
Contention Aware Frequency Scaling on CMPs with Guaranteed Quality of Service
Hao Shen and Qinru Qiu

 Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, New York, USA
{hshen01, qiqiu}@syr.edu

Abstract
Workload consolidation is usually performed in datacenters to
improve server utilization for higher energy efficiency. One of
the key issues related to workload consolidation is contention
for shared resources such as last level cache, main memory,
memory controller, etc. Dynamic voltage and frequency
scaling (DVFS) of CPU is another effective technique that has
widely been used to trade the performance for power
reduction. We have found that the degree of resource
contention of a system affects its performance sensitivity to
CPU frequency. In this paper, we apply machine learning
techniques to construct a model that quantifies runtime
performance degradation caused by resource contention and
frequency scaling. The inputs of our model are readings from
Performance Monitoring Units (PMU) screened using
standard feature selection technique. The model is tested on an
SMT-enabled chip multi-processor and it reaches up to 90%
accuracy. Experimental results show that, guided by the
performance model, runtime power management techniques
such as DVFS can achieve more accurate power and
performance tradeoff without violating the quality of service
(QoS) agreement. The QoS violation of the proposed system is
significantly lower than systems that have no performance
degradation information.
Key words: consolidation, frequency scaling, power
management, contention
1. Introduction
It has been pointed out [2] that the server energy efficiency
reduces super-linearly as its utilization goes down. Due to the
severe lack of energy proportionality in today’s computers,
workload consolidation is usually performed in datacenters to
improve server utilization for higher energy efficiency. When
used together with power management on idle machines, this
technique can lead to significant power savings [1].
Today’s high-end servers have multiple processing units that
consist of several symmetric multiprocessing (SMP) cores.
Each physical core also comprises more than one logical cores
enabled by the simultaneous multithreading (SMT) technique.
One of the key issues related to workload consolidation is
performance degradation due to the contentions for shared
resources. At SMP level these shared resources include main
memory, last level cache, memory controller, etc. At SMT
level, the shared resources also include execution modules
such as instruction issue ports, ALU, branch target buffers,
low level caches, etc. [5][6]. The degree of performance
degradation is a function of the resource usage of all processes
that are co-running and hence is hard to predict. Even if we
can measure the execution time of an application accurately,
there is no direct way to tell how much degradation that the
*This work is supported in part by NSF under grant CNS-0845947
978-3-9815370-2-4/DATE14/©2014 EDAA

process went through unless we have a reference copy of the
same application running on the same hardware machine by
itself alone.
Dynamic voltage and frequency scaling (DVFS) is another
effective low power technique that has widely been used.
Compared to workload consolidation and runtime power
management, DVFS provides finer adjustment in performance
and power consumption tradeoffs and associates with much
less control overhead. In a hierarchical power management
framework [1][8], the upper level is usually virtual machine
management that performs workload consolidation, while the
lower level is usually based on voltage and frequency scaling.
Due to the speed gap between CPU and memory subsystem,
the performance impact of DVFS is not linearly proportional
to the scale of frequency reduction [12]. Different applications
have different sensitivity to frequency scaling. A memory
intensive application usually suffers less performance
degradation from DVFS than a CPU intensive one, as the CPU
speed is no longer the performance bottleneck. The same can
be expected for many systems running multiple consolidated
workloads. As their performance constrained by the shared
resources, such as memory, power reduction can be achieved
by applying DVFS without significant performance impact.
However, similar to systems with resource contention, it is
hard to directly tell an application’s performance sensitivity to
frequency scaling without having a reference copy running.
Performance degradation should be hidden from the customers,
especially in a cloud environment, where the quality of service
(QoS) is specified by the service level agreement (SLA)
between service providers and customers and customers are
charged based upon usage or reservation of cloud resources.
How to guarantee the service level in a system that performs
workload consolidation and DVFS for power control is an
urgent research problem.
Previous works studied how to optimize process scheduling to
mitigate the resource contention ([4], [8]~[12]). Many of them
aim at finding a metric that must be balanced across the
running threads to minimize the resource contention. The
metrics are normally related to the last level cache miss rate.
These works make the best effort to mitigate the resource
contention, however, they do not report the performance
degradation during runtime. Hence, without a reference copy,
it is almost not possible to tell at runtime if certain scheduling
algorithm does improve the performance and how much it
improves. After all, resource usage of a software program is
dynamically changing. An increase in IPS (instruction per
second) does not necessarily indicate the adoption of a more
efficient scheduling algorithm. It may simply because the
program has completed loading all data from hard disk and
started processing them. It would be beneficial if the service
provider knows how much degradation the target process is

undergoing when it is co-scheduled with other processes
competing for the shared resource and when the DVFS is
applied. With such information, further adjustment in
performance power tradeoff can be adopted.
The problem is further complicated when CPU frequency
scaling is performed in a system with resource contention,
because its impact on the usage of different resources is not
equal. Finding an architecture level analytical model to
quantify performance degradation in a system with resource
contention and frequency scaling is almost not possible.
Machine learning techniques seem to be the only feasible
solution [3].
Some works have been proposed to apply machine learning
techniques to model the performance change of the tasks that
have different co-runners [3][7][13]. Among these works, [3]
is the most similar to this work. It uses the hardware
performance counter information to estimate the performance
degradation caused by resource contention on an SMP
machine. However, none of these works consider the
possibility that a system could also run at different voltage and
frequency levels. All of these previous works consider SMP
machine where only single thread is running on each core.
They ignore the contention for shared execution resources.
In this work, we applied machine learning techniques to
develop a model which estimate performance degradation of a
task considering the impact of resource contention and
frequency scaling simultaneously. We need to point out that,
this model does not “predict” the performance of a given task
schedule and frequency setting. Instead, it monitors the PMUs
of current server, and estimates its performance degradation
with the respect to the reference of an ideal system (i.e. the
system without any resource contention and frequency scaling.)
The information can be used as feedbacks to guide scheduling
and DVFS. Compared to previous works (especially [3]), the
contributions of this paper are:
1. It studies the performance impact of resource contention

and frequency scaling. Our results demonstrate the necessity
of considering them together at the same time for
performance modeling.

2. A model is created to quantify performance degradation of a
task under resource contention and frequency scaling in
SMT-enabled chip multi-processor.

3. It demonstrates how the model can be used in the cloud
server to guide the power management while maintain the
required quality of service of each task.

The rest of the paper is organized as follows: Section 2
presents some observations that motivate the proposed
performance model. Section 3 presents the model construction
procedure, and experimental results are presented in Section 4
Section 5 gives the conclusions.
2. Motivational observations
In this section, we provide some experimental data that
motivate the search for a model that captures the performance
impact of both resource contention and frequency scaling. Our
experimental system is an Intel Ivy Bridge i3770K CPU
machine with 4 physical cores and 8 logical cores (SMT2).

Each physical core has dedicated L1 and L2 cache (shared by
two logical cores) while all cores share the same 8MB L3
cache. It supports frequency scaling from 3.5 GHz to 1.6 GHz
with a step of 0.1 GHz. It is also equipped with 8GB two-
channel 1600 MHz DDR3 memory. Ubuntu Linux is installed.
The configuration of this experimental platform is
representative among many commercial computers on the
market nowadays.
Though many research papers assume that frequency scaling
can be applied at core level, Intel Ivy Bridge processors only
have one voltage regulator, the per-core level frequency
scaling is disabled by firmware and OS [15]. Each physical
core can be put in deep sleep C state independently [15] when
they become idle. This state has very low power consumption
due to power and clock gating. The socket power of our
experimental system is around 24W during idle state when
deep sleep C state is enabled. When the deep C state is
disabled, the idle power becomes 36W at lowest frequency
and 63W at highest frequency.
Nowadays the memory subsystem becomes relatively fast. We
observe that running one single memory intensive task will be
far from saturating the memory subsystem of the server. The
performance of the task scales almost linearly during
frequency scaling as the CPU and cache speed are still the
bottleneck even for memory intensive tasks. The linear
relation stops only when multiple memory intensive tasks are
active running simultaneously.

(a) Performance of uniform workload (b) Memory intensive task in hybrid workload

 (c) CPU intensive task in hybrid workload (d) Impact from different SMT neighbors
Figure 1 Performance sensitivity to resource contention and frequency scaling

Our hypothesis is that different co-scheduled jobs not only
affect the performance of an application by generating
resource contentions, but also affect its sensitivity to
frequency scaling. To demonstrate this, we create workload
that has various levels of resource contention. Our workload
consists of two benchmarks from SPEC CPU2006 [18]. One is
lbm, which is memory intensive; and the other is gamess,
which is CPU intensive. Different workloads are generated

0.1	

0.3	

0.5	

0.7	

0.9	

1.6	 2.2	 2.8	 3.4	

8-‐0-‐lbm	
0-‐8-‐gamess	
1-‐0-‐lbm	
0-‐1-‐gamess	

frequency(GHz)

pe
rf
or
m
an
ce

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

1.6	 2.2	 2.8	 3.4	

2-‐6-‐lbm-‐SMT	 2-‐6-‐lbm-‐SMP	
4-‐4-‐lbm-‐SMT	 4-‐4-‐lbm-‐SMP	
7-‐1-‐lbm-‐SMT	 7-‐1-‐lbm-‐SMP	

frequency(GHz)

pe
rf
or
m
an
ce

0.15	
0.2	
0.25	
0.3	
0.35	
0.4	
0.45	
0.5	
0.55	

1.6	 2.2	 2.8	 3.4	

6-‐2-‐gamess-‐SMP	 6-‐2-‐gamess-‐SMT	
4-‐4-‐gamess-‐SMP	 4-‐4-‐gamess-‐SMT	
1-‐7-‐gamess-‐SMP	 1-‐7-‐gamess-‐SMT	

frequency(GHz)

pe
rf
or
m
an
ce

0	

0.2	

0.4	

0.6	

0.8	

1	

gamess lbm mcf gamess lbm mcf

pe
rf
or
m
an
ce

using these two benchmarks. In these workloads, each logic
core executes at most one benchmark program. We refer the
two processes sharing the same physical core as SMT
neighbors and the two processes running on different physical
cores as SMP neighbors. The performance of these two
benchmarks and their sensitivities to frequency scaling are
tested in the context of different workload mappings. The test
cases are labeled as n-m-T-SMT[SMP]. The parameters n and
m specify that there are n lbm processes and m gamess
processes running. The parameter “T” is the name of the target
process whose performance we are interested in. The label
“SMT” indicates that the SMT neighbor of our target process
is the same benchmark program; otherwise the label “SMP” is
attached to the workload.
Figure 1(a)~(c) shows the performance degradations for each
test case. The x-axis is CPU frequency and the y-axis is the
normalized performance of the target benchmark program
compared with the reference program running alone on a
dedicated processor at the highest frequency (i.e. 3.5 GHz).
In Figure 1 (a) we can see that when only one task is running,
regardless whether it is memory intensive or CPU intensive,
the performance scales linearly with CPU frequency at the
same rate. This is because of the high memory bandwidth of
the modern server. When all 8 logic cores running the same
task, the memory intensive task (lbm) suffers much more
degradation than the CPU intensive task (gamess) due to the
memory contention. However, it is also much less sensitive to
frequency scaling than gamess, because the CPU is no longer
the bottleneck of performance.
Figure 1 (b) and (c) shows the performance of lbm and gamess
separately when they are scheduled with different co-runners.
Three major observations are made from the two figures.
(1) Having lbm as the SMT neighbor causes more
performance degradation than having gamess. For example, 2-
6-lbm-SMT has less performance than 2-6-lbm-SMP and 6-2-
gamess-SMT has better performance than 6-2-gamess-SMP.
The similar trend can be observed for other test cases. This is
mainly because a memory intensive SMT neighbor competes
for the L1 and L2 cache.
 (2) With more and more lbm processes running on the
processor, the performance degradation of the target is
exacerbated. For example, 2-6-lbm-SMT has better
performance than 4-4-lbm-SMT and 2-6-gamess-SMT also
has better performance than 4-4-gamess-SMT. Such trend is
more prominent for memory intensive target (i.e. lbm) than for
CPU intensive target.(i.e. gamess).
(3) The gamess is more sensitive to frequency scaling than the
lbm. Figure 1(c) shows that its performance decreases almost
linearly with frequency scaling. However, as more lbm
processes are added into the system, the decreasing ratio
reduces, which indicates a reduced sensitivity to frequency
scaling. For example, the performance of 2-6-gamess-SMT
changes slower than 4-4-gamess-SMT with frequency scaling.
On the other hand, lbm’s performance is a nonlinear function
of the CPU frequency. When the number of lbm processes

increases, its performance is almost constant as shown in
Figure 1(b), indicating a low sensitivity to frequency scaling.
To sum up all the discussions above, the contention and DVFS
both affect the workload’s performance. To make things more
interesting, a program’s sensitivity to frequency scaling is not
only determined by itself but also its SMT and SMP neighbors.
And the performance does not always scales linearly. The
performance model considering only one frequency will no
longer be accurate when DVFS is enabled. In order to provide
accurate performance estimation to guide power management
at different level, our performance model must provide
accurate estimation across a wide range of CPU frequency.
Many previous works focus only at performance degradation
due to SMP level contention, however, the SMT level
contention has even greater performance impact. To further
show this impact, we pick two processes from lbm, gamess
and mcf (which is another memory intensive benchmark in
SPEC CPU2006) and run them as SMT neighbors. Because
only two processes are running, the SMP level contention is
almost negligible. Figure 1(d) shows the normalized
performance of each processes running with different
neighbors. The two benchmarks running together are bundled.
As we can see, gamess has large performance degradation
when running with either lbm or mcf; while lbm has relatively
less degradation in either case, which indicates low sensitivity
to SMT level contention. The performance of mcf exhibits the
behavior of bimodal. It is has large degradation when running
with lbm and marginal degradation when running with gamess.
This suggests that, compared to other two, mcf is more
sensitive to having a memory intensive SMT neighbor. In
other words, its performance is a function of the
characteristics of its SMT neighbor.
3. Model construction
In this section, we apply machine learning technique to
construct a model that assesses the performance degradation
of an application considering the impact from its neighbors
and the CPU frequency. The degradation is measured with the
respect of a reference system which has no resource
contention and frequency scaling. The discussion is carried
out based on Intel Ivy Bridge i3770K CPU, which has 4
physical cores and 8 logical cores. However, the same method
can be applied to other processors. Because we focus on CPU-
bound workloads (i.e., SPEC CPU2006), in our model, we
assume only one thread is running on each logical core [4].
Supporting multiple threads running on one logical core will
be our future work.
In our model, we classify the processes running on the same
processor into 3 categories: Target, SMT and SMP. Target is
the process whose performance degradation needs to be
characterized. The SMT process shares the same physical core
with the Target, and the rest of the processes running on the
same chip belong to the SMP category. To train and test the
model, we created 30 groups of workloads. Each workload
consists of 4 benchmarks in SPEC CPU2006. One of them
will be Target, and another one will be its SMT neighbor. The
other two benchmarks will be duplicated to 6 processes and

run on the rest of the 3 physical cores. During the selection,
we try to involve as many benchmarks as possible while
exploring different combinations of memory and CPU
intensive benchmarks[14] to create variety. Each workload is
run with 8 different frequencies swept from 1.6 to 3.5 GHz.
3.1 Feature selection
There are around 260 PMU candidates on each logical core.
We use perf [16] to collect the PMU values. There are only 4
hardware performance counters for each logical core which
means only 4 events can be monitored at the same time
without loss of accuracy. If more events are to be recorded,
the counters will be time-multiplexed”. Even if we collect 8
events in each run, to collect around 260 PMU events requires
running the same workload repeatedly for more than 30 times.
As we can see, not only it is impossible to have all 260×8
events as inputs for model construction, to collect all of these
events will also take a prohibitively long time. A feature
selection step must be performed first to reduce the size of
events to simplify modeling and data collection.
In this step, we run each workload for only 10 seconds and
repeat this for about 40 times. Each time 6~8 PMU events are
collected. The data forms the preliminary training set. First,
we consolidate the PMU events of the 6 SMP processes by
calculating their average. To the target process, they are like
background activities and it is not necessary to keep the
individual information. After consolidation, we have 3 sets of
PMU events from Target, SMT and SMP processes
respectively plus the CPU frequency. Then we apply Weka[17]
for feature selection. The events are evaluated using
CFsSubsetEval algorithm which evaluates the subset of events
by considering the individual predictive ability of each feature
along with the degree of redundancy between them. A set of
24 events is selected at the end. Table 1 shows the top 9 events
that are selected. Interestingly, we found that the attribute
frequency itself is not selected at last. However, the frequency
information is reflected in the PMU readings.
Table 1 Top 9 selected events sorted by its correlation to the performance

PMU event name Correlation

 UOPS_DISPATCHED.PORT_3(Target) 0.83

CYCLE_ACTIVITY.CYCLES_NO_EXECUTE(SMP) 0.77
CYCLE_ACTIVITY.CYCLES_LDM_PENDING(Target) 0.67

IDQ.ALL_DSB_CYCLES_ANY_UOPS(SMP) 0.63

CYCLE_ACTIVITY.CYCLES_L1D_PENDING(SMP) 0.61

L2_LINES_OUT.PF_CLEAN(Target) 0.54

MEM_LOAD_UOPS_RETIRED.HIT_LFB(Target) 0.40
LOAD_HIT_PRE.HW_PF(Target) 0.36
MOVE_ELIMINATION.INT_ELIMINATED(SMT) 0.33

3.2 Model construction
After feature selection, a more comprehensive and accurate
data collection is performed again. Each workload runs for 40
seconds to get more coverage and the 24 selected PMU events
are recorded with 4 collected for each run. The model output
is normalized performance (PF) with respect to the reference
system. It is calculated as 𝑃𝐹 = !"#$%&'$!("!"#!

!"#$%&'$!("!"#"!"$%"
, where

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛!"#! is retired instruction of the target application
running on the test system that has contention and frequency
scaling, and 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛!"#"!"$%" is the retired instruction of

the target application running on reference system without
contention and frequency scaling. Both are collected over the
same amount of time. It is easy to see that performance
degradation can be calculated as 1-PF.
About 16 different modeling algorithms are evaluated for their
relative absolute error through the 10 folds cross-validation
process. The results show that MultilayerPerceptron (neural
network) model yields the best accuracy. We refer this model
as “model_full”.
Two reference models are also constructed in the similar way.
However, the first one ignores the impact of frequency scaling.
Its training data is collected from systems performing no
frequency scaling (i.e. running at 3.5GHz). The model is
referred as “model_no_freq”. The second one does not
explicitly consider the impact of SMT neighbor. It’s training
set does not have PMU data for the SMT process. This model
is referred as “model_no_SMT”. The accuracy of three
models and correlation between estimated performance and
the actual performance are given in Table 2. As we can see,
“model_full” gives the highest accuracy and correlation. The
“model_no_SMT” also has a low error rate. This is because
the impact from SMT process has partially been reflected in
the Target process’s PMU change.

Table 2 Accuracy of 3 models
 model_full model_no_freq model_no_SMT
Relative absolute error 11.2% 30.2% 13.5%
Correlation 0.994 0.940 0.985
4. DVFS under resource contention with guaranteed QoS
The proposed model is applied to provide performance
feedback to guide DVFS controller in a resource contended
system. Four different workloads are generated and tested.
Each workload contains 8 copies of SPEC CPU2006
benchmark. The first workload (WL1) has 2 memory intensive
processes and 6 CPU intensive processes. The second
workload (WL2) has 4 memory intensive processes and 4
CPU intensive processes. The third and fourth workloads
consist of only memory intensive benchmarks and CPU
intensive benchmarks respectively. Two different scheduling
methods are applied to WL1 and WL2. The first schedules a
memory intensive process to be the SMT neighbor with a CPU
intensive process. The second schedules two memory
intensive (or two CPU intensive) processes to be SMT
neighbors to each other. The first method causes less resource
contention [4] and is denoted as “G”, which stands for “good”
scheduling. The second method is denoted as “B” which
stands for “bad” scheduling. The detailed information of
workloads and their mappings is presented in
Table 3. Labels (M) and (C) indicate if the benchmark is
memory or CPU intensive. In this work, we do not consider
task migration. The performance feedback from the model is
only used to guide DVFS settings. Please note that, the testing
workloads are significantly different from the training set.
None of the training workload has more than 50% similarity to
a testing workload.
Each workload will run for 400 seconds (benchmarks will be
restarted if they stop before 400 seconds). A user-level Shell
script is developed to implement performance monitoring and

(a) WL1

 (b) WL2

 (c) WL3 and WL4

Figure 2. Performance for all workloads
 Table 3. Workloads used in the evaluation
 WL1 (G) WL1 (B) WL2 (G) WL2 (B) WL3 WL4

0 lbm (M)
gamess (C)

lbm (M)
lbm (M)

mcf (M)
hmmer (C)

mcf (M)
libq (M)

milc (M)
milc (M)

namd (C)
namd (C)

1 lbm (M)
namd (C)

povray (C)
namd (C)

libq (M)
namd (C)

mcf (M)
libq (M)

milc (M)
milc (M)

namd (C)
namd (C)

2 povray (C)
h264ref (C)

namd (C)
h264ref (C)

mcf (M)
gromacs (C)

hmmer (C)
gromacs (C)

milc (M)
milc (M)

namd (C)
namd (C)

3 namd (C)
gobmk(C)

gamess (C)
gobmk(C)

libq (M)
tonto(C)

namd (C)
tonto(C)

milc (M)
milc(M)

namd (C)
namd(C)

DVFS control. It dynamically calls the perf tool to collect the
24 PMU attributes as model inputs from each logical core.
The interval of data collection is set to be 10 seconds, which is
long enough to let each event be monitored for substantial
period of time to get good sampling accuracy. We assume that
a set of target processes are critical and have QoS constraints.
The constraint is expressed as the normalized performance (PF)
of the process with the respect to the reference system. If all
critical tasks exceed performance threshold, the chip’s
frequency will be increased by 0.1GHz (chip voltage will be
adjusted accordingly). Otherwise, the frequency will be
decreased. Two sets of critical tasks are selected for WL1 and
WL2. The first one consists of all memory intensive tasks,
while the second one consists of all CPU intensive tasks. For
WL3 and WL4, all tasks are critical.
We refer to a system that uses our model as “model_full”. It is
compared with 4 reference systems: (1) model_no_smt: the
system conducts performance assessment without considering
SMT neighbor’s impact explicitly; (2) model_no_freq : the
system conducts performance assessment without considering
the impact of frequency scaling; (3) direct_scaling: the system
scales CPU frequency linearly according to the given
performance threshold; (4)capping: instead of frequency

scaling, the system set a cap on the CPU quotas that a task can
take based on the given performance threshold. The cap is set
using Linux cgroups. The same cap is given to all tasks on the
chip. The processor will run at the highest speed and enter
deep sleep mode when it is capped. Both “direct_scaling” and
“capping” ignores SMP level resource contention. A constant
50% performance degradation is assumed for SMT level
contention. Although not very accurate, this is the best
approximation that we can have without dynamically tracking
the performance, which is the purpose of using simple
management approaches such as “direct_scaling” and
“capping”. The CPU frequency and cap are set accordingly.
For example, if the performance threshold is 30% of reference
system, then “direct_scaling” will set CPU frequency to
0.3 0.5 = 60% of the maximum frequency, while “capping”
will cap the CPU quota to 60%.
The performance for all 4 workload running on 5 different
systems is reported in Figure 2. Please note that WL1 and WL2
both have 2 different task mappings and for each mapping two
sets of critical tasks are tested. Therefore, four plots are
presented for each workload. The left two figures in Figure 2 (a)
are for WL1(G) and right two are for WL1(B). The top two
plots in Figure 2 (a) are for systems where memory intensive
tasks are critical, while bottom two plots are for systems
where CPU intensive tasks are critical. Each bundle of bars
corresponds to the performance of one task running at
different systems. The bars with dark solid line are the critical
tasks whose performance is important while the bars with
dotted line are noncritical. The dotted horizontal lines indicate
the performance threshold. If a solid bar falls below this line
then there is a performance violation. A task with performance
violation is marked by a small red cross underneath the bar.

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

lbm(M)' gamess(C)' lbm(M)' namd(C)' povray(C)' h264ref(C)' namd(C)' gobmk(C)' lbm(M)' lbm(M)' povray(C)' namd(C)' namd(C)' h264ref(C)' gamess(C)' gobmk(C)'
WL1(G)" WL1(B)"

per
for

ma
nce

"
per

for
ma

nce
"

Memory"intensive"cri?cal� Memory"intensive"cri?cal�

CPU"intensive"cri?cal� CPU"intensive"cri?cal�

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

mcf(M)' hmmer(C)' libquan(M)' namd(C)' mcf(M)' gromacs(C)'libquan(M)' tonto(C)' mcf(M)' libquan(M)' mcf(M)' libquan(M)' hmmer(C)' gromacs(C)' namd(C)' tonto(C)'
WL2(G)" WL2(B)"

per
form

anc
e"

per
form

anc
e"

Memory"intensive"cri?cal� Memory"intensive"cri?cal�

CPU"intensive"cri?cal� CPU"intensive"cri?cal�

0"

0.1"

0.2"

0.3"

0.4"

milc(M)(milc(M)(milc(M)(milc(M)(milc(M)(milc(M)(milc(M)(milc(M)(
0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

namd(C)(namd(C)(namd(C)(namd(C)(namd(C)(namd(C)(namd(C)(namd(C)(
WL3" WL4"

per
for

ma
nce
"

per
for

ma
nce
"

Those critical tasks that have the lowest performance are
referred as bottleneck tasks, as their performance is the
bottleneck that determines the CPU frequency of the entire
chip. They are marked with red boxes. In order to minimize
power consumption, the performance of these bottleneck tasks
should exactly meet the threshold.
From the figure we can see, systems using our model (i.e.
model_full) have almost no performance violation except for
WL1(B). Furthermore, our model keeps the performance of
those bottleneck tasks much closer to the performance
threshold than all other techniques. This means that lower
frequency level is used and hence more energy savings are
achieved. Comparing systems with different mapping choices,
our model can correctly identify the ‘bottleneck’ tasks and
make frequency scaling decision accordingly. We also
observed that “capping” gives large violation most of time
when the critical tasks are memory intensive. This is because
it runs the CPU at full speed, hence the memory becomes the
performance bottleneck. Furthermore, when the CPU is
throttled, the memory access is stopped too. The similar is not
observed for DVFS based approaches, where both CPU and
memory operate all the time.
The third thing we observed is that “model_no_smt”,
“model_no_freq” and “direct_scaling” lead to more violation
when the critical tasks are CPU intensive. This is because
frequency scaling based on inferior performance model or
simple linear scaling obviously cannot accurately capture the
performance degradation of CPU intensive tasks, which varies
greatly during frequency scaling; while the performance of
memory intensive tasks generally do not change that much.
We also observed that there are less violations for WL2 than
WL1 for critical jobs that are CPU intensive. It seems that the
more memory intensive tasks are running, the easier for all the
models to make the right decision since sensitivity to
frequency scaling reduces.
Please note that all systems use the same task mapping. And
all of the first four systems “model_full”, “model_no_SMT”,
“model_no_frequency” and “direct_scaling” perform DVFS
based power management. Since Intel Ivy Bridge processor
only supports chip level frequency scaling, the system that has
the minimum power consumption without performance
violation is should be the one whose bottleneck task
performance exactly meets the threshold. Therefore, it is not
necessary to compare the power consumption among
“model_full”, “model_no_SMT”, “model_no_freq” and
“direct_scaling”. However, “capping” performs power
management using CPU capping instead of DVFS. Therefore,
we still need to compare its power consumption with that of
“model_full”. The power consumption of the 10 test cases in
Figure 2 is measured using Watts up?PRO power meter. Figure
3 shows their energy and energy delay product (EDP). Note
we scaled the energy so that the same benchmark executed the
same amount of instructions. Here the whole system idle
power (around 24W) is removed from our calculation. As we
can see, in average “model_full” has 24% energy reduction
and 38% reduction in EDP compared to “capping”.

Figure 3. Energy and EDP of model_full and capping
5. Conclusions
In this work, we demonstrate the importance of considering
both resource contention and frequency scaling in system
performance modeling. A model is constructed to dynamic
quantify task performance degradation with the respect to a
reference system, where the target process is executed stand
alone at the highest frequency. The propose model is used to
provide performance feedback to guide DVFS control.
Experimental results show that the proposed model effectively
controls the system performance and keeps it close to the
given constraint, hence leads to minimum power consumption
without violating performance constraint.
6.References
[1] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No
‘Power’ Struggles: Coordinated Multi-level Power Management for the Data
Center,” Proceedings of the 13th international conference on Architectural
support for programming languages and operating systems, March, 2008.
[2] L. Barroso and U. Holzle, “The case for Energy-proportional
Computing,” Computer, vol. 40, Issue 12, pp. 33-37, 2007.
[3] T. Dwyer, A. Fedorova, S. Blagodurov, M. Roth, F. Gaud and J. Pei, “A
Practical Method for Estimating Performance Degradation on Multicore
processors, and its Application to HPC Workloads,” SC’12, Article No.83,
2012
[4] S. Zhuravlev, S. Blagodurov and A. Fedorova, “Addressing Shared
Resource Contention in Multicore Processors via Scheduling,” ASPLOS XV,
pp.129-142, 2010
[5] J. R. Funston, K. E. Maghraoui, J. Jann, P. Pattnaik and A. Fedorova,
“An SMT-Selection Metric to Improve Multithreaded Applications’
Performance,” IPDPS’12, pp.1388-1399, 2012
[6] M. E. Thomadakis, “The architecture of the Nehalem processor and
Nehalem-EP SMP platforms,” Texas A&M University, Tech.Rep.,2011
[7] K. K. Pusukuri, D. Vengerov, A. Fedorova and V. Kalogeraki, “FACT:
a Framework for Adaptive Contention-aware Thread Migrations,” CF’11,
Article No.35, 2011
[8] G. Dhiman, G. Marchetti and T. Rosing, “vGreen: A System for Energy-
Efficient Management of Virtual Machines,” ACM TODAES, vol.16, iss.1,
Nov.2010
[9] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a
Simultaneous Multithreading Processor,” ASPLOS IX, pp.234-244, 2000
[10] K. Deng, K. Ren and J. Song, “Symbiotic Scheduling for Virtual
Machines on SMT Processors,” CGC’12, pp.145-152, 2012
[11] R. Knauerhase, P. Brett, B. Hohlt, T. Li and S. Hahn, “Using OS
Observations to Improve Performance in Multicore Systems,” IEEE Micro,
vol.28, iss.3, May.2008
[12] A. Merkel, J. Stoess and F. Bellosa, “Resource-conscious Scheduling for
Energy Efficiency on Multicore Processors,” EuroSys’10, pp.153-166, 2010
[13] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen and C. Pu, “An
Analysis of Performance Interference Effects in Virtual Environments,”
ISPASS 2007, pp.200-209, 2007
[14] A. Phansalkar, A. Joshi and L. K. John, “Subsetting the SPEC CPU2006
Benchmark Suite,” ACM SIGARCH, vol.35, iss.1, Mar.2007
[15] J. D. Gelas, “Dynamic Power Management: A Quantitative Approach,”
AnandTech, Jan.2010: http://www.anandtech.com/show/2919
[16] Perf tool : https://perf.wiki.kernel.org/index.php/Main_Page
[17] Weka 3: Data Mining Software in Java:
http://www.cs.waikato.ac.nz/ml/weka/index.html
[18] SPEC CPU2006: http://www.spec.org/cpu2006/

0	
0.5	
1	

1.5	
2	

2.5	
3	

x	
10

00
00

	

model_full	 capping	

ED
P

0	
1	
2	
3	
4	
5	
6	

x	
10

00
0	 model_full	 capping	

en
er
gy
(J)
	

