temperature when continuously

executing at the frequency F and τ is the rate constant.

T∞
F depends on the ambient temperature, power consumption

at that frequency, and the thermal conductance between the

processor and the ambient through its heat-sink [9]. The rate

constant denotes the rate of heat transfer and depends on the

thermal conductance and capacitance of the processor. When

the processor is not executing any job, it is said to be idle

with a steady-state temperature T∞
IDL. The thermal parameters

are the same for all processors. We neglect heat exchange

between processors. This holds if the cooling mechanism

isolates processors, or if the effect of heat exchange can be

approximated by a higher ambient temperature.

Thermal-Throttling: Each processor has two frequencies

FHI and FLO with steady-state temperatures T∞
HI and T∞

LO,

respectively. Frequency at time t, denoted F (t), is given as

F (t) = FHI , if T (t) < T∞
LO,

= FLO, else. (2)

The above throttling ensures that the temperature of a proces-

sor does not exceed T∞
LO, independent of the workload.

Workload: We consider a trace of jobs with the stan-

dard assumptions: the inter-arrival times follow a Poisson

distribution with rate λ and execution demands follow a

Gaussian distribution with mean Cµ and standard deviation

Cσ . Execution demand is the time required to finish the job at

the lower frequency FLO, and scales linearly with frequency.

Example: Consider thermal parameters shown in Table I.

Throughout, all temperature values will be in Kelvin and time

values in seconds. Let jobs J1 and J2 arrive at times 0 and

0.5 with execution demand of 0.6 each. The execution of these

jobs on one processor is shown in Fig. 1. J1 executes at the

high frequency FHI , but heats up the processor. This leads to

thermal-throttling during the execution of J2.

As seen in this example, with thermal-throttling the response

time of a job depends on the previous execution profile of the

processor. This complex dependence should be considered in

allocating the jobs on multiple processors.

III. A SUFFICIENT CONDITION FOR MINIMIZING

RESPONSE TIME

In this section, we will establish a condition under which a

simple job allocation policy is the optimal one. This will then

motivate the design of the COOLIP policy in the next section.

We begin by defining two properties for each processor.

Definition 1 (Finish-time at time t). Assume no jobs are

allocated on or after t. Then, finish-time of processor pi at t,
denoted as tfi (t), is the time when pi will finish executing all

jobs allocated to it before t. Also, tf
max

(t) is the largest finish-

time across all processors, i.e., tf
max

(t) = max{i:pi∈P} t
f
i (t).

The finish-time specifies when a processor will be idle and

hence ready to execute another job. If a processor pi is already

available at time t, then tfi (t) = t. Also, by earliest available

processor we refer to the one with the smallest finish-time.

Definition 2 (All-Idle Temperature at time t). Assume no jobs

are allocated on or after time t. The all-idle temperature of a

processor pi at time t, denoted as T ai
i (t), is the temperature

of pi at time tf
max

(t).

The all-idle temperature of a processor is its temperature when

all processors become idle. A processor which is idle earlier

can cool down until all other processors are idle. Both the

finish-times and the all-idle temperatures remain unchanged

until a new job is allocated as given below.

Lemma 1. If no jobs are allocated in the time interval [t1, t2],
then tfi (·) and T ai

i (·) for every processor pi ∈ P remains

invariant in the domain [t1, t2].

We are now ready to define the sufficient condition. The

condition says that if the earliest available processor has the

lowest all-idle temperature, then allocating the next job to that

processor minimizes the job’s response time.

Theorem 2. At some time t, if for some processor pu ∈ P ,

tfu(t) = min
{i:pi∈P}

tfi (t), and (3)

T ai
u (t) = min

{i:pi∈P}
T ai
i (t), (4)

then allocating the next job to pu minimizes its response time.

Proof: Let job J be allocated to pv 6= pu, and begin

executing at time t. Then, from (3) pu is idle at t, and from

(4) pu cannot have a higher temperature than pv at time t.
Since, response time of a job monotonically increases with

the initial temperature of the processor [10], executing J on

pu cannot finish later than when executing on pv .

The theorem establishes a sufficient condition. Indeed, it

provides no guarantee when (3) and (4) are not satisfied by

any processor. If the conditions are met, we still need to decide

when to allocate the next job. We may either allocate the job

as soon as possible, or we may wait and let the processors

cool down. The following result, adapted from simliar results

in [7], [10], establishes the optimality of a greedy solution.

Lemma 3. Let at some time t, the processor pu ∈ P satisfy

(3) and (4), then allocating the next job to pu as soon as

possible optimally minimizes the job’s response time.



In conclusion, if (3) and (4) are satisfied, then we wait for

processor(s) to be idle and allocate the job to the coolest one.

Importantly, this result does not depend on thermal or job

parameters, or allocation decisions thus far.

IV. COOLIP POLICY

In this section, motivated by the sufficient condition of

the previous section, we define the COOLIP policy. We also

present a numerical case to understand how the policy works.

Definition 3 (COOLIP policy). Upon arrival, a job is inserted

into a global First-In-First-Out (FIFO) queue. Whenever a

processor is idle the job at the head of the global FIFO queue

is allocated to it. If several processors are idle simultaneously,

the job is allocated to the coolest processor.

Note the economy in the inputs of COOLIP policy. It only

requires (a) the temperatures of all processors, and (b) if

the processors are idle or busy. Both of these are usually

available. It does not need models for heat dissipation, the

thermal-throttling conditions or execution demand of pending

jobs. However, in COOLIP, a job is only allocated when some

processor becomes idle. This requires a small communication

latency between the FIFO queue and the processors.

COOLIP implicitly chooses the processor with minimum

finish time by deferring the allocation until a processor is

idle. If multiple processors are idle simultaneously, then the

one with the smallest temperature has the smallest all-idle

temperature (Lemma 1). Also COOLIP greedily allocates the

job (Lemma 3). These properties lead to the following result.

Lemma 4. If the sufficient condition of Theorem 2 is satis-

fied at some time t, then the COOLIP policy minimizes the

response time of the next job allocated on or after t.

COOLIP is optimal if (3) and (4) hold. How often does this

occur? With a specific example, we will illustrate that COOLIP

ensures that sufficient conditions often hold. To this end, we

take three steps. First, we develop a scheme to represent the

state of the processors at a given point of time. Then, for

a given state we show how to compute the probability of

satisfying the sufficient condition. Finally, we show how to

compute steady-state probabilities of different possible states.

(a) A Scheme to Represent the State of the Processors:

From Lemma 1, we know that finish times and all-idle

temperatures are constant between allocation decisions. Thus,

we can specify these parameters once per job. For every job J ,

we represent the state S by a set of tuples for each processor.

For processor pi its state is the tuple (ti, Ti), where ti and Ti

are the time and temperature, respectively, when pi becomes

idle. ti is specified relative to the arrival time of the job before

J , denoted J ′. If some processor pi is idle before J ′ arrives

and J ′ is not allocated to it, then we set ti = 0 and Ti is the

temperature of pj at the arrival time of J ′.

The valid tuples are bounded: t is a non-negative num-

ber upper-bounded by worst-case response time, while T ∈
[T∞

IDL, T
∞
LO]. If we discretize the possible values of ti and Ti,

we obtain a finite, though approximate, set of states S.
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Fig. 2. (a) For state S∗ satisfaction of sufficient condition. Not satisfied in
shaded region. (b) Heat-map of the steady-state probability of different states.
Darker points have higher probability, white region has negligible probability.

(b) Probability of Satisfying the Sufficient Condition from

a given State: Consider a setup of two processors with thermal

model as in Table I. For the workload, let Cµ = Cσ = 0.25
and λ = 0.5. Let us study the allocation policy for a specific

job J , when the state of the processors is

S∗ = {(t1, T1) = (0.35, 330), (t2, T2) = (0.45, 305)}.

For each state S ∈ S, we compute the probability, denoted

ρ(S), that (3) and (4) hold after the execution of J . Two

random variables affect ρ(S): the arrival time and the exe-

cution demand of J . Both these are governed by respective

probability distributions. Let the inter-arrival time between J
and the previous job be aJ , and the execution demand of J
be CJ . Then, for different values of aJ and CJ , we can check

if the sufficient condition is satisfied.

For the state S∗, we plot in Fig. 2(a) if (3) and (4) hold.

Note the three distinct regions: aJ < t1, aJ ∈ [t1, t2] and

aJ > t2. Multiplying this data with the probability of the

individual events, we compute ρ(S∗) = 0.21. The low value

of ρ(S∗) indicates that COOLIP is often not guaranteed to

minimize response-time in the state S∗. Thus, COOLIP may

not always make the optimal allocation decision.

(c) Steady-State Probability: We compute the steady-

state probability distribution for each state, denoted η(S). In

other words, when executing the COOLIP policy, η(S) is the

long-term probability of visiting the state S. We construct

the Markov transition probability matrix A, where the (i, j)th
element is the probability of moving from state Sj to state Si.

The eigenvector of A gives the steady-state probability, η.

For the considered example, we plot in Fig. 2(b) the steady-

state probability η, in a 2-D graph where the states are

represented by the differences in the tuples for either processor.

States with high η have either (a) ti = tj = 0, i.e., both

processors are idle when the job arrives, or (b) ti > tj and

Ti > Tj , i.e., the processor with later finish time has a higher

finish temperature. For states belonging to either case, we

expect high probability of satisfying the sufficient condition.

We confirm this numerically: For the most probable states

accounting for about 75% of the total probability, the value of

η for each state is 1, i.e., the sufficient condition is guaranteed

to be true for each of these probable states.

From this example, we draw the following conclusions.

COOLIP is not optimal and there are states such as the con-

sidered S∗ where it can make poor decisions. However, when



allocating a trace of jobs with COOLIP, the processors are

often driven into states wherein COOLIP performs optimally.

V. COMPARISON WITH OTHER ALLOCATION POLICIES

In this section, we will compare COOLIP with other poli-

cies. First we define the other policies we consider.

Earliest Finish-Time (EFT): The EFT policy computes

the finish time if allocating the next job to each of the

processors, and then picks the allocation that minimizes the

finish time. This computation is done with full knowledge of

the thermal models of the processors, the throttling conditions,

and execution demand of all unfinished jobs. Thus, EFT

optimally minimizes the response time of the next job.

Load Balancer (LB): The LB policy allocates the next

job to the processor which has been allocated the smallest

cumulative execution demand until then. LB requires the

execution demand of all unfinished jobs.

Round Robin (RR): The RR policy allocates job to the

least recently allocated processor.

Random Available Processor (RAP): The RAP policy

allocates the next job to the first available processor. If there

are several, it chooses randomly. Comparing COOLIP to RAP

checks the importance of the temperature feedback.

In all the experiments, the thermal parameters are as in

Table I. For different experiments, by performance of a policy

(except EFT) we refer to the percentage difference between the

95-percentile response time of that policy and the 95-percentile

response time of EFT policy. Each data point is the average

of performance numbers for 100,000 different simulations.

(a) Varying utilization (Fig.3(a)): We consider two pro-

cessors. We define utilization U as U =
Cµ

NP×λ
. We set

Cµ = Cσ = 0.25, and vary λ according to the value of U .

(b) Varying execution demand (Fig.3(b)): We consider

two processors. We vary Cµ, with Cσ = Cµ. We fix U = 0.8
and compute λ, accordingly.

(c) Varying number of processors (Fig.3(c)): We fix Cµ =
Cσ = 0.25 and U = 0.8. We vary the number of processors

NP , and set set λ accordingly.

(d) Mixed-Type Workload (Fig.3(d)): We consider a trace

of jobs from two streams with different parameters executing

on two processors. We set (Cµ)1 = 0.25 and vary (Cµ)2. We

set U1 = U2 = 0.4 and set λ1 and λ2 accordingly.

We make the following observations from the results.

• COOLIP matches the 95-percentile response-time of EFT.

In all our experiments, the worst-case performance differ-

ence between COOLIP and EFT was a negligible 0.004%.

• LB is worse than COOLIP (by about 1%). Note that LB

uses the execution demand of all pending jobs, which is

often not known. In spite of this, LB performs worse than

COOLIP, which instead uses the current temperatures.

• RR performs significantly worse than COOLIP (on av-

erage 2x), and shows strong dependence on different

parameters. Thus, due to variability in job parameters

thermal-multiplexing does not follow a cyclical order.

• RAP performs significantly worse than COOLIP (on aver-

age 1.5-2x), especially for high utilization. Note that RAP

is similar to COOLIP, except that it does not choose the

coolest processor when there are several available. This

highlights the importance of the temperature feedback.

VI. CONCLUSIONS

The simple COOLIP policy effectively minimizes the 95-

percentile response times of jobs on distributed thermally-

throttled processors. While the choice of COOLIP is not

always the optimal one, making a series of allocations with

COOLIP prepares the right conditions under which it performs

well. Further interest arises in heterogeneous processors and

thermal coupling between processors. We believe that in such

cases too, the current temperatures of the processors can be

used to define simple yet effective allocation policies.
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Fig. 3. Difference in percentage between 95-percentile response time of
different policies and EFT. Lower numbers are better.
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