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Abstract  
Workload consolidation is usually performed in datacenters to 
improve server utilization for higher energy efficiency. One of 
the key issues related to workload consolidation is contention 
for shared resources such as last level cache, main memory, 
memory controller, etc. Dynamic voltage and frequency 
scaling (DVFS) of CPU is another effective technique that has 
widely been used to trade the performance for power 
reduction. We have found that the degree of resource 
contention of a system affects its performance sensitivity to 
CPU frequency. In this paper, we apply machine learning 
techniques to construct a model that quantifies runtime 
performance degradation caused by resource contention and 
frequency scaling. The inputs of our model are readings from 
Performance Monitoring Units (PMU) screened using 
standard feature selection technique. The model is tested on an 
SMT-enabled chip multi-processor and it reaches up to 90% 
accuracy. Experimental results show that, guided by the 
performance model, runtime power management techniques 
such as DVFS can achieve more accurate power and 
performance tradeoff without violating the quality of service 
(QoS) agreement. The QoS violation of the proposed system is 
significantly lower than systems that have no performance 
degradation information.  
Key words:  consolidation, frequency scaling, power 
management, contention 
1. Introduction 
It has been pointed out [2] that the server energy efficiency 
reduces super-linearly as its utilization goes down. Due to the 
severe lack of energy proportionality in today’s computers, 
workload consolidation is usually performed in datacenters to 
improve server utilization for higher energy efficiency. When 
used together with power management on idle machines, this 
technique can lead to significant power savings [1].  
Today’s high-end servers have multiple processing units that 
consist of several symmetric multiprocessing (SMP) cores. 
Each physical core also comprises more than one logical cores 
enabled by the simultaneous multithreading (SMT) technique. 
One of the key issues related to workload consolidation is 
performance degradation due to the contentions for shared 
resources. At SMP level these shared resources include main 
memory, last level cache, memory controller, etc. At SMT 
level, the shared resources also include execution modules 
such as instruction issue ports, ALU, branch target buffers, 
low level caches, etc. [5][6]. The degree of performance 
degradation is a function of the resource usage of all processes 
that are co-running and hence is hard to predict. Even if we 
can measure the execution time of an application accurately, 
there is no direct way to tell how much degradation that the 
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process went through unless we have a reference copy of the 
same application running on the same hardware machine by 
itself alone. 
Dynamic voltage and frequency scaling (DVFS) is another 
effective low power technique that has widely been used. 
Compared to workload consolidation and runtime power 
management, DVFS provides finer adjustment in performance 
and power consumption tradeoffs and associates with much 
less control overhead. In a hierarchical power management 
framework [1][8], the upper level is usually virtual machine 
management that performs workload consolidation, while the 
lower level is usually based on voltage and frequency scaling.  
Due to the speed gap between CPU and memory subsystem, 
the performance impact of DVFS is not linearly proportional 
to the scale of frequency reduction [12]. Different applications 
have different sensitivity to frequency scaling. A memory 
intensive application usually suffers less performance 
degradation from DVFS than a CPU intensive one, as the CPU 
speed is no longer the performance bottleneck. The same can 
be expected for many systems running multiple consolidated 
workloads. As their performance constrained by the shared 
resources, such as memory, power reduction can be achieved 
by applying DVFS without significant performance impact. 
However, similar to systems with resource contention, it is 
hard to directly tell an application’s performance sensitivity to 
frequency scaling without having a reference copy running. 
Performance degradation should be hidden from the customers, 
especially in a cloud environment, where the quality of service 
(QoS) is specified by the service level agreement (SLA) 
between service providers and customers and customers are 
charged based upon usage or reservation of cloud resources. 
How to guarantee the service level in a system that performs 
workload consolidation and DVFS for power control is an 
urgent research problem.  
Previous works studied how to optimize process scheduling to 
mitigate the resource contention ([4], [8]~[12]). Many of them 
aim at finding a metric that must be balanced across the 
running threads to minimize the resource contention. The 
metrics are normally related to the last level cache miss rate. 
These works make the best effort to mitigate the resource 
contention, however, they do not report the performance 
degradation during runtime. Hence, without a reference copy, 
it is almost not possible to tell at runtime if certain scheduling 
algorithm does improve the performance and how much it 
improves. After all, resource usage of a software program is 
dynamically changing. An increase in IPS (instruction per 
second) does not necessarily indicate the adoption of a more 
efficient scheduling algorithm. It may simply because the 
program has completed loading all data from hard disk and 
started processing them. It would be beneficial if the service 
provider knows how much degradation the target process is 



undergoing when it is co-scheduled with other processes 
competing for the shared resource and when the DVFS is 
applied. With such information, further adjustment in 
performance power tradeoff can be adopted.  
The problem is further complicated when CPU frequency 
scaling is performed in a system with resource contention, 
because its impact on the usage of different resources is not 
equal. Finding an architecture level analytical model to 
quantify performance degradation in a system with resource 
contention and frequency scaling is almost not possible. 
Machine learning techniques seem to be the only feasible 
solution [3].   
Some works have been proposed to apply machine learning 
techniques to model the performance change of the tasks that 
have different co-runners [3][7][13]. Among these works, [3] 
is the most similar to this work. It uses the hardware 
performance counter information to estimate the performance 
degradation caused by resource contention on an SMP 
machine. However, none of these works consider the 
possibility that a system could also run at different voltage and 
frequency levels. All of these previous works consider SMP 
machine where only single thread is running on each core. 
They ignore the contention for shared execution resources.  
In this work, we applied machine learning techniques to 
develop a model which estimate performance degradation of a 
task considering the impact of resource contention and 
frequency scaling simultaneously. We need to point out that, 
this model does not “predict” the performance of a given task 
schedule and frequency setting. Instead, it monitors the PMUs 
of current server, and estimates its performance degradation 
with the respect to the reference of an ideal system (i.e. the 
system without any resource contention and frequency scaling.) 
The information can be used as feedbacks to guide scheduling 
and DVFS. Compared to previous works (especially [3]), the 
contributions of this paper are: 
1. It studies the performance impact of resource contention 

and frequency scaling. Our results demonstrate the necessity 
of considering them together at the same time for 
performance modeling.  

2. A model is created to quantify performance degradation of a 
task under resource contention and frequency scaling in 
SMT-enabled chip multi-processor.  

3. It demonstrates how the model can be used in the cloud 
server to guide the power management while maintain the 
required quality of service of each task. 

The rest of the paper is organized as follows: Section 2 
presents some observations that motivate the proposed 
performance model. Section 3 presents the model construction 
procedure, and experimental results are presented in Section 4 
Section 5 gives the conclusions. 
2. Motivational observations 
In this section, we provide some experimental data that 
motivate the search for a model that captures the performance 
impact of both resource contention and frequency scaling. Our 
experimental system is an Intel  Ivy Bridge i3770K CPU 
machine with 4 physical cores and 8 logical cores (SMT2). 

Each physical core has dedicated L1 and L2 cache (shared by 
two logical cores) while all cores share the same 8MB L3 
cache. It supports frequency scaling from 3.5 GHz to 1.6 GHz 
with a step of 0.1 GHz. It is also equipped with 8GB two-
channel 1600 MHz DDR3 memory. Ubuntu Linux is installed. 
The configuration of this experimental platform is 
representative among many commercial computers on the 
market nowadays. 
Though many research papers assume that frequency scaling 
can be applied at core level, Intel Ivy Bridge processors only 
have one voltage regulator, the per-core level frequency 
scaling is disabled by firmware and OS [15]. Each physical 
core can be put in deep sleep C state independently [15] when 
they become idle. This state has very low power consumption 
due to power and clock gating. The socket power of our 
experimental system is around 24W during idle state when 
deep sleep C state is enabled. When the deep C state is 
disabled, the idle power becomes 36W at lowest frequency 
and 63W at highest frequency.  
Nowadays the memory subsystem becomes relatively fast. We 
observe that running one single memory intensive task will be 
far from saturating the memory subsystem of the server. The 
performance of the task scales almost linearly during 
frequency scaling as the CPU and cache speed are still the 
bottleneck even for memory intensive tasks. The linear 
relation stops only when multiple memory intensive tasks are 
active running simultaneously. 

 
(a) Performance of uniform workload         (b) Memory intensive task in hybrid workload                                                                   

 
 (c) CPU intensive task in hybrid workload        (d) Impact from different SMT neighbors 
Figure 1 Performance sensitivity to resource contention and frequency scaling 

Our hypothesis is that different co-scheduled jobs not only 
affect the performance of an application by generating 
resource contentions, but also affect its sensitivity to 
frequency scaling. To demonstrate this, we create workload 
that has various levels of resource contention. Our workload 
consists of two benchmarks from SPEC CPU2006 [18]. One is 
lbm, which is memory intensive; and the other is gamess, 
which is CPU intensive. Different workloads are generated 
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using these two benchmarks. In these workloads, each logic 
core executes at most one benchmark program. We refer the 
two processes sharing the same physical core as SMT 
neighbors and the two processes running on different physical 
cores as SMP neighbors. The performance of these two 
benchmarks and their sensitivities to frequency scaling are 
tested in the context of different workload mappings. The test 
cases are labeled as n-m-T-SMT[SMP]. The parameters n and 
m specify that there are n lbm processes and m gamess 
processes running. The parameter “T” is the name of the target 
process whose performance we are interested in. The label 
“SMT” indicates that the SMT neighbor of our target process 
is the same benchmark program; otherwise the label “SMP” is 
attached to the workload.  
Figure 1(a)~(c) shows the performance degradations for each 
test case. The x-axis is CPU frequency and the y-axis is the 
normalized performance of the target benchmark program 
compared with the reference program running alone on a 
dedicated processor at the highest frequency (i.e. 3.5 GHz).  
In Figure 1 (a) we can see that when only one task is running, 
regardless whether it is memory intensive or CPU intensive, 
the performance scales linearly with CPU frequency at the 
same rate. This is because of the high memory bandwidth of 
the modern server. When all 8 logic cores running the same 
task, the memory intensive task (lbm) suffers much more 
degradation than the CPU intensive task  (gamess) due to the 
memory contention. However, it is also much less sensitive to 
frequency scaling than gamess, because the CPU is no longer 
the bottleneck of performance. 
Figure 1 (b) and (c) shows the performance of lbm and gamess 
separately when they are scheduled with different co-runners. 
Three major observations are made from the two figures. 
(1) Having lbm as the SMT neighbor causes more 
performance degradation than having gamess. For example, 2-
6-lbm-SMT has less performance than 2-6-lbm-SMP and 6-2-
gamess-SMT has better performance than 6-2-gamess-SMP. 
The similar trend can be observed for other test cases. This is 
mainly because a memory intensive SMT neighbor  competes 
for the L1 and L2 cache.  
 (2) With more and more lbm processes running on the 
processor, the performance degradation of the target is 
exacerbated. For example, 2-6-lbm-SMT has better 
performance than 4-4-lbm-SMT and 2-6-gamess-SMT also 
has better performance than 4-4-gamess-SMT. Such trend is 
more prominent for memory intensive target (i.e. lbm) than for 
CPU intensive target.(i.e. gamess). 
(3) The gamess is more sensitive to frequency scaling than the 
lbm. Figure 1(c) shows that its performance decreases almost 
linearly with frequency scaling. However, as more lbm 
processes are added into the system, the decreasing ratio 
reduces, which indicates a reduced sensitivity to frequency 
scaling. For example, the performance of 2-6-gamess-SMT 
changes slower than 4-4-gamess-SMT with frequency scaling. 
On the other hand, lbm’s performance is a nonlinear function 
of the CPU frequency. When the number of lbm processes 

increases, its performance is almost constant as shown in 
Figure 1(b), indicating a low sensitivity to frequency scaling. 
To sum up all the discussions above, the contention and DVFS 
both affect the workload’s performance.  To make things more 
interesting, a program’s sensitivity to frequency scaling is not 
only determined by itself but also its SMT and SMP neighbors. 
And the performance does not always scales linearly. The 
performance model considering only one frequency will no 
longer be accurate when DVFS is enabled. In order to provide 
accurate performance estimation to guide power management 
at different level, our performance model must provide 
accurate estimation across a wide range of CPU frequency.  
Many previous works focus only at performance degradation 
due to SMP level contention, however, the SMT level 
contention has even greater performance impact. To further 
show this impact, we pick two processes from lbm, gamess 
and mcf (which is another memory intensive benchmark in 
SPEC CPU2006) and run them as SMT neighbors. Because 
only two processes are running, the SMP level contention is 
almost negligible. Figure 1(d) shows the normalized 
performance of each processes running with different 
neighbors. The two benchmarks running together are bundled. 
As we can see, gamess has large performance degradation 
when running with either lbm or mcf; while lbm has relatively 
less degradation in either case, which indicates low sensitivity 
to SMT level contention. The performance of mcf exhibits the 
behavior of bimodal. It is has large degradation when running 
with lbm and marginal degradation when running with gamess. 
This suggests that, compared to other two, mcf is more 
sensitive to having a memory intensive SMT neighbor. In 
other words, its performance is a function of the 
characteristics of its SMT neighbor. 
3. Model construction 
In this section, we apply machine learning technique to 
construct a model that assesses the performance degradation 
of an application considering the impact from its neighbors 
and the CPU frequency. The degradation is measured with the 
respect of a reference system which has no resource 
contention and frequency scaling. The discussion is carried 
out based on Intel  Ivy Bridge i3770K CPU, which has 4 
physical cores and 8 logical cores. However, the same method 
can be applied to other processors. Because we focus on CPU-
bound workloads (i.e., SPEC CPU2006), in our model, we 
assume only one thread is running on each logical core [4]. 
Supporting multiple threads running on one logical core will 
be our future work.  
In our model, we classify the processes running on the same 
processor into 3 categories: Target, SMT and SMP. Target is 
the process whose performance degradation needs to be 
characterized. The SMT process shares the same physical core 
with the Target, and the rest of the processes running on the 
same chip belong to the SMP category. To train and test the 
model, we created 30 groups of workloads. Each workload 
consists of 4  benchmarks in SPEC CPU2006. One of them 
will be Target, and another one will be its SMT neighbor. The 
other two benchmarks will be duplicated to 6 processes and 



run on the rest of the 3 physical cores. During the selection, 
we try to involve as many benchmarks as possible while 
exploring different combinations of memory and CPU 
intensive benchmarks[14] to create variety. Each workload is 
run with 8 different frequencies swept from 1.6 to 3.5 GHz. 
3.1 Feature selection 
There are around 260 PMU candidates on each logical core. 
We use perf [16] to collect the PMU values. There are only 4 
hardware performance counters for each logical core which 
means only 4 events can be monitored at the same time 
without loss of accuracy. If more events are to be recorded, 
the counters will be time-multiplexed”. Even if we collect 8 
events in each run, to collect around 260 PMU events requires 
running the same workload repeatedly for more than 30 times. 
As we can see, not only it is impossible to have all 260×8 
events as inputs for model construction, to collect all of these 
events will also take a prohibitively long time. A feature 
selection step must be performed first to reduce the size of 
events to simplify modeling and data collection.  
In this step, we run each workload for only 10 seconds and 
repeat this for about 40 times. Each time 6~8 PMU events are 
collected. The data forms the preliminary training set. First, 
we consolidate the PMU events of the 6 SMP processes by 
calculating their average. To the target process, they are like 
background activities and it is not necessary to keep the 
individual information. After consolidation, we have 3 sets of 
PMU events from Target, SMT and SMP processes 
respectively plus the CPU frequency. Then we apply Weka[17]  
for feature selection. The events are evaluated using 
CFsSubsetEval algorithm which evaluates the subset of events 
by considering the individual predictive ability of each feature 
along with the degree of redundancy between them. A set of 
24 events is selected at the end. Table 1 shows the top 9 events 
that are selected. Interestingly, we found that the attribute 
frequency itself is not selected at last. However, the frequency 
information is reflected in the PMU readings. 
Table 1 Top 9 selected events sorted by its correlation to the performance 

PMU event name  Correlation 

 UOPS_DISPATCHED.PORT_3(Target) 0.83 

CYCLE_ACTIVITY.CYCLES_NO_EXECUTE(SMP) 0.77 
CYCLE_ACTIVITY.CYCLES_LDM_PENDING(Target) 0.67 

IDQ.ALL_DSB_CYCLES_ANY_UOPS(SMP) 0.63 

CYCLE_ACTIVITY.CYCLES_L1D_PENDING(SMP) 0.61 

L2_LINES_OUT.PF_CLEAN(Target) 0.54 

MEM_LOAD_UOPS_RETIRED.HIT_LFB(Target) 0.40 
LOAD_HIT_PRE.HW_PF(Target) 0.36 
MOVE_ELIMINATION.INT_ELIMINATED(SMT) 0.33 

3.2 Model construction 
After feature selection, a more comprehensive and accurate 
data collection is performed again. Each workload runs for 40 
seconds to get more coverage and the 24 selected PMU events 
are recorded with 4 collected for each run. The model output 
is normalized performance (PF) with respect to the reference 
system. It is calculated as 𝑃𝐹 = !"#$%&'$!("!"#!

!"#$%&'$!("!"#"!"$%"
, where 

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛!"#! is retired instruction of the target application 
running on the test system that has contention and frequency 
scaling, and 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛!"#"!"$%" is the retired instruction of 

the target application running on reference system without 
contention and frequency scaling. Both are collected over the 
same amount of time.  It is easy to see that performance 
degradation can be calculated as 1-PF. 
About 16 different modeling algorithms are evaluated for their 
relative absolute error through the 10 folds cross-validation 
process. The results show that MultilayerPerceptron (neural 
network) model yields the best accuracy. We refer this model 
as “model_full”.  
Two reference models are also constructed in the similar way. 
However, the first one ignores the impact of frequency scaling. 
Its training data is collected from systems performing no 
frequency scaling (i.e. running at 3.5GHz). The model is 
referred as “model_no_freq”. The second one does not 
explicitly consider the impact of SMT neighbor. It’s training 
set does not have PMU data for the SMT process. This model 
is referred as “model_no_SMT”. The accuracy of three 
models and correlation between estimated performance and 
the actual performance are given in Table 2. As we can see, 
“model_full” gives the highest accuracy and correlation. The 
“model_no_SMT” also has a low error rate. This is because 
the impact from SMT process has partially been reflected in 
the Target process’s PMU change. 

Table 2 Accuracy of 3 models 
 model_full model_no_freq model_no_SMT 
Relative absolute error 11.2% 30.2% 13.5% 
Correlation 0.994 0.940 0.985 
4. DVFS under resource contention with guaranteed QoS  
The proposed model is applied to provide performance 
feedback to guide DVFS controller in a resource contended 
system. Four different workloads are generated and tested. 
Each workload contains 8 copies of SPEC CPU2006 
benchmark. The first workload (WL1) has 2 memory intensive 
processes and 6 CPU intensive processes. The second 
workload (WL2) has 4 memory intensive processes and 4 
CPU intensive processes. The third and fourth workloads 
consist of only memory intensive benchmarks and CPU 
intensive benchmarks respectively. Two different scheduling 
methods are applied to WL1 and WL2. The first schedules a 
memory intensive process to be the SMT neighbor with a CPU 
intensive process. The second schedules two memory 
intensive (or two CPU intensive) processes to be SMT 
neighbors to each other. The first method causes less resource 
contention [4] and is denoted as “G”, which stands for “good” 
scheduling. The second method is denoted as “B” which 
stands for “bad” scheduling. The detailed information of 
workloads and their mappings is presented in                             
Table 3. Labels (M) and (C) indicate if the benchmark is 
memory or CPU intensive. In this work, we do not consider 
task migration. The performance feedback from the model is 
only used to guide DVFS settings. Please note that, the testing 
workloads are significantly different from the training set. 
None of the training workload has more than 50% similarity to 
a testing workload. 
Each workload will run for 400 seconds (benchmarks will be 
restarted if they stop before 400 seconds). A user-level Shell 
script is developed to implement performance monitoring and 



 
(a) WL1

 
 (b) WL2 

       (c) WL3 and  WL4 
 

Figure 2. Performance for all workloads
                            Table 3. Workloads used in the evaluation 
 WL1 (G) WL1 (B) WL2 (G) WL2 (B) WL3 WL4 

0 lbm (M) 
gamess (C) 

lbm (M) 
lbm (M) 

mcf (M) 
hmmer (C) 

mcf (M) 
libq (M) 

milc (M) 
milc (M) 

namd (C) 
namd (C) 

1 lbm (M) 
namd (C) 

povray (C) 
namd (C) 

libq (M) 
namd (C) 

mcf (M) 
libq (M) 

milc (M) 
milc (M) 

namd (C) 
namd (C) 

2 povray (C) 
h264ref (C) 

namd (C) 
h264ref (C) 

mcf (M) 
gromacs (C) 

hmmer (C) 
gromacs (C) 

milc (M) 
milc (M) 

namd (C) 
namd (C) 

3 namd (C) 
gobmk(C) 

gamess (C) 
gobmk(C) 

libq (M) 
tonto(C) 

namd (C) 
tonto(C) 

milc (M) 
milc(M) 

namd (C) 
namd(C) 

DVFS control. It dynamically calls the perf tool to collect the 
24 PMU attributes as model inputs from each logical core. 
The interval of data collection is set to be 10 seconds, which is 
long enough to let each event be monitored for substantial 
period of time to get good sampling accuracy. We assume that 
a set of target processes are critical and have QoS constraints. 
The constraint is expressed as the normalized performance (PF) 
of the process with the respect to the reference system. If all 
critical tasks exceed performance threshold, the chip’s 
frequency will be increased by 0.1GHz (chip voltage will be 
adjusted accordingly). Otherwise, the frequency will be 
decreased. Two sets of critical tasks are selected for WL1 and 
WL2. The first one consists of all memory intensive tasks, 
while the second one consists of all CPU intensive tasks. For  
WL3 and WL4, all tasks are critical. 
We refer to a system that uses our model as “model_full”. It is  
compared with 4 reference systems: (1) model_no_smt: the 
system conducts performance assessment without considering 
SMT neighbor’s impact explicitly; (2) model_no_freq : the 
system conducts performance assessment without considering 
the impact of frequency scaling; (3) direct_scaling: the system 
scales CPU frequency linearly according to the given 
performance threshold; (4)capping: instead of frequency 

scaling, the system set a cap on the CPU quotas that a task can 
take based on the given performance threshold. The cap is set 
using Linux cgroups. The same cap is given to all tasks on the 
chip. The processor will run at the highest speed and enter 
deep sleep mode when it is capped. Both “direct_scaling” and 
“capping” ignores SMP level resource contention. A constant 
50% performance degradation is assumed for SMT level 
contention. Although not very accurate, this is the best 
approximation that we can have without dynamically tracking 
the performance, which is the purpose of using simple 
management approaches such as “direct_scaling” and 
“capping”. The CPU frequency and cap are set accordingly. 
For example, if the performance threshold is 30% of reference 
system, then “direct_scaling” will set CPU frequency to 
0.3 0.5 = 60% of the maximum frequency, while “capping” 
will cap the CPU quota to 60%.  
The performance for all 4 workload running on 5 different 
systems is reported in Figure 2. Please note that WL1 and WL2 
both have 2 different task mappings and for each mapping two 
sets of critical tasks are tested. Therefore, four plots are 
presented for each workload. The left two figures in Figure 2 (a) 
are for WL1(G) and right two are for WL1(B). The top two 
plots in Figure 2 (a) are for systems where memory intensive 
tasks are critical, while bottom two plots are for systems 
where CPU intensive tasks are critical. Each bundle of bars 
corresponds to the performance of one task running at 
different systems. The bars with dark solid line are the critical 
tasks whose performance is important while the bars with 
dotted line are noncritical. The dotted horizontal lines indicate 
the performance threshold. If a solid bar falls below this line 
then there is a performance violation. A task with performance 
violation is marked by a small red cross underneath the bar. 
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Those critical tasks that have the lowest performance are 
referred as bottleneck tasks, as their performance is the 
bottleneck that determines the CPU frequency of the entire 
chip. They are marked with red boxes. In order to minimize 
power consumption, the performance of these bottleneck tasks 
should exactly meet the threshold. 
From the figure we can see, systems using our model (i.e. 
model_full) have almost no performance violation except for 
WL1(B). Furthermore, our model keeps the performance of 
those bottleneck tasks much closer to the performance 
threshold than all other techniques. This means that lower 
frequency level is used and hence more energy savings are 
achieved. Comparing systems with different mapping choices, 
our model can correctly identify the ‘bottleneck’ tasks and 
make frequency scaling decision accordingly. We also 
observed that “capping” gives large violation most of time 
when the critical tasks are memory intensive. This is because 
it runs the CPU at full speed, hence the memory becomes the 
performance bottleneck. Furthermore, when the CPU is 
throttled, the memory access is stopped too. The similar is not 
observed for DVFS based approaches, where both CPU and 
memory operate all the time. 
The third thing we observed is that “model_no_smt”, 
“model_no_freq” and “direct_scaling” lead to more violation 
when the critical tasks are CPU intensive. This is because 
frequency scaling based on inferior performance model or 
simple linear scaling obviously cannot accurately capture the 
performance degradation of CPU intensive tasks, which varies 
greatly during frequency scaling; while the performance of 
memory intensive tasks generally do not change that much. 
We also observed that there are less violations for WL2 than 
WL1 for critical jobs that are CPU intensive. It seems that the 
more memory intensive tasks are running, the easier for all the 
models to make the right decision since sensitivity to 
frequency scaling reduces. 
Please note that all systems use the same task mapping. And 
all of the first four systems “model_full”, “model_no_SMT”, 
“model_no_frequency” and “direct_scaling” perform DVFS 
based power management. Since Intel Ivy Bridge processor 
only supports chip level frequency scaling, the system that has 
the minimum power consumption without performance 
violation is should be the one whose bottleneck task 
performance exactly meets the threshold. Therefore, it is not 
necessary to compare the power consumption among 
“model_full”, “model_no_SMT”, “model_no_freq” and 
“direct_scaling”. However, “capping” performs power 
management using CPU capping instead of DVFS. Therefore, 
we still need to compare its power consumption with that of 
“model_full”. The power consumption of the 10 test cases in 
Figure 2 is measured using Watts up?PRO power meter. Figure 
3 shows their energy and energy delay product (EDP). Note 
we scaled the energy so that the same benchmark executed the 
same amount of instructions. Here the whole system idle 
power (around 24W) is removed from our calculation. As we 
can see, in average “model_full” has 24% energy reduction 
and 38% reduction in EDP compared to “capping”.  

Figure 3. Energy and EDP of model_full and capping 
5. Conclusions 
In this work, we demonstrate the importance of considering 
both resource contention and frequency scaling in system 
performance modeling. A model is constructed to dynamic 
quantify task performance degradation with the respect to a 
reference system, where the target process is executed stand 
alone at the highest frequency. The propose model is used to 
provide performance feedback to guide DVFS control. 
Experimental results show that the proposed model effectively 
controls the system performance and keeps it close to the 
given constraint, hence leads to minimum power consumption 
without violating performance constraint. 
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