
A Deep Learning Methodology to Proliferate Golden Signoff Timing

Seung-Soo Han+, Andrew B. Kahng†‡, Siddhartha Nath† and Ashok S. Vydyanathan‡

†CSE and ‡ECE Departments, University of California at San Diego, USA
+Department of Information and Communication Engineering, Myongji University, Korea

shan@mju.ac.kr, {abk, sinath, avydyana}@ucsd.edu

Abstract—Signoff timing analysis remains a critical element in the IC
design flow. Multiple signoff corners, libraries, design methodologies, and
implementation flows make timing closure very complex at advanced
technology nodes. Design teams often wish to ensure that one tool’s timing
reports are neither optimistic nor pessimistic with respect to another tool’s
reports. The resulting “correlation” problem is highly complex because
tools contain millions of lines of black-box and legacy code, licenses
prevent any reverse-engineering of algorithms, and the nature of the
problem is seemingly “unbounded” across possible designs, timing paths,
and electrical parameters.

In this work, we apply a “big-data” approach to the timer correlation
problem. We develop a machine learning-based tool, Golden Timer
eXtension (GTX), to correct divergence in flip-flop setup time, cell arc
delay, wire delay, stage delay, and path slack at timing endpoints between
timers. We propose a methodology to apply GTX to two arbitrary timers,
and we evaluate scalability of GTX across multiple designs and foundry
technologies / libraries, both with and without signal integrity analysis.
Our experimental results show reduction in divergence between timing
tools from 139.3ps to 21.1ps (i.e., 6.6×) in endpoint slack, and from 117ps
to 23.8ps (4.9× reduction) in stage delay. We further demonstrate the
incremental application of our methods so that models can be adapted
to any outlier discrepancies when new designs are taped out in the same
technology / library. Last, we demonstrate that GTX can also correlate
timing reports between signoff and design implementation tools.

I. INTRODUCTION

Accurate timing closure is a critical step in signoff flows of all
semiconductor companies [10] and can consume up to 60% of design
time [6]. Multiple static timing analysis (STA) tools exist today and
different companies adopt different tools as “golden” or the best-in-
class STA tool depending on their requirements and product quality
standards. According to the analyst firm Gary Smith EDA [17], EDA
vendors such as Synopsys [36], Cadence [22], Atrenta [21], CLK
Design Automation [25], Incentia Design Systems [27] and Mentor
Graphics [31] provide STA and signal integrity analysis tools for
use in IC design. These tools typically have high license fees and
long runtimes, and they invariably diverge in their timing reports –
even though each is well-calibrated to the latest commercial circuit
simulators and “qualified” for signoff at leading foundries. Owing to
cost and budget constraints, design teams may have limited or no
access to a particular “golden” timing tool, but may be interested
in comparing the divergence in timing reports between the timing
tool they use and that golden tool. The ability to correlate with
another (golden) timing tool helps design teams understand if they
have overdesign or underdesign, i.e., when their timing tool’s reports
are respectively pessimistic or optimistic compared to the golden tool’s
reports. Another use model may be to estimate, based on the timing
reports of design implementation tools, how far the implementation
is from signoff after each optimization loop (timing-driven placement,
congestion-aware routing, leakage reduction, etc.).

We use “gt1-gt2” (that is, “golden tool 1 to golden tool 2”) to refer
to the problem of correlating two signoff timing tools. We estimate the
timing reports of one tool based on the reports of another tool. The
correlation problem is extremely complex because:

• tools can suffer from the complexity of millions of lines of black-
box code;

• tools can diverge from published user documentation [8], and
maintain implementation “errors” for legacy reasons;

• discrepancies between tools change with releases [18] (typically
2× per year for mature tools from major EDA providers);

• tool licenses explicitly prohibit benchmarking and reverse-
engineering of internal algorithms; and

• the correlation problem is seemingly “unbounded”, as the space of
possible timing paths, slew times, multiple-input switching events,
coupling effects on delay, etc. is essentially infinite.

978-3-9815370-2-4/DATE14/ c©2014 EDAA

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-0.6 -0.4 -0.2 0

T 2 P
at

h
Sl

ac
k

(n
s)

T1 Path Slack (ns)

110 ps

(a) T1–T2.

-0.15

-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

-0.15 -0.1 -0.05 0

D 1 P
at

h
Sl

ac
k

(n
s)

T1 Path Slack (ns)

100 ps

(b) T1–D1.

Fig. 1. Path slack discrepancies.

The cost of leaving the gt1-gt2 problem unsolved grows as
embedded processor cores reach 3GHz frequencies in 20nm and
16/14nm designs: miscorrelations of >100ps in timing slack
correspond to discrepancies of multiple (3 – 4) logic stages at these
advanced technology nodes and can strongly impact power and/or
area tradeoffs [2] [3] [6]. Figures 1(a) and 1(b) respectively show
examples of 110ps and 100ps timing miscorrelations between two
leading commercial signoff timing tools T1 and T2, as well as between
T1 and a commercial design implementation tool D1. According to
industry experts, reasons for miscorrelation include the use of multiple
engines within tools for optimal accuracy and runtime as well as
the effects of net length and long waveform tail [16] [19] [20]. Our
premise is that the gt1-gt2 problem, while extremely complex, is still
treatable as a finite problem that is amenable to big-data mindsets
as has been recently seen in highly challenging applications such
as natural language processing [26] [35]. Specifically, we identify
appropriate modeling parameters and develop a tool, GTX (Golden
Timer eXtension), using well-known machine learning techniques1 to
correct2 setup time, cell delay, wire delay, stage delay, and path slack
divergence between tools. Our methodology is properly considered to
be deep learning-based because the models in GTX are hierarchical,
e.g., the output of the cell and wire delay models are input to the
stage delay model [12]. Our modeling goals for each model are to (1)
minimize the sum of squared errors, and (2) minimize the maximum
range of errors. We achieve:

• Correlation of path slack at timing endpoints3 between two tools
within a range of <30ps for designs implemented in 28FDSOI
and 45GS foundry libraries4 using NLDM delay tables;

• Strong correlation results independent of whether signal integrity
(SI) and on-chip variation (OCV) are enabled or disabled (non-SI,
non-OCV); and

• Scalability and portability of GTX to design projects in new
foundry libraries.

Our main contributions are summarized as follows.

• We develop GTX by identifying appropriate modeling parameters,
and by exploiting big-data mindsets and machine learning
techniques to correct timing divergence between tools. To the
best of our knowledge, our work is the first to attempt timing
correlation with a big-data approach.

• Our models to correlate path slack between timing tools are
accurate across multiple technology nodes and designs. In non-SI

1Detailed descriptions of the machine learning techniques used in this work
can be found in [7].

2GTX uses the timing reports of T1 to generate timing values that reduce
divergence from T2. Of course, GTX can also perform the reverse, i.e., use
timing reports of T2 to reduce divergence from T1.

3We refer to path slacks at timing endpoints as, simply, path slacks.
4Throughout our paper, we refer to 45GS as 45nm, and to 28FDSOI as 28nm.

mode, our models reduce the range of divergence in path slack
between tools from 32.5ps to 5.9ps (i.e., 5.5× reduction) at 28nm.
In SI mode, our models reduce the range from 139.3ps to 21.1ps
(i.e., 6.6× reduction) at 45nm. We demonstrate that our method
applies to small as well as relatively large (leon3mp) designs.

• We demonstrate that GTX can reduce the number of outliers
(from 407 to 26, i.e., 16× reduction, in the example we study)
by incrementally modifying models when new designs are added.

• GTX can be applied to multiple designs, implementation flows,
and technology nodes. We demonstrate the generality of GTX
with two use cases – correlating two signoff tools, and correlating
one signoff tool with a design implementation tool.

In the remainder of this paper, Section II surveys related work.
Section III describes our modeling parameters and methodology for
developing machine learning-based models for GTX. Section IV
describes circuits used to generate training, validation and test sets
used to develop models, and the design of experiments used to validate
GTX. We also report results for multiple tools at multiple foundry
nodes. Section V outlines future work and concludes this paper.

II. RELATED WORK

Prior works that quantify miscorrelations between signoff STA tools
or propose methodologies to minimize tool divergence are limited.
Kahng et al. [8] develop an internal incremental STA tool by using
least-squares regression to model wire delay. They then use offset-
based correlation with a signoff timing tool to minimize divergence
in path slack estimates of their incremental STA tool, relative to the
signoff tool. Their models are developed using the ISPD-2013 [28]
gate-sizing contest library, and do not include any models for stage or
cell delays, or for flip-flop setup times.

To model effects of temporal and spatial manufacturing variations on
path delay, Ganapathy et al. [5] use multivariate regression. They report
estimation errors to be within 5% of SPICE simulations. Tetelbaum
[14] uses root-sum-square (RSS) of variations in stage delay and a
weighted function of the worst case sum of variations in stage delay to
estimate total path delay; path delay estimation errors of less than 5%
are reported. Sinha et al. [13] propose use of RSS for delay variation
in their announcement of the TAU-2013 contest to speed up timing
analysis by using multicores and parallel computing techniques.

In correlating STA tools, Mishra et al. [10] recalculate clock
uncertainties based on miscorrelation between two tools and apply
the updated uncertainty values to achieve better timing correlation
between the tools. They do not empirically demonstrate the accuracy
or efficiency of their approach, either in terms of runtime or in terms
of the number of iterations taken to achieve acceptable correlation
between the tools. Rakheja et al. [11] demonstrate that timing reports
from design implementation tools, such as Synopsys IC Compiler [38],
and signoff STA tools, such as Cadence Encounter Timing System
[23], can differ. They propose a manual and iterative approach to fix
paths for which the tools have large divergence in timing estimates.
For SOCs, manual fixes are infeasible and automated approaches are
required.

Motassadeq [9] quantifies differences in output slew between
Synopsys HSPICE [37] and PrimeTime [39] for Nonlinear Delay
Model (NLDM) and Composite Current Source (CCS) [24] delay
models, but does not propose a methodology to reduce the divergence
in slew estimates in tool reports between CCS and NLDM models.

III. METHODOLOGY

We now describe our methodology to develop flip-flop setup time,
cell, wire, and stage delay and path slack models for GTX. We
describe parameters used in the models, and then the machine learning
methodology used to develop these models.

A. Parameter Selection
Signoff timing tools typically differ in path slack due to

discrepancies in cell, wire and stage delays. Further, tools differ in their
calculations of rise/fall delays across each input-to-output pin arc of
cells. Figures 2 – 5 illustrate these discrepancies between two leading
commercial signoff timing tools T1 and T2. Figure 5 in particular
highlights the discrepancies between tools across a single MUX21 cell.

Path slack is calculated from the required setup time at the capture
flip-flop of the path and from stage delays; these in turn are calculated

from cell and wire delays in each stage. Figures 2 and 3 show that
one tool (T1) can be optimistic in cell delay reports and pessimistic
in wire delay reports as compared to the other tool (T2). There is
a “canceling” effect for stage delays [8]. However, the “canceling”
effect does not eliminate stage delay discrepancies between tools, as
illustrated in Figure 4.

Table I lists all parameters used in our models. Note that cell and
wire delays include incremental values for SI mode analysis.

TABLE I
PARAMETERS REPORTED BY EACH TOOL IN BOTH SI AND NON-SI MODES.

Parameter Meaning Mode
Ce f f Effective load capacitance SI, non-SI
Ccoup Total coupling capacitances SI
Cw Wire ground capacitance SI, non-SI
Rw Wire resistance SI, non-SI

dtr,c,i Cell input slew SI, non-SI
dtr,c,o Cell output slew SI, non-SI

dc Cell delay SI, non-SI
dw Wire delay SI, non-SI
dstg Total stage delay SI, non-SI
dsu,ff Flip-flop setup time SI, non-SI
dslk,p Path slack SI, non-SI

B. Modeling Flow for GTX Models
To minimize divergence and achieve close correlation between

signoff timing tools, we use a big-data approach and machine learning
models. We do not reverse-engineer tools as licenses prohibit us from
doing so; reverse-engineering can also become intractable because
each tool implements millions of lines of legacy and black-box code.
Instead, we develop machine learning-based models for GTX to correct
the divergence in setup time, cell, wire, and stage delays and apply
these models to fit path slack between two STA tools. In the following,
we use the latest versions of two widely used commercial signoff tools,
and show how reports from a tool T2 can be used to develop models
that estimate a tool T1’s reports. Our methodology is applicable to any
pair of signoff or design implementation tools that can perform STA.

In non-SI mode, divergence between tools is typically smaller for
wire delays than for cell delays, so we develop only a cell delay
model.5 In SI mode, however, wire delay divergence between tools
can be significant due to differences in handling of crosstalk effects,
so we model both cell and wire delays. Therefore, in both non-SI and
SI modes we develop three (path slack, setup, and cell delay) models;
additionally, in SI mode, we develop wire and stage delay models.
Figure 6 shows the hierarchy of the five models in GTX and why we
refer to our methodology as “deep”. We use hierarchical rather than flat
modeling for improved correlation and decreased range of divergence.
Combining individual models of cell delay, wire delay, and setup time
in an additive manner to estimate path slack can result in errors being
added up as well. For example, Kahng et al. [8] use additive wire
delay models that result in large divergence in path slack. Therefore,
they invoke the golden timer at regular intervals to correct the path
slack. Hierarchical modeling prevents errors being added linearly by
applying an additional layer of modeling that provides a better fit to
timing estimates. In the following discussion, T1(·) and T2(·) refer to
values of parameter (·) respectively reported by T1 and T2.

Setup time

Cell delay

Wire delay

Stage delay

Path slack

Fig. 6. Hierarchical GTX models. The models within the dotted lines are used
only in SI mode.

Setup time. Our experiments in 28FDSOI indicate that flip-flop setup
time reports between timing tools can diverge by up to 17.5ps. To
reduce the divergence between tools, we model setup time as

T̂1(dsu,ff) = f
(
T2(dsu,ff,dtr,c,i)

)
(1)

5Our experimental results indicate that by introducing wire delay models in
non-SI mode, GTX results do not change significantly.

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25

T 2 C
el

l D
el

ay
 (n

s)

T1 Cell Delay (ns)

150 ps

Fig. 2. Cell delay discrepancy.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.05 0.1 0.15 0.2

T 2 W
ire

 D
el

ay
 (n

s)

T1 Wire Delay (ns)

170 ps

Fig. 3. Wire delay discrepancy.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4

T 2 S
ta

ge
 D

el
ay

 (n
s)

T1 Stage Delay (ns)

100 ps

Fig. 4. Stage delay discrepancy.

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.15 0.2 0.25 0.3 0.35

T 2 C
el

l D
el

ay
 (n

s)

T1 Cell Delay (ns)

D0, rise D0, fall
D1, rise D1, fall
S0, rise S0, fall

125ps

Fig. 5. Pin arc, rise/fall discrepancy.

where T̂1(dsu,ff) is the predicted T1 setup time, T2(dtr,c,i) refer to the
T2-reported input slews at the D and clock pins of the capture flip-
flop, and f (·) is the modeling function. These parameters correspond
to those used to index the NLDM setup time tables in foundry libraries.

Cell delay. Our 28FDSOI studies also indicate that tools can differ
in reported cell delays by >300ps (under extreme load and slew
conditions).6 Furthermore, the delay divergence between tools can vary
across different input-to-output pin arcs, especially in complex cells
such as AOI and MUX. In addition, tool reporting for rise and fall
delays can diverge significantly. Figure 5 illustrates these divergences
for rise and fall delays of D0, D1 and S0 pins of a 2:1 MUX. With
these considerations, we develop rise and fall delay models of each
input-to-output pin arc of each cell in the design as

T̂1(dc) = f (T2(dc),LUT(dc)) (2)

where T̂1(dc) is the predicted T1 cell delay, and LUT(dc) is the cell
delay determined using linear interpolation of NLDM delay lookup
tables (LUTs) of a given cell [8]. The inputs for LUT interpolation
are T2(Ce f f) and T2(dtr,c,i) + ΔSlew, where ΔSlew is the upstream
slew correction between the tools. We use dtr,c,i and Ce f f because
the NLDM delay tables in the foundry libraries are indexed by these.
We use ΔSlew to correct upstream slew differences between the tools
because our experiments indicate that certain tools always propagate
the worst slew in path-based analysis mode. We model ΔSlew as

ΔSlew = (α(LUT (dtr,c,o)+β)−T2(dtr,c,o) (3)

where LUT (dtr,c,o) is the output slew of the upstream cell calculated
using linear interpolation between the library LUTs based on the T2-
reported dtr,c,i and Ce f f . α and β are regression coefficients determined
by fitting T2(dtr,c,o) of the upstream cell to T1(dtr,c,o).
Wire delay. We model wire delay, using a similar set of parameters
as in [8], as

T̂1(dw) = f
(
T2(dw,dtr,c,o),Rw · {Cw,Ce f f ,Ccoup}

)
(4)

where T̂1(dw) is the predicted T1 wire delay and the parameters Rw ·
{Cw,Ce f f ,Ccoup} represent delay due to different capacitances.

Stage delay. We model stage delay, using a similar set of parameters
as in [13] and [14], as

T̂1(dstg) = f
(

T2(dstg), T̂1(dw,dc)
)

(5)

where T̂1(dstg) is the predicted T1 stage delay.

Path slack. We develop two path slack models for non-SI and SI
modes. The models are different because in SI mode, wire and stage
delay models are required to correct large discrepancies in path slack
as described above. Our path slack model in non-SI mode is

T̂1(dslk,p)S̃I = f
(

T2(dslk,p,
σ
μ

(dw)),
σ
μ

(T̂1(dc,dsu,ff))
)

(6)

where T̂1(dslk,p)S̃I is the predicted T1 path slack in non-SI mode and
σ
μ (·) is the coefficient of variation of the parameter (·). Our path slack

6Simulations with HSPICE [37] indicate that T1 is accurate to within 0.02ps
of HSPICE results, whereas T2 diverges more substantially from HSPICE.

model in SI mode is

T̂1(dslk,p)SI = f
(

T2(dslk,p),
σ
μ

(T̂1(dw,dc,dstg,dsu,ff))
)

(7)

where T̂1(dslk,p)SI is the predicted T1 path slack in SI mode.
Besides coefficient of variation, we also try two other normalization

techniques, standard score [7] and variance-to-mean ratio [7]. We
experimentally observe that coefficient of variation and standard score
give similar results because they determine the contribution of each
wire, cell, or stage delay to the overall delay of all wires, cells, or stages
in a path. Variance-to-mean ratio, on the other hand, cannot determine
the contribution of an individual (wire, cell, or stage) delay to the
corresponding total delay in a given path; hence, it is less accurate.

Incremental modeling. Large product organizations often tape
out multiple designs in the same technology. A new design can,
conceivably, use cells and/or wiring configurations that are “out of
scope” for the current fitted models. Such “new” cells/wires can
introduce divergence in timing reports.7 To mitigate these divergences,
we propose an incremental modeling flow as follows.

• Step 1. Add any observations that result in divergence in timing
of more than a threshold value (e.g., 10ps) to the existing training
sets of each of the GTX models.

• Step 2. Re-train GTX models with the training sets from Step 1.
• Step 3. Test the updated models on all data points from the new

design.
IV. VALIDATION AND RESULTS

We now present validation of GTX and results of our experiments.
First, we describe our design of experiments, including descriptions
of designs used and our flow to collect training, validation and testing
data for modeling. Second, we conduct four experiments to assess and
measure performance of GTX. We use two leading (foundry-qualified)
signoff timing tools T1 and T2, and a leading design implementation
tool D1, in our experiments. All tool versions are 2013 releases.

• Experiment 1. Correlate tools T1 and T2 in non-SI mode.
• Experiment 2. Correlate tools T1 and T2 in SI mode.
• Experiment 3. Correlate tools T1 and D1 in SI mode.
• Experiment 4. Validate the incremental modeling flow on a new

design with many outliers.

A. Design of Experiments
We use real-world designs as well as artificial circuits in our

experiments. Real-world designs include the leon3mp multicore
processor from Aeroflex Gaisler AB [29], and aes cipher top,
wb dma top and jpeg encoder from Opencores [32]. We generate
artificial training circuits to finely control various aspects of a timing
path to verify robustness of our methodology.8 We synthesize all
designs with 45nm bulk triple-Vt and 28nm FDSOI dual-Vt foundry
libraries. We perform hierarchical synthesis at 45nm and flat synthesis
at 28nm to demonstrate the scalability of GTX across different flows
and foundry technologies. We generate verilog netlists, Synopsys

7If new cells are not introduced in a design, incremental modeling is not
required for GTX.

8We observe that synthesis and implementation tools tend to construct
designs that occupy the middle region of delay tables. We create artificial
training circuits to define the extreme ranges of timing discrepancies so as
to create robust and scalable models.

Design Constraints (SDC) [1], and Standard Parasitic Exchange Format
(SPEF) [40] files as inputs to timing tools.

Real-world designs. Table II shows the post-layout number of
standard-cell instances for each design implemented in 45nm and 28nm
foundry libraries. At 45nm, we use less strict constraints on timing,
maximum fanouts, and transition, and we restrict tools from using cell
sizes X0, X1, and ≥ X20.9 However, at 28nm we allow the tools to
use all cells from the library, and apply tight timing constraints but
relaxed maximum fanout and transition constraints.10

TABLE II
NUMBER OF INSTANCES IN REAL-WORLD DESIGN.

Instances (clock period in ns)
Testcase 45nm 28nm

aes cipher top 18818 (1.0) 16688 (0.8)
wb dma top 3641 (0.5) 2349 (0.5)
jpeg encoder 46702 (1.25) 53641 (0.67)

leon3mp – 750854 (1.2)

Artificial training circuits. We develop generators using custom Tcl
scripts to finely control various aspects of a timing path as listed below.

• Path – #stages and #fanouts.
• Cell – input slews, types, sizes, and Vt flavors.
• Wire – parasitics (Rw, Cw, Cc), #segments, and aggressors.

CPU time needed to generate the verilog netlist, SDC, and SPEF
files is ∼6s (independent of the number of fanouts and stages) on an
Intel Xeon E5-2640 2.5GHz server. The size of each of these files is
∼4KB for a circuit with one stage and a fanout of one. The size of
SPEF files can potentially be large (e.g., 232KB for a circuit with 60
stages and four fanouts in each stage) because we do not implement
name mapping.

Each training circuit consists of a chain of driver and driven cells
and flip-flops at the beginning (launch) and the end (capture) to create
a constrained path. Optionally, cells can be added to achieve multiple
fanouts from each driver. Pins that are not on the constrained path are
connected to dummy flip-flops and/or ports to ensure that there are
no floating pins. An example of a circuit with two stages without SI
aggressors is shown in Figure 7. The constrained path is from f1/Q to
f2/D, through instances u1 and u2. To generate a training circuit with
multiple stages, the “repeated unit” in Figure 7 is replicated between
the launch and the capture flip-flops11. Figure 8 illustrates a circuit
with one SI aggressor and coupling capacitances.

��

��
��

��

���

��	�
�������

���

�����	���

��	��	���

�����	���

���	��	���

������
����	
��

�����	���

Fig. 7. Example of a non-SI training circuit.

Fig. 8. Example of an SI training circuit.

9We observe that these cell sizes are known for being problematic in designs;
some designers commonly use similar restrictions.

10At 45nm, the maximum fanout constraint is set to 20 and the maximum
transition time is set to one-sixth of the clock period. At 28nm these values are
respectively 40 and one-eighth of the clock period.

11The ”repeated unit” contains a dummy flip-flop which is inserted to ensure
valid operation of gates, and is not part of the constrained path.

B. Data Collection for Modeling
We generate training, validation, and test datasets in the following

way. First, we obtain verilog netlists, SDC, and SPEF files with
coupling capacitances for our designs. Second, we use 2013-released
versions of two commercial signoff timing tools, commonly adopted
as golden tools by design teams, to perform path-based timing analysis
of the top 10K worst paths in both SI and non-SI modes.12 For
Experiment 3, we use a commercial design implementation tool D1.
Last, to compare tools in a fair manner, we ensure that options and
global flags for both tools are set to produce similar reports as follows:

• Timing reports. Each tool reports all parameters from Table I.
• Path timing calculation. Each tool performs path-based analysis,

i.e., slews are propagated only along “paths-of-interest”.
• SI and OCV analyses. SI- and OCV-aware analysis modes are

enabled, and glitch analysis is disabled.13

• Parasitic information. In SI mode, each tool uses coupling
parasitic information for timing analysis.

Detailed cell characterization for the cell delay model. We perform
a one-time detailed characterization of each input-to-output pin arc of
each cell in a design because our experiments indicate that cell delay
requires very detailed modeling to minimize the range of errors.14

We create a single-stage artificial training circuit for the cell, annotate
multiple input slews and capacitances spanning the entire NLDM delay
tables in the foundry libraries used by the design, and obtain rise and
fall delays for each combination of slews and capacitances and for all
rise and fall input transitions. Similar characterization is performed for
flip-flops as well. Table III shows sample resource utilization for cell
characterization for a design implemented with 28nm foundry libraries.
File size refers to the file with training, validation and test datasets for
each cell.

TABLE III
RESOURCE UTILIZATION FOR CELL CHARACTERIZATION AT 28NM.

Cell #arcs #data points Time (min) File size (KB)
INV 1 140 20 20

NAND2 2 280 55 36
MUX21 3 560 95 68
AOI13 4 560 95 68

We characterize a total of 397 cells at 28nm and 305 cells at 45nm
libraries; these contain a total of 1870 input-to-output pin arcs15.
The characterization time for these cells is 116h per core (a one-
time overhead of just under 5 days) on an eight-core Intel Xeon
E5-1410 2.8GHz server. Table III shows resource utilization for cell
characterization at 28nm. MUX21 and AOI13 cells have the same
runtime and number of training data points because NLDM table sizes
vary between these cells, and we use more values of input slews and
capacitances from the NLDM tables of MUX21 than of AOI13.

Modeling techniques. To develop models, we use training data
points from artificial circuits and validation data points from real-
world designs. To test the models, we use a separate set of data points
from our real-world designs. Table IV shows the sizes of the training,
validation and test sets for each experiment. Extremely large sizes
of our training and test sets reflect our “big-data” approach whereby
models are derived using ≥200K data points for cell, wire, and stage
delays. Thereafter, we may apply our incremental modeling flow for
new designs in the same technology/library.

We apply both linear and nonlinear machine learning techniques
(least-square regression (LSQR), artificial neural networks (ANN) [7],
support vector machines regression (SVMR) [4] with radial basis
function kernel, and random forests (RF) [7]) to all GTX models.
For each model, we choose the technique that best minimizes both
mean squared error (MSE) and the range of errors, i.e., the difference
between maximum and minimum errors. We observe that LSQR and

12We use custom Tcl scripts to ensure that the same 10K paths are analyzed
by respective tools as we generate our training sets.

13Our experiments indicate that in both OCV and non-OCV modes the
divergence in clock-to-Q delay and setup times vary by less than 5ps, and
delays for other cells vary by less than 1ps. Therefore, in the following we
report results in OCV mode only.

14When signoff involves multiple corners, cell delays need to be characterized
for each corner, and the corner-specific timing model must be used.

15We characterize only those cells used in our designs. If necessary, an entire
library can be characterized.

ANN are not as effective as RF and SVMR in minimizing the range of
errors. ANN is effective in modeling setup time and cell delays, SVMR
is effective in modeling wire and stage delays, and RF is effective in
modeling path slack. We use the built-in Matlab vR2013a [30] toolbox
for ANN, LIBSVM implementation of SVMR in Matlab [4], and an
open-source Matlab implementation of RF [34].16 Once models are
developed, the time to test a model depends on the size of the test
dataset. In our experiments, runtime is ∼3.23s for 30K path slack data
points in the test set. Figure 9 shows our complete modeling flow for
GTX. Note that, by default, model development is a one-time effort.
New designs may require incremental modeling to reduce the number
of outliers.

Artificial
Circuits

Train Validate Test

New
Designs

MODELS
(Path slack, setup time,
stage, cell, wire delays) stage, cell, wire delays)

If
error >

threshold

Outliers
(data points)

ONE-TIME

INCREMENTAL

Real
Designs

Fig. 9. Our modeling flow.

TABLE IV
TRAINING, VALIDATION AND TEST DATASET SIZES

Experiment # Module Training Validation Testing

1
Path slack 22680 6480 33240
Setup time 21798 6228 33114
Cell delay 354320 15520 326760

2

Path slack 17270 7664 34066
Setup time 28830 8236 34120
Cell delay 323804 9875 315776
Wire delay 304108 39788 143941
Stage delay 323880 39872 184560

3

Path slack 21770 1440 35790
Setup time 21540 1120 35340
Cell delay 320118 11346 332613
Wire delay 215506 9980 156774
Stage delay 211736 10553 139327

4

Path slack 17554 5166 32616
Setup time 28840 8237 34989
Cell delay 341042 29972 100387
Wire delay 344086 29900 100520
Stage delay 341708 29926 98895

C. Results for Experiments

We validate GTX with the four experiments described in Section
IV.17 All experiments are performed on an Intel Xeon E5-2640 2.5GHz
server and all reported runtimes are for this platform.

Results for Experiment 1. We correlate timing between T1 and T2
in non-SI mode. Figures 10(a) and 10(b) show the timing divergence
between tools before and after fitting. The total runtime is 38min.18

For ANN, we use up to five hidden layers to model cell delay and
two hidden layers to model setup time. We constrain RF to 200 trees
and 5000 observations per leaf node. Our models reduce the range of
divergence in path slack from 32.5ps to 5.9ps (i.e., 5.5× reduction) at
28nm, and from 18.8ps to 7.1ps (i.e., 2.6× reduction) at 45nm.

16ANN uses hidden layers as a modeling parameter. We sweep the number
of hidden layers from one to ten and choose the value that achieves minimum
MSE and range of errors. RF uses multiple classification trees and applies
different models to a set of observations at a leaf node of each tree [7]. We
sweep the number of trees from 50 to 500 in steps of 50, and the number of
observations per leaf node ranging from 1000 to 10000 in steps of 1000. For
each experiment, we report the number of trees and the number of observations
per leaf node that minimizes MSE and the range of errors.

17We ensure that identical input files (Liberty, netlist, SDC and SPEF) are
provided to both tools, such that slack miscorrelation is due to delay and timing
calculation only. Thus, in Experiment 3 we do not use, e.g., Cadence Ostrich
[33] to perform parasitic correlation with golden SPEF from Synopsys StarRC
[36], in which case the design implementation tool’s (D1) parasitic estimation
may be another source of miscorrelation.

18The reported runtimes for experiments do not include cell characterization
time, which is separately discussed in Section IV-B.

0

0.005

0.01

0.015

0.02

0.025

0.03

Path slack Setup time Cell delay

Ra
ng

e
(M

ax
 -

M
in

) (
ns

)

Original

GTX

(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Path slack Setup time Cell delay

Ra
ng

e
(M

ax
 -

M
in

) (
ns

)

Original

GTX

(b)

Fig. 10. Experiment 1 results at (a) 45nm and (b) 28nm.

Results for Experiment 2. We correlate timing between T1 and T2 in
SI mode. Figures 11(a) and 11(b) show the divergence between tools
before and after fitting. The total runtime is 116min. For ANN, we use
up to seven hidden layers to model cell delays and two hidden layers
for setup time. We constrain RF to 400 trees and 2000 observations
per leaf node as we observe that this selection minimizes the range of
errors. Our models reduce the range of divergence in path slack from
89.2ps to 22.3ps (i.e., 4× reduction) at 28nm and from 139.3ps to
89.2ps (i.e., 6.6× reduction) at 45nm. The stage delay model in GTX
improves accuracy even when path slack diverges by >130ps.

To confirm the robustness of our approach, we also conduct the
inverse experiment, i.e., where we use timing reports of T1 to estimate
timing reports of T2. The error metrics are comparable to those shown
in Figures 11(a) and 11(b). Figures 12(a) and 12(b) depict five stages
from a 28-stage path (Path #2197) from jpeg encoder, with cell delays,
wire delays and path slack reported by T1 and T2, and their respective
fitted values T̂1 and T̂2 from GTX. The fitted values are within 8ps of
the tool-reported values.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Path slack Setup time Stage delay Cell delay Wire delay

Ra
ng

e
(M

ax
 -

M
in

) (
ns

)

Original

GTX

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Path slack Setup time Stage delay Cell delay Wire delay

Ra
ng

e
(M

ax
 -

M
in

) (
ns

)

Original
GTX

(b)

Fig. 11. Experiment 2 results at (a) 45nm and (b) 28nm.

Results for Experiment 3. We correlate timing between T1 and a
leading design implementation tool D1 in SI mode at 28nm. Figure 13
shows the divergence between tools before and after fitting. The total
runtime is 104min. For ANN, we use up to seven hidden layers to
model cell delay and five hidden layers for setup time. We constrain
RF to 450 trees and 4000 observations per leaf node. Our models
reduce the range of divergence in path slack from 162.8ps to 23.1ps
(i.e., 7× reduction).

Results for Experiment 4. We incrementally refine our models
for a new design with many outliers while correlating timing
parameters. A new design, 5× jpeg encoder, is derived from the
original jpeg encoder design [32]. We create a new top module that
instantiates the original jpeg encoder module five times to obtain
5× jpeg encoder. The new design is implemented at 28nm and has
∼300K cell instances in the post-layout netlist. We use a tighter
timing constraint for this design than with jpeg encoder, which results
in different cells and timing paths being used. Change in top-level
routing across each jpeg encoder block also changes wire delay due to
crosstalk effects. Therefore, 5× jpeg encoder requires modification of
the models derived for jpeg encoder. Figure 14 shows the divergence
between tools before and after incremental fitting for path slack, cell,
wire and stage delays. The total runtime is 87min. For ANN, we use
up to seven hidden layers to model cell and stage delays and two
hidden layers for setup time. We constrain RF to 400 trees and 2000
observations per leaf node. We do not report setup time because the
divergence is <3ps. The total runtime is 177min. In the context of a

Instance (Cell) Dir Delay(T1) Delay(T2) Delay()

FE_CN_C274/A1 (NAND2X7) IN 0.0447 0.0452 0.0062
FE_CN_C274/ZN (NAND2X7) OUT 0.0565 0.0545 0.1076

FE_CN_C277/A (BUFFX8) IN 0.0110 0.0082 0.0044
FE_CN_C277/Z (BUFFX8) OUT 0.0272 0.0266 0.0664

FE_CN_C294/A1 (OAI22X4) IN 0.0825 0.0837 0.0225

…

…

slack (VIOLATED) -0.339 -0.342 -0.588

…

r
f

r
r

r

FE_CN_C281/A (INVX8) IN 0.0057 0.0051 0.0023
FE_CN_C281/ZN (INVX8) OUT 0.0215 0.0213 0.0264

f
r

FE_CN_C286/A2 (XOR2X4) IN 0.0070 0.0072 0.0066
FE_CN_C286/Z (XOR2X4) OUT 0.0332 0.0352 0.0581

f
f

…

…

FE_CN_C294/ZN (OAI22X4) OUT 0.0677 0.0598 0.0781 f

(a) T2 fitted to T1

Instance (Cell) Dir Delay(T1) Delay() Delay(T2)

FE_CN_C274/A1 (NAND2X7) IN 0.0447 0.0062 0.0065
FE_CN_C274/ZN (NAND2X7) OUT 0.0565 0.1076 0.1063

FE_CN_C277/A (BUFFX8) IN 0.0110 0.0044 0.0050
FE_CN_C277/Z (BUFFX8) OUT 0.0272 0.0664 0.0631

FE_CN_C294/A1 (OAI22X4) IN 0.0825 0.0225 0.0231

…

…

slack (VIOLATED) -0.339 -0.588 -0.582

…

r
f

r
r

r

FE_CN_C281/A (INVX8) IN 0.0057 0.0023 0.0026
FE_CN_C281/ZN (INVX8) OUT 0.0215 0.0264 0.0260

f
r

FE_CN_C286/A2 (XOR2X4) IN 0.0070 0.0066 0.0057
FE_CN_C286/Z (XOR2X4) OUT 0.0332 0.0581 0.0588

f
f

…

…

FE_CN_C294/ZN (OAI22X4) OUT 0.0677 0.0781 0.0794 f

(b) T1 fitted to T2

Fig. 12. Five sample stages from a 28-stage path in jpeg encoder at 28nm showing cell delay (OUT), wire delay (IN) and path slack reported by T1 and T2.
The respective fitted values after using GTX are (a) Delay(T̂1) and (b) Delay(T̂2) when T1 or T2 is the respective fitted tool. All values are in ns.

new chip design project, this overhead of several hours is negligible.
Our models reduce the range of divergence in path slack from 89.2ps
to 36ps (2.5×), and the number of outliers from 407 to 26 (i.e., 16×
reduction).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Path slack Setup time Stage delay Cell delay Wire delay

Ra
ng

e
(M

ax
 -

M
in

) (
ns

)

Original
GTX

Fig. 13. Expt 3 results at 28nm.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Path slack Stage delay Cell delay Wire delay

Ra
ng

e
(M

ax
 -

M
in

) (
ns

)

Original
GTX
Incr. GTX

Fig. 14. Expt 4 results at 28nm.

V. CONCLUSIONS

Improvements to timing signoff methodologies can significantly
reduce the number of iterations in the IC design flow. Design teams
often want to correlate one signoff tool’s timing reports with those
of another tool to reduce pessimism and/or optimism. We describe a
new tool, GTX, that embodies a big-data approach for the correlation
problem using a hierarchy of models. We apply machine learning
to develop models for path slack, setup time, stage, cell, and wire
delays and can “correct” endpoint path slack divergence between two
signoff timers from 89.2ps to 22.3ps (i.e., 4× reduction) at 28nm,
and from 139.3ps to 21.1ps (i.e., 6.6× reduction) at 45nm with SI
and OCV analysis enabled. GTX can also be applied to improve
timing correlation between an implementation and a signoff tool;
our experiments show 7× reduction of path slack divergence from
162.8ps to 23.1ps. We show that GTX scales to multiple foundry
nodes and libraries, and that incremental modeling in GTX provides
the capability to adapt to new designs in a given technology. Our
ongoing work seeks three improvements: (i) expand GTX to CCS
[24] models and statistical variation-aware analysis [15]; (ii) develop
methodologies to characterize libraries for “ideal” delay and power
per unit length; and (iii) develop a methodology to integrate GTX into
arbitrary production timing closure flows so as to reduce the amounts
of iterations, turnaround time and overdesign needed to achieve final
timing signoff.

ACKNOWLEDGMENTS

We thank Tom Spyrou, Dr. Cho Moon, Roger Embree, and Dr.
Puneet Sharma for their early feedback on our project. We thank
Gary Smith of Gary Smith EDA for his listing of timing analysis
tool providers. We also thank CMP and STMicroelectronics for access
to the 28nm FDSOI design kit.

REFERENCES
[1] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs:

A Practical Approach, Springer, 2009.
[2] S. Bansal and R. Goering, “Making 20nm Design Challenges

Manageable”, http://www.chipdesignmag.com/pdfs/
chip design special DAC issue 2012.pdf

[3] T.-B. Chan, A. B. Kahng, J. Li and S. Nath, “Optimization of Overdrive
Signoff”, Proc. ASP-DAC, 2013, pp. 344-349.

[4] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support Vector
Machines”, ACM Trans. on Intelligent Systems and Technology 3(2)
(2011), pp. 27:1-27:27.

[5] S. Ganapathy, R. Canal, A. Gonzalez and A. Rubio, “Circuit Propagation
Delay Estimation Through Multivariate Regression-Based Modeling
Under Spatio-Temporal Variability”, Proc. DATE, 2010, pp. 417-422.

[6] R. Goering, “What’s Needed to “Fix” Timing Signoff?”, DAC Panel, 2013.
[7] T. Hastie, R. Tibshirani and J. J. H. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, Springer, 2009.
[8] A. B. Kahng, S. Kang, H. Lee, S. Nath and J. Wadhwani, “Learning-

Based Approximation of Interconnect Delay and Slew in Signoff Timing
Tools”, Proc. SLIP, 2013.

[9] T. El Motassadeq, “CCS vs NLDM Comparison Based on a Complete
Automated Correlation Flow Between PrimeTime and HSPICE”,
Proc. Saudi International Electronics, Communications and Photonics
Conference, 2011, pp. 1-5.

[10] A. Mishra, J. Kumar and U. Singhal, Resolving Timing Miscorrelation
Using Timing Uncertainties. http://www.edn.com/design/integrated-
circuit-design/4390721/Resolving-timing-miscorrelation-using-timing-
uncertainties

[11] S. Rakheja and N. S. Krishna, Establishing Timing Correlation Between
Tools. http://www.edn.com/design/integrated-circuit-design/4313674/
Establishing-timing-correlation-between-tools

[12] R. Salakhutdinov, J. B. Tenenbaum and A. Torralba, “Learning with
Hierarchical-Deep Models”, IEEE Trans. on Pattern Analysis and Machine
Intelligence 35(8) (2013), pp. 1958-1971.

[13] D. Sinha, L. G. e Silva, J. Wang, S. Raghunathan, D. Netrabile and A.
Shebaita, “TAU 2013 Variation Aware Timing Analysis Contest”, Proc.
ISPD, 2013, pp. 171-178.

[14] A. Tetelbaum, “Method of Estimating a Total Path Delay in an Integrated
Circuit Design with Stochastically Weighted Conservatism”, U.S. Patent
No. 7,213,223, 2007.

[15] V. Veetil, K. Chopra, D. Blaauw and D. Sylvester, “Fast Statistical Static
Timing Analysis Using Smart Monte Carlo Techniques”, IEEE Trans. on
CAD 30(6) (2011), pp. 852-856.

[16] C. Moon, Synopsys Inc., personal communication, July 2013.
[17] G. Smith, Gary Smith EDA, personal communication, September 2013.
[18] P. Sharma, Freescale Inc., personal communication, July 2013.
[19] R. Embree, personal communication, July 2013.
[20] T. Spyrou, Altera Corporation, personal communication, July 2013.
[21] Atrenta Inc. http://www.atrenta.com
[22] Cadence Design Systems. http://www.cadence.com
[23] Cadence Encounter Timing System. http://www.cadence.com/products/

di/ets/pages/default.aspx
[24] CCS. http://www.opensourceliberty.org/ccspaper/ccs bgr.pdf
[25] CLK Design Automation Inc. http://www.clkda.com
[26] Google Translate. http://translate.google.com
[27] Incentia Design Systems Inc. http://www.incentia.com
[28] Discrete Gate Sizing Contest. http://www.ispd.cc/contests/13/

ispd2013 contest.html
[29] Leon3 Multicore Processor. http://www.gaisler.com/index.php/products/

processors/leon3
[30] MATLAB. http://www.mathworks.com
[31] Mentor Graphics Inc. http://www.mentor.com
[32] OpenCores. http://opencores.org/projects
[33] Ostrich. http://www.cadence.com/community/blogs/di/archive/2008/10/15/

an-interview-with-global-timing-debug-architect-thad-mccraken.aspx
[34] Random Forest. https://code.google.com/randomforest-matlab
[35] Apple Siri. http://www.apple.com/ios/siri
[36] Synopsys Inc. http://www.synopsys.com
[37] Synopsys HSPICE User Guide. http://www.synopsys.com/tools/

Verification/AMSVerification/CircuitSimulation/HSPICE/Pages/
default.aspx

[38] Synopsys IC Compiler User Guide. http://www.synopsys.com/Tools/
Implementation/PhysicalImplementation/Pages/ICCompiler.aspx

[39] Synopsys PrimeTime User Guide. http://www.synopsys.com/Tools/
Implementation/SignOff/Pages/PrimeTime.aspx

[40] SPEF. http://www.edaboard.com/thread37705.html

