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Abstract - We propose a new, low-cost, hardware-only scheme to 

detect errors in superscalar, out-of-order processor cores. For 

each instruction decoded, Nostradamus compares what the 

instruction is expected to do against what the instruction actually 

does. We implement Nostradamus in RTL on top of a baseline 

superscalar, out-of-order core, and we experimentally evaluate 

its ability to detect injected errors. We also evaluate 

Nostradamus’s area and power overheads. 

I. INTRODUCTION 

In this paper, we propose a new, low-cost scheme for 

detecting errors in superscalar, out-of-order processor cores. 

Our scheme, called Nostradamus, operates on a simple 

principle: for each instruction decoded, Nostradamus 

compares what the instruction is expected to do against what 

the instruction actually does. Instructions can modify 

architectural registers, memory, and the program counter (PC); 

Nostradamus perfectly forecasts (which is origin of its name) 

during the Decode stage what each instruction (except for 

conditional branches) should do to architectural state. As the 

instruction proceeds through the pipeline, Nostradamus 

records what the instruction does. When the instruction 

commits, Nostradamus compares what it was supposed to do 

against what it actually did. We present the design of 

Nostradamus in Section II. 

As we explain in Section III, we have implemented 

Nostradamus in Verilog on top of a baseline superscalar core 

distributed by the FabScalar group [4]. FabScalar, which is 

designed in RTL, enables us to experimentally evaluate 

Nostradamus’s ability to detect errors, as well as its area and 

power overheads. Our results for area and power (Section III) 

show that Nostradamus’s overheads are modest, less than 11% 

for area and less than 6% for power. Our results for error 

detection (Section IV) show that Nostradamus successfully 

prevents the vast majority of injected errors from causing 

silent data corruptions (SDCs). 

Because core error detection is an important problem, there 

have been many different schemes proposed prior to 

Nostradamus. We summarize prior work in Table I and note 

that each scheme has at least one significant drawback. Our 

goal for Nostradamus is to provide comprehensive error 

detection for the core without any of these major drawbacks. 

In this work, we make three contributions: 

• We propose a novel, low-cost, all-hardware error 

detection scheme for superscalar cores. 

• We develop an RTL implementation of Nostradamus. 

• We experimentally evaluate the RTL implementation. 

II. NOSTRADAMUS DESIGN 

The key idea behind Nostradamus is to compare what the 

core does to what it is expected to do. For each instruction, 

Nostradamus compares the instruction’s expected impact on 

architectural state to the actual impact the instruction’s 

execution has on architectural state. Any difference between 

the two reveals an error. This approach is similar in 

philosophy to prior work [7][2][8] but with advantages listed 

in Table 1.  Although Nostradamus can detect errors in simple, 

in-order cores, we focus on superscalar, out-of-order cores.  

A. Overview 

Nostradamus operates on a per-instruction basis. After an 

instruction is fetched, it is decoded. In the Decode stage, the 

core has all of the information required to determine what 

impact the instruction will have on the core’s architectural 

state. This state includes the architectural registers, memory, 

and program counter (PC). This architectural impact is 

independent of the microarchitecture of the core, i.e., 

Nostradamus is agnostic as to how the core will execute the 

instruction. Nostradamus cares only about the “bottom line” of 

how the instruction modifies architectural state. Checking at 

the architectural level, rather than the microarchitectural level, 

enables Nostradamus to comprehensively detect errors 

throughout the core. For example, by checking updates to 

architectural registers, rather than physical registers, 

Nostradamus can detect errors in register renaming. 

In Figure 1, we illustrate Nostradamus. When a fetched 

instruction is decoded, Nostradamus’s SetExpectation unit 

determines what the instruction should do, i.e., its expectation. 

In the out-of-order execution engine—everything between 

Decode and Commit—Nostradamus tracks the instruction’s 

history (i.e., its modifications to architectural state). Just prior 

to committing the instruction, Nostradamus’s 

CheckExpectation unit compares the instruction’s history to its 

expectation. A mismatch indicates an error. 

As described thus far, Nostradamus comprehensively 

detects errors in the core’s dataflow and control flow decision 

making processes. For example, if an error causes the core to 

read from the wrong register, the history will not match the 

expectation. Similarly, if an error causes the core to 
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incorrectly advance the PC, the history will not match the 

expectation. 

To be complete, Nostradamus must also detect errors in 

values that are computed in functional units and maintained in 

storage structures. Detecting errors in computations and 

storage is straightforward, and we adopt well-known solutions 

for both. Nostradamus detects errors in computations with 

residue coding [16] and errors in storage with error detecting 

codes (e.g., parity). 

B. Microarchitectural Design 

 We now describe how we integrate Nostradamus into the 

design of a superscalar, out-of-order core. When designing 

Nostradamus, our main goals were to avoid adding new 

datapaths and to avoid modifications to complicated, latency-

critical units like register renaming. 

Instruction Fetch 

Nostradamus has no impact whatsoever on the Fetch stage. 

Nostradamus does not detect errors in Fetch, other than 

detecting errors in updating the program counter (discussed 

later in this section). 

Decode and SetExpectation Unit 

In the Decode stage, Nostradamus adds a SetExpectation 

unit that operates in parallel with the normal instruction 

decode logic. The normal instruction decode logic processes 

an instruction to produce the signals to control the pipeline 

accordingly. The SetExpectation unit has the analogous but 

simpler task of determining its expectation, i.e., how the 

instruction will modify the core’s architectural state.  

 The SetExpectation unit processes the instruction to 

determine the instruction’s expectation, which is a function of 

the instruction’s operation type, architectural register inputs, 

immediate input operands, architectural register outputs, and 

next PC. For example, the MIPS instruction “add $r3, 

$r1, $r7” would expect to: perform an addition; use input 

operands $r1 and $r7; write to $r3; and update PC to PC+4.  

Some instructions perform multiple operations. An example 

of this is the MIPS instruction “load $r2, 4[$r1]”. This 

load instruction is expected to compute an address from an 

immediate and a register value ($r1+4) and then perform a 

load at that address. Nostradamus checks that both the ALU 

and the Load Store Unit are accessed and that the correct 

operations occur within each of them.  

Signatures: Logically, Nostradamus uses all of the 

information in an instruction’s expectation, but the cost of 

maintaining all of this information would be impractical. 

Instead, the SetExpectation unit hashes this information to 

create an S-bit value we call the Instruction Expectation 

Signature (IES). The choice of S is a design decision that 

enables the architect to trade off error coverage versus cost; as 

the value of S is increased, the error coverage improves (for 

reasons explained in Section II.D), but the cost of computing 

and maintaining the IES increases. For clarity of explanation, 

we assume for now that the IES contains all of the expectation 

information, and we re-visit how to incorporate hashed 

signatures later.  

For implementation reasons explained later, we separate the 

IES for the PC, denoted IES(PC), from the IES for the 

registers and memory, denoted IES(RegMem). The IES(PC) is 

the expected value of the next PC, i.e., how the instruction is 

expected to affect the PC.  

Control-Flow Instructions: For non-control-flow instructions 

(e.g., add), the expected next PC, IES(PC), is its PC plus the 

TABLE I. QUALITATIVE COMPARISON OF STATE-OF-THE-ART CORE ERROR DETECTION SCHEMES 

core error detection scheme error detection coverage major drawback 

Nostradamus (this paper) vast majoritya of transients and permanents  

DIVA [1] virtually allb transients and permanents large area and power overheads to check small cores; 

adds many new datapaths to core 

redundant multithreading [15][13] vast majoritya of transients large energy and performance overheads 

register dataflow checking [2][8] no RTL designs evaluated, but expect vast 

majoritya of transients and permanents in 

dataflow 

no coverage of control flow errors; may require 

recompilation (i.e., access to source code) [8] 

Argus [7] vast majoritya of transients and permanents requires recompilation (i.e., access to source code) 

periodic built-in self-test (e.g., BulletProof [17]) virtually allb permanents no coverage of transient errors 

software-level anomaly detection  

(e.g., SWAT [6]) 

vast majoritya of permanents unclear detection of transients; unbounded error 

detection latency 

software redundancy (e.g., SWIFT [14]) no RTL designs evaluated, but expect majority of 

transients 

very large energy and performance overheads; lower 

error coverage than hardware schemes 

Sampling + DMR [10] virtually allb permanents no coverage of transient errors 
a We use “vast majority” detected to denote that less than 10% of errors lead to silent data corruptions. 
b We use “virtually all” detected to denote that less than 1% of errors lead to silent data corruptions. 

 
Fig. 1. High-level view of Nostradamus. Shaded units added for Nostradamus. 



 

 

size of the instruction. For a control-flow instruction, the core 

does not know a priori what the next PC is going to be. 

However, the core predicts the next PC and Nostradamus uses 

this predicted next PC as the instruction’s IES(PC). If the 

prediction is found to be incorrect in Execute, it will be 

updated then (as we explain in the section on Execute).   

Micro-Ops: The FabScalar core, like many x86 cores, breaks 

some instructions into micro-ops. Nostradamus operates at the 

micro-op granularity because micro-ops effectively behave as 

instructions, i.e., read/write registers, modify the PC, etc. 

Nostradamus computes an expectation (IES) per micro-op and 

checks it at Commit. 

Out-of-Order Execution Engine 

In the out-of-order execution engine between Decode and 

Commit, Nostradamus must maintain each instruction’s IES 

and compute each instruction’s history. An instruction’s 

history is computed with the same algorithm as the 

expectation, and the history is similarly hashed into an 

Instruction History Signature (IHS). As with the IES, the IHS 

is also separated into IHS(PC) and IHS(RegMem). An 

instruction’s IHS(PC) is its PC.  

We now discuss how Nostradamus is integrated into the 

out-of-order execution engine. 
Register File and Register Renaming 

The baseline core has a physical register file and an explicit 

renaming table. For purposes of computing the IHS, 

Nostradamus widens each register in the physical register file 

to include its current architectural register number. When an 

instruction writes to the register file it also writes the 

architectural destination register number along with the 

register. When an instruction reads from the register file, it 

also reads the architectural register number associated with the 

physical register. The architectural input register numbers then 

travel along with the instruction through the instruction queue, 

reorder buffer, etc., and are used to compute the IHS. 

Nostradamus has no impact on register renaming, but it 

does detect errors in register renaming. 
In-Flight Instruction State 

The superscalar core manages the out-of-order execution of 

instructions with the register file (discussed already), 

instruction queue (IQ), reorder buffer (ROB), and load-store 

queue (LSQ). Nostradamus simply extends the IQ, ROB, and 

LSQ to hold signatures, as described in Table II.  
Execute Stage and Functional Units 

The functional units represent the primary place in the core 

where new architectural values are computed. Nostradamus 

enhances the Execute stage in three ways. 

First, Nostradamus checks that computations of new values 

are correct. Detecting errors in functional units is a well-

understood problem with well-tested solutions [16]. We adopt 

residue checking (also known as modulo checking). Our 

baseline processor has an integer adder and multiplier, and 

Nostradamus detects errors in both with residue checking with 

a modulus of 31. A larger modulus improves error detection 

coverage but increases area and power costs. 

Second, Nostradamus must be aware of what operation is 

performed so that it can update the instruction’s IHS 

accordingly. Thus, when the functional unit sends its result 

(with parity) to the register file, it sends the type of operation 

it performed (e.g., add, shift) to the ROB. For example, for an 

add instruction, the IHS is updated at the Execute stage in 

parallel with the computation. For a memory operation, the 

IHS is updated both at the Execute stage (where the address 

computation occurs) and at the Load Store Unit (where the 

memory operation occurs).  

Third, Nostradamus may need to update the expectation for 

the next PC at Execute, because this is when the core resolves 

branch outcomes. If the branch’s resolved target differs from 

the branch’s predicted next PC, then Nostradamus changes the 

expected next PC, IES(PC), to the branch’s resolved target.  

(Nostradamus detects errors in computing the resolved target.)  

Errors in branch prediction logic are not problematic because 

the worst case scenario is just a mis-prediction.  

CheckExpectation Unit 

Nostradamus detects errors with its CheckExpectation unit. 

Using the information that Nostradamus adds to the ROB, the 

CheckExpectation unit compares the IHS of each committing 

instruction to the instruction’s IES (which is also in the 

instruction’s ROB entry).  

Checking updates of register and memory state: Checking an 

instruction’s update of architectural register and memory state 

is straightforward. All of the instruction’s history and 

expectation information are available in the ROB and can be 

compared. The only subtlety is that the error that is detected 

could be an error in a previous instruction. If a previous 

instruction wrote to the wrong register, then the error will not 

be detected until a later instruction tries to read that register.  

Checking updates of the PC: Checking an instruction’s update 

of the PC is somewhat more complicated because it involves 

pairs of instructions (rather than one instruction at a time). 

Assume that the most recently committed instruction is 

instruction I and the CheckExpectation unit is now checking 

the next instruction that is ready to commit, I+1. The 

CheckExpectation unit compares the PC of I+1 (which is part 

of I+1’s history) to the expected next PC of instruction I 

(which is part of I’s expectation). Thus, for each instruction 

that commits, Nostradamus uses that instruction’s IHS(PC) as 

well as that instruction’s IES(PC).1 In Figure 2, we illustrate 

an example of Nostradamus using the IES(PC) and IHS(PC) 

values to compare I+1’s PC to I’s expected next PC. In the 

example, the core can commit 4 instructions per cycle and thus 

the CheckExpectation unit performs up to 4 comparisons per 

cycle. Nostradamus requires an extra register (the shaded “PC 

Check Reg” in the figure) to compare the IHS(PC) of the first 

instruction to commit in a cycle to the IES(PC) of the last 

instruction to commit in the previous cycle.  

 
 
1 Recall that IHS(PC) is the PC of the current instruction and IES(PC) is the 
expected PC of the next instruction to commit in program order. 



 

 

Incorporating Lossy Signatures  

For clarity, we have thus far assumed that the IES and IHS 

are complete, but we mentioned that we actually split each 

signature into two parts and hash the expectations and 

histories into lossy signatures.  

We split the signature for the PC from the signature for the 

other architectural state due to implementation issues. 

Specifically, the IES sometimes needs to be updated in the 

Execute state for control flow instructions (i.e., if the core 

determines that a branch was mispredicted). If the IES were a 

single signature, updating it at this stage would be 

complicated. By splitting off the IES(PC), we greatly simplify 

this update. 

We hash the signatures to reduce the cost of implementing 

Nostradamus. For all signatures, our implementation of 

Nostradamus uses CRC-5 as the hashing function. Thus each 

IES is a 10-bit quantity consisting of two CRC-5 values, one 

for IES(PC) and one for IES(RegMem). Similarly, each IHS is 

a 10-bit quantity consisting of two CRC-5 values for IHS(PC) 

and IHC(RegMem). 

Protecting Architectural Values 
As explained in Section II.A, architectural values produced 

by the core must be protected. These values live in the register 

file and LSQ (addresses of loads and stores and values to be 

written by stores). Architectural values also travel along the 

datapaths, including pipeline bypass paths. Nostradamus 

protects these values—in storage and datapath—using parity.  

Nostradamus uses parity in a typical fashion except in the 

LSQ. In the LSQ, Nostradamus computes parity over the XOR 

of the address and the data. This use of parity, similar to a use 

in Argus [7], enables Nostradamus to detect when a load 

erroneously obtains a value from a store to the wrong address. 

Simply protecting the data with parity would only reveal 

errors in the data and would not detect accesses to incorrect 

addresses. 

Nostradamus does not need to protect any other values 

because errors in them will be detected elsewhere. Such values 

include, for example, the IES value in the ROB; if this IES is 

corrupted by an error, the CheckExpectation unit will notice 

that this erroneous IES does not match the instruction’s IHS. 

(This error is a “false positive”—Nostradamus has detected an 

error that did not exist in the baseline core but instead is in 

Nostradamus’s own hardware.) 

Watchdog Timer 

Some errors do not cause incorrect behavior but rather 

cause the core to hang. For example, consider an error in the 

ROB that prohibits the oldest instruction from committing. We 

detect these errors with the well-known technique of a 

watchdog timer that considers an error to have occurred if no 

instruction has committed in the past ten thousand cycles. 

C. Summary of Hardware Overheads 

 As discussed in Section II.B, our design of Nostradamus 

augments the baseline core by widening some structures and 

datapaths. We aggregate all of these previously described 

structure modifications in Table II. When computing 

percentage overheads, we assume that the IES and IHS are 10-

bit quantities, as is the case in our implementation. The results 

show that Nostradamus’s costs are relatively small. 

D. Potential Holes in Error Coverage 

As illustrated in Figure 1, Nostradamus is designed to detect 

errors between Fetch and Commit. Due to the way in which 

we have designed Nostradamus to be low-cost, there is some 

probability of Nostradamus failing to detect an error. We 

TABLE II. NOSTRADAMUS’S HARDWARE OVERHEADS 

Core Modification Cost (in bits), with  

10-bit IES and IHS 

structure modifications 

Register File: add arch register number [6 bits] 

and parity [1 bit] to each physical register 

extra 7 bits per 32-bit 

register  21.9 % 

IQ: add arch destination register [6 bits] and 

IES(PC) [5 bits] to each IQ entry 

extra 11 bits per 130-bit 

IQ entry  8.5%  

ROB: add IES [10 bits] and  

IHS(RegMem) [5 bits] to each ROB entry 

extra 15 bits per 89-bit 

ROB entry  16.9% 

LSQ: add parity of XOR of data and  

address [1 bit] to each LSQ entry 

extra 1 bit per 32-bit 

entry  3.1% 

SetExpection and CheckExpectation Units a small amount of 

combinational logic 

datapath modifications 

datapath carrying register value: add arch register 

number [6 bits] and parity [1 bit] 

extra 7 bits per 32-bit 

register value  21.9% 

datapath carrying result of functional unit: add 

arch destination register [6 bits] and parity [1 bit] 

extra 7 bits per 32-bit 

value  21.9% 

 
Fig. 2. Example of detecting error in updating PC. Comparisons 1-4 (arrows with those numerical labels) reveal no errors, but comparison 5 reveals error because 
of mismatch between Instruction E’s IES(PC) and Instruction F’s IHS(PC). Instruction F erroneously did not execute instruction it was expected to execute. 



 

 

experimentally quantify this probability in Section IV, but 

here we provide the intuition for how errors can go 

undetected. 

Our design of Nostradamus relies upon signatures in several 

places, and a signature is simply a lossy hash of a piece of 

information. Because of the lossy nature of a signature, there 

is a non-zero probability of aliasing, i.e., an error leading to a 

signature that just so happens to equal the signature of the 

error-free execution. Our choice of CRC-5 leads to 5-bit 

signatures (i.e., 5 bits for PC and 5 bits for RegMem) and thus 

a 2-5 probability of aliasing. Our experiments (not shown) 

suggest that CRC-5 is at or near the “sweet spot” in the trade-

off between cost and the probability of aliasing. 

Nostradamus’s use of residue codes for checking functional 

units is also effectively a signature scheme, where the residue 

is a signature or lossy hash of a complete value. Similarly, 

residue coding is susceptible to a non-zero probability of 

aliasing that is a function of the modulus. 

Nostradamus does not protect the Fetch stage of the core. 

As we see later, many of the injected errors that cause SDCs 

are errors in Fetch hardware. 

Although Nostradamus completely covers errors in register 

dataflow, it does not completely cover errors in memory 

dataflow. Specifically, Nostradamus does not detect when an 

error causes a load of address B to obtain the value of the 

wrong store to address B. For example, Nostradamus will not 

detect if there are multiple stores to B in the LSQ and an error 

causes a load of B to fail to obtain the most recent store prior 

to the load [3]. Nostradamus does, however, detect when an 

error causes a load to obtain a value from the wrong address.  

E. No False Positives in Baseline Core 

Although Nostradamus can have “false negatives” (failing 

to detect an error), it is important to note that Nostradamus has 

zero “false positives” in the baseline core—that is, 

Nostradamus never signals an error if none has occurred in the 

baseline core hardware. Nostradamus can incur a false positive 

only when an error impacts Nostradamus’s hardware (e.g., 

when an error corrupts an IES). 

III. HARDWARE IMPLEMENTATION 

We implemented Nostradamus in RTL, written in Verilog, 

on top of a baseline core distributed by the FabScalar group 

[4]. The core is a modestly out-of-order superscalar core with 

the parameters and features described in Table III.  

Nostradamus requires no additional structures or paths but 

rather just slight widening of existing structures (e.g., register 

file and ROB) and paths. Nostradamus’s hardware is entirely 

off the critical path and has no impact on clock period. 

We used Synopsys CAD tools to floorplan and layout the 

core—both with and without Nostradamus—with 45nm 

standard cell technology from Nangate [9].  

Area: We compare Nostradamus’s area, relative to the 

baseline core. The results show that Nostradamus’s total logic-

only area overhead, without any storage structures, is 10.9%.  

Power: Nostradamus consumes 34.1 mW of power, whereas 

the baseline consumes 32.2 mW, a difference of 5.6%. 

Delving a bit more deeply, Nostradamus uses 5.3% more 

dynamic power and 14.1% more static power.  

Performance: Our implementation of Nostradamus has no 

impact on the core’s performance. The checking of an 

instruction by the CheckExpectation unit is off the critical path 

and occurs in parallel with Commit. Even if the 

CheckExpectation unit’s operation was on the critical path, 

Nostradamus could latch the data it needs and detect the error 

one cycle later.  

IV. EXPERIMENTAL EVALUATION OF ERROR DETECTION 

A. Error Injection Methodology 

Transient error injection is a well-known challenge [5][12] 

because of the scale of the problem. For a design with W wires 

that runs a benchmark for C cycles, there are WxC possible 

transient (soft) bit flips that can be injected. Because the 

values of W and C are large—on the order of 6400 and 10 

million, respectively—and because we have multiple 

benchmarks, we necessarily must sample from this enormous 

space of possible experiments. We consider every wire, but we 

randomly sample a time from the first 100K cycles. We flip 

the value on that wire on that cycle and hold it for one cycle 

before letting the wire’s value change. 

For permanent errors, we can exhaustively evaluate 

coverage. For each wire, we perform two experiments: one in 

which we inject a stuck-at-0 and one in which we inject a 

stuck-at-1, both at time zero.  Future work will explore other 

permanent fault models, including bridging faults, open 

circuits, timing faults, etc. 

Our benchmarks are from the Spec2000 benchmark suite. 

We use all four of the benchmarks that the FabScalar group 

has made available to run on their cores and that do not 

perform division instructions: bzip, gzip, mcf, and parser.  

TABLE III. SUPERSCALAR CORE AND NOSTRADAMUS ADDITIONS 

Parameter value 

Baseline core 

pipeline depth: 13 stages, width: 4 

register file 96 physical registers 

out-of-order state 128-entry ROB, 64-entry load-store queue 

caches simulated functionally by FabScalar 

Nostradamus additions 

residue checking modulus 31 

size of IES/IHS 10 bits (5 bits for PC, 5 bits for RegMem) 

 
Fig. 3. Permanent errors 



 

 

B. Permanent Error Results 

Our permanent error results are shown in Figure 3. The 

figure divides up the injected errors into four categories, based 

on whether the errors are masked and/or detected. The most 

important category is unmasked+undetected, because these are 

the silent data corruptions (SDCs) that we seek to avoid. If an 

error is unmasked (i.e., has an impact on the outcome of the 

software), we want Nostradamus to detect it. SDCs comprise 

approximately 5% of all injected errors. If we factor out the 

masked errors, then we see that Nostradamus detects 88% of 

all unmasked errors. 

These results confirm that Nostradamus successfully detects 

a large majority of unmasked errors—but it fundamentally 

cannot detect all of them. The majority of the wires that were 

susceptible to SDCs are in Fetch, which comprises 16% of the 

core’s wires and much of which is unprotected by 

Nostradamus. (In Fetch, Nostradamus protects the PC update 

logic and branch prediction.)  

The fraction of errors that is masked is perhaps surprisingly 

large, but is consistent with recent work [11]. Many of these 

errors are in functional units, because functional units have a 

large number of wires, many of which are only unmasked for 

specific and rare combinations of inputs. Another source of 

unmasked errors derives from how the FabScalar core was 

written for clarity and ease of debugging, rather than 

minimizing circuitry. Thus there exist wires that are not 

functionally relevant and would likely be optimized away 

during synthesis. We considered re-running experiments on 

the post-synthesis circuitry, but the time required to simulate 

at that level of detail is prohibitive.  

C. Transient Error Results 

In Figure 4, we show the results for the complete set of 

transient error injections on one benchmark, bzip. (Results on 

other benchmarks were similar.) The graph classifies wires (on 

the x-axis) based on what fraction of injected errors leads to 

silent data corruptions (SDCs, on the y-axis), and the wires are 

sorted from lowest to highest value of SDC fraction. Across 

the benchmarks, approximately 6000 of the 6393 (94%) wires 

experience zero SDCs, with a range of 92.4% (parser) to 

95.4% (gzip). For these wires, every injected error is either 

masked or detected by Nostradamus. The curves then rise 

sharply from zero to 0.5 and towards 1.0, indicating that, of 

the wires that are susceptible to SDCs, a sizable fraction are 

very susceptible to SDCs. These results show that 

Nostradamus successfully prevents errors from causing SDCs. 

V. CONCLUSIONS 

We have developed Nostradamus, a novel error detection 

scheme for superscalar processor cores. We have 

demonstrated that Nostradamus is effective at detecting errors 

and that its costs are modest.  
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Figure 4. Transient errors on all 6,393 wires 


