

Nostradamus: Low-Cost Hardware-Only
Error Detection for Processor Cores

Ralph Nathan and Daniel J. Sorin

Department of Electrical and Computer Engineering
Duke University

Abstract - We propose a new, low-cost, hardware-only scheme to

detect errors in superscalar, out-of-order processor cores. For

each instruction decoded, Nostradamus compares what the

instruction is expected to do against what the instruction actually

does. We implement Nostradamus in RTL on top of a baseline

superscalar, out-of-order core, and we experimentally evaluate

its ability to detect injected errors. We also evaluate

Nostradamus’s area and power overheads.

I. INTRODUCTION

In this paper, we propose a new, low-cost scheme for

detecting errors in superscalar, out-of-order processor cores.

Our scheme, called Nostradamus, operates on a simple

principle: for each instruction decoded, Nostradamus

compares what the instruction is expected to do against what

the instruction actually does. Instructions can modify

architectural registers, memory, and the program counter (PC);

Nostradamus perfectly forecasts (which is origin of its name)

during the Decode stage what each instruction (except for

conditional branches) should do to architectural state. As the

instruction proceeds through the pipeline, Nostradamus

records what the instruction does. When the instruction

commits, Nostradamus compares what it was supposed to do

against what it actually did. We present the design of

Nostradamus in Section II.

As we explain in Section III, we have implemented

Nostradamus in Verilog on top of a baseline superscalar core

distributed by the FabScalar group [4]. FabScalar, which is

designed in RTL, enables us to experimentally evaluate

Nostradamus’s ability to detect errors, as well as its area and

power overheads. Our results for area and power (Section III)

show that Nostradamus’s overheads are modest, less than 11%

for area and less than 6% for power. Our results for error

detection (Section IV) show that Nostradamus successfully

prevents the vast majority of injected errors from causing

silent data corruptions (SDCs).

Because core error detection is an important problem, there

have been many different schemes proposed prior to

Nostradamus. We summarize prior work in Table I and note

that each scheme has at least one significant drawback. Our

goal for Nostradamus is to provide comprehensive error

detection for the core without any of these major drawbacks.

In this work, we make three contributions:

• We propose a novel, low-cost, all-hardware error

detection scheme for superscalar cores.

• We develop an RTL implementation of Nostradamus.

• We experimentally evaluate the RTL implementation.

II. NOSTRADAMUS DESIGN

The key idea behind Nostradamus is to compare what the

core does to what it is expected to do. For each instruction,

Nostradamus compares the instruction’s expected impact on

architectural state to the actual impact the instruction’s

execution has on architectural state. Any difference between

the two reveals an error. This approach is similar in

philosophy to prior work [7][2][8] but with advantages listed

in Table 1. Although Nostradamus can detect errors in simple,

in-order cores, we focus on superscalar, out-of-order cores.

A. Overview

Nostradamus operates on a per-instruction basis. After an

instruction is fetched, it is decoded. In the Decode stage, the

core has all of the information required to determine what

impact the instruction will have on the core’s architectural

state. This state includes the architectural registers, memory,

and program counter (PC). This architectural impact is

independent of the microarchitecture of the core, i.e.,

Nostradamus is agnostic as to how the core will execute the

instruction. Nostradamus cares only about the “bottom line” of

how the instruction modifies architectural state. Checking at

the architectural level, rather than the microarchitectural level,

enables Nostradamus to comprehensively detect errors

throughout the core. For example, by checking updates to

architectural registers, rather than physical registers,

Nostradamus can detect errors in register renaming.

In Figure 1, we illustrate Nostradamus. When a fetched

instruction is decoded, Nostradamus’s SetExpectation unit

determines what the instruction should do, i.e., its expectation.

In the out-of-order execution engine—everything between

Decode and Commit—Nostradamus tracks the instruction’s

history (i.e., its modifications to architectural state). Just prior

to committing the instruction, Nostradamus’s

CheckExpectation unit compares the instruction’s history to its

expectation. A mismatch indicates an error.

As described thus far, Nostradamus comprehensively

detects errors in the core’s dataflow and control flow decision

making processes. For example, if an error causes the core to

read from the wrong register, the history will not match the

expectation. Similarly, if an error causes the core to

978-3-9815370-2-4/DATE14/©2014 EDAA

incorrectly advance the PC, the history will not match the

expectation.

To be complete, Nostradamus must also detect errors in

values that are computed in functional units and maintained in

storage structures. Detecting errors in computations and

storage is straightforward, and we adopt well-known solutions

for both. Nostradamus detects errors in computations with

residue coding [16] and errors in storage with error detecting

codes (e.g., parity).

B. Microarchitectural Design

 We now describe how we integrate Nostradamus into the

design of a superscalar, out-of-order core. When designing

Nostradamus, our main goals were to avoid adding new

datapaths and to avoid modifications to complicated, latency-

critical units like register renaming.

Instruction Fetch

Nostradamus has no impact whatsoever on the Fetch stage.

Nostradamus does not detect errors in Fetch, other than

detecting errors in updating the program counter (discussed

later in this section).

Decode and SetExpectation Unit

In the Decode stage, Nostradamus adds a SetExpectation

unit that operates in parallel with the normal instruction

decode logic. The normal instruction decode logic processes

an instruction to produce the signals to control the pipeline

accordingly. The SetExpectation unit has the analogous but

simpler task of determining its expectation, i.e., how the

instruction will modify the core’s architectural state.

 The SetExpectation unit processes the instruction to

determine the instruction’s expectation, which is a function of

the instruction’s operation type, architectural register inputs,

immediate input operands, architectural register outputs, and

next PC. For example, the MIPS instruction “add $r3,

$r1, $r7” would expect to: perform an addition; use input

operands $r1 and $r7; write to $r3; and update PC to PC+4.

Some instructions perform multiple operations. An example

of this is the MIPS instruction “load $r2, 4[$r1]”. This

load instruction is expected to compute an address from an

immediate and a register value ($r1+4) and then perform a

load at that address. Nostradamus checks that both the ALU

and the Load Store Unit are accessed and that the correct

operations occur within each of them.

Signatures: Logically, Nostradamus uses all of the

information in an instruction’s expectation, but the cost of

maintaining all of this information would be impractical.

Instead, the SetExpectation unit hashes this information to

create an S-bit value we call the Instruction Expectation

Signature (IES). The choice of S is a design decision that

enables the architect to trade off error coverage versus cost; as

the value of S is increased, the error coverage improves (for

reasons explained in Section II.D), but the cost of computing

and maintaining the IES increases. For clarity of explanation,

we assume for now that the IES contains all of the expectation

information, and we re-visit how to incorporate hashed

signatures later.

For implementation reasons explained later, we separate the

IES for the PC, denoted IES(PC), from the IES for the

registers and memory, denoted IES(RegMem). The IES(PC) is

the expected value of the next PC, i.e., how the instruction is

expected to affect the PC.

Control-Flow Instructions: For non-control-flow instructions

(e.g., add), the expected next PC, IES(PC), is its PC plus the

TABLE I. QUALITATIVE COMPARISON OF STATE-OF-THE-ART CORE ERROR DETECTION SCHEMES

core error detection scheme error detection coverage major drawback

Nostradamus (this paper) vast majoritya of transients and permanents

DIVA [1] virtually allb transients and permanents large area and power overheads to check small cores;

adds many new datapaths to core

redundant multithreading [15][13] vast majoritya of transients large energy and performance overheads

register dataflow checking [2][8] no RTL designs evaluated, but expect vast

majoritya of transients and permanents in

dataflow

no coverage of control flow errors; may require

recompilation (i.e., access to source code) [8]

Argus [7] vast majoritya of transients and permanents requires recompilation (i.e., access to source code)

periodic built-in self-test (e.g., BulletProof [17]) virtually allb permanents no coverage of transient errors

software-level anomaly detection

(e.g., SWAT [6])

vast majoritya of permanents unclear detection of transients; unbounded error

detection latency

software redundancy (e.g., SWIFT [14]) no RTL designs evaluated, but expect majority of

transients

very large energy and performance overheads; lower

error coverage than hardware schemes

Sampling + DMR [10] virtually allb permanents no coverage of transient errors
a We use “vast majority” detected to denote that less than 10% of errors lead to silent data corruptions.
b We use “virtually all” detected to denote that less than 1% of errors lead to silent data corruptions.

Fig. 1. High-level view of Nostradamus. Shaded units added for Nostradamus.

size of the instruction. For a control-flow instruction, the core

does not know a priori what the next PC is going to be.

However, the core predicts the next PC and Nostradamus uses

this predicted next PC as the instruction’s IES(PC). If the

prediction is found to be incorrect in Execute, it will be

updated then (as we explain in the section on Execute).

Micro-Ops: The FabScalar core, like many x86 cores, breaks

some instructions into micro-ops. Nostradamus operates at the

micro-op granularity because micro-ops effectively behave as

instructions, i.e., read/write registers, modify the PC, etc.

Nostradamus computes an expectation (IES) per micro-op and

checks it at Commit.

Out-of-Order Execution Engine

In the out-of-order execution engine between Decode and

Commit, Nostradamus must maintain each instruction’s IES

and compute each instruction’s history. An instruction’s

history is computed with the same algorithm as the

expectation, and the history is similarly hashed into an

Instruction History Signature (IHS). As with the IES, the IHS

is also separated into IHS(PC) and IHS(RegMem). An

instruction’s IHS(PC) is its PC.

We now discuss how Nostradamus is integrated into the

out-of-order execution engine.
Register File and Register Renaming

The baseline core has a physical register file and an explicit

renaming table. For purposes of computing the IHS,

Nostradamus widens each register in the physical register file

to include its current architectural register number. When an

instruction writes to the register file it also writes the

architectural destination register number along with the

register. When an instruction reads from the register file, it

also reads the architectural register number associated with the

physical register. The architectural input register numbers then

travel along with the instruction through the instruction queue,

reorder buffer, etc., and are used to compute the IHS.

Nostradamus has no impact on register renaming, but it

does detect errors in register renaming.
In-Flight Instruction State

The superscalar core manages the out-of-order execution of

instructions with the register file (discussed already),

instruction queue (IQ), reorder buffer (ROB), and load-store

queue (LSQ). Nostradamus simply extends the IQ, ROB, and

LSQ to hold signatures, as described in Table II.
Execute Stage and Functional Units

The functional units represent the primary place in the core

where new architectural values are computed. Nostradamus

enhances the Execute stage in three ways.

First, Nostradamus checks that computations of new values

are correct. Detecting errors in functional units is a well-

understood problem with well-tested solutions [16]. We adopt

residue checking (also known as modulo checking). Our

baseline processor has an integer adder and multiplier, and

Nostradamus detects errors in both with residue checking with

a modulus of 31. A larger modulus improves error detection

coverage but increases area and power costs.

Second, Nostradamus must be aware of what operation is

performed so that it can update the instruction’s IHS

accordingly. Thus, when the functional unit sends its result

(with parity) to the register file, it sends the type of operation

it performed (e.g., add, shift) to the ROB. For example, for an

add instruction, the IHS is updated at the Execute stage in

parallel with the computation. For a memory operation, the

IHS is updated both at the Execute stage (where the address

computation occurs) and at the Load Store Unit (where the

memory operation occurs).

Third, Nostradamus may need to update the expectation for

the next PC at Execute, because this is when the core resolves

branch outcomes. If the branch’s resolved target differs from

the branch’s predicted next PC, then Nostradamus changes the

expected next PC, IES(PC), to the branch’s resolved target.

(Nostradamus detects errors in computing the resolved target.)

Errors in branch prediction logic are not problematic because

the worst case scenario is just a mis-prediction.

CheckExpectation Unit

Nostradamus detects errors with its CheckExpectation unit.

Using the information that Nostradamus adds to the ROB, the

CheckExpectation unit compares the IHS of each committing

instruction to the instruction’s IES (which is also in the

instruction’s ROB entry).

Checking updates of register and memory state: Checking an

instruction’s update of architectural register and memory state

is straightforward. All of the instruction’s history and

expectation information are available in the ROB and can be

compared. The only subtlety is that the error that is detected

could be an error in a previous instruction. If a previous

instruction wrote to the wrong register, then the error will not

be detected until a later instruction tries to read that register.

Checking updates of the PC: Checking an instruction’s update

of the PC is somewhat more complicated because it involves

pairs of instructions (rather than one instruction at a time).

Assume that the most recently committed instruction is

instruction I and the CheckExpectation unit is now checking

the next instruction that is ready to commit, I+1. The

CheckExpectation unit compares the PC of I+1 (which is part

of I+1’s history) to the expected next PC of instruction I

(which is part of I’s expectation). Thus, for each instruction

that commits, Nostradamus uses that instruction’s IHS(PC) as

well as that instruction’s IES(PC).1 In Figure 2, we illustrate

an example of Nostradamus using the IES(PC) and IHS(PC)

values to compare I+1’s PC to I’s expected next PC. In the

example, the core can commit 4 instructions per cycle and thus

the CheckExpectation unit performs up to 4 comparisons per

cycle. Nostradamus requires an extra register (the shaded “PC

Check Reg” in the figure) to compare the IHS(PC) of the first

instruction to commit in a cycle to the IES(PC) of the last

instruction to commit in the previous cycle.

1 Recall that IHS(PC) is the PC of the current instruction and IES(PC) is the
expected PC of the next instruction to commit in program order.

Incorporating Lossy Signatures

For clarity, we have thus far assumed that the IES and IHS

are complete, but we mentioned that we actually split each

signature into two parts and hash the expectations and

histories into lossy signatures.

We split the signature for the PC from the signature for the

other architectural state due to implementation issues.

Specifically, the IES sometimes needs to be updated in the

Execute state for control flow instructions (i.e., if the core

determines that a branch was mispredicted). If the IES were a

single signature, updating it at this stage would be

complicated. By splitting off the IES(PC), we greatly simplify

this update.

We hash the signatures to reduce the cost of implementing

Nostradamus. For all signatures, our implementation of

Nostradamus uses CRC-5 as the hashing function. Thus each

IES is a 10-bit quantity consisting of two CRC-5 values, one

for IES(PC) and one for IES(RegMem). Similarly, each IHS is

a 10-bit quantity consisting of two CRC-5 values for IHS(PC)

and IHC(RegMem).

Protecting Architectural Values
As explained in Section II.A, architectural values produced

by the core must be protected. These values live in the register

file and LSQ (addresses of loads and stores and values to be

written by stores). Architectural values also travel along the

datapaths, including pipeline bypass paths. Nostradamus

protects these values—in storage and datapath—using parity.

Nostradamus uses parity in a typical fashion except in the

LSQ. In the LSQ, Nostradamus computes parity over the XOR

of the address and the data. This use of parity, similar to a use

in Argus [7], enables Nostradamus to detect when a load

erroneously obtains a value from a store to the wrong address.

Simply protecting the data with parity would only reveal

errors in the data and would not detect accesses to incorrect

addresses.

Nostradamus does not need to protect any other values

because errors in them will be detected elsewhere. Such values

include, for example, the IES value in the ROB; if this IES is

corrupted by an error, the CheckExpectation unit will notice

that this erroneous IES does not match the instruction’s IHS.

(This error is a “false positive”—Nostradamus has detected an

error that did not exist in the baseline core but instead is in

Nostradamus’s own hardware.)

Watchdog Timer

Some errors do not cause incorrect behavior but rather

cause the core to hang. For example, consider an error in the

ROB that prohibits the oldest instruction from committing. We

detect these errors with the well-known technique of a

watchdog timer that considers an error to have occurred if no

instruction has committed in the past ten thousand cycles.

C. Summary of Hardware Overheads

 As discussed in Section II.B, our design of Nostradamus

augments the baseline core by widening some structures and

datapaths. We aggregate all of these previously described

structure modifications in Table II. When computing

percentage overheads, we assume that the IES and IHS are 10-

bit quantities, as is the case in our implementation. The results

show that Nostradamus’s costs are relatively small.

D. Potential Holes in Error Coverage

As illustrated in Figure 1, Nostradamus is designed to detect

errors between Fetch and Commit. Due to the way in which

we have designed Nostradamus to be low-cost, there is some

probability of Nostradamus failing to detect an error. We

TABLE II. NOSTRADAMUS’S HARDWARE OVERHEADS

Core Modification Cost (in bits), with

10-bit IES and IHS

structure modifications

Register File: add arch register number [6 bits]

and parity [1 bit] to each physical register

extra 7 bits per 32-bit

register 21.9 %

IQ: add arch destination register [6 bits] and

IES(PC) [5 bits] to each IQ entry

extra 11 bits per 130-bit

IQ entry 8.5%

ROB: add IES [10 bits] and

IHS(RegMem) [5 bits] to each ROB entry

extra 15 bits per 89-bit

ROB entry 16.9%

LSQ: add parity of XOR of data and

address [1 bit] to each LSQ entry

extra 1 bit per 32-bit

entry 3.1%

SetExpection and CheckExpectation Units a small amount of

combinational logic

datapath modifications

datapath carrying register value: add arch register

number [6 bits] and parity [1 bit]

extra 7 bits per 32-bit

register value 21.9%

datapath carrying result of functional unit: add

arch destination register [6 bits] and parity [1 bit]

extra 7 bits per 32-bit

value 21.9%

Fig. 2. Example of detecting error in updating PC. Comparisons 1-4 (arrows with those numerical labels) reveal no errors, but comparison 5 reveals error because
of mismatch between Instruction E’s IES(PC) and Instruction F’s IHS(PC). Instruction F erroneously did not execute instruction it was expected to execute.

experimentally quantify this probability in Section IV, but

here we provide the intuition for how errors can go

undetected.

Our design of Nostradamus relies upon signatures in several

places, and a signature is simply a lossy hash of a piece of

information. Because of the lossy nature of a signature, there

is a non-zero probability of aliasing, i.e., an error leading to a

signature that just so happens to equal the signature of the

error-free execution. Our choice of CRC-5 leads to 5-bit

signatures (i.e., 5 bits for PC and 5 bits for RegMem) and thus

a 2-5 probability of aliasing. Our experiments (not shown)

suggest that CRC-5 is at or near the “sweet spot” in the trade-

off between cost and the probability of aliasing.

Nostradamus’s use of residue codes for checking functional

units is also effectively a signature scheme, where the residue

is a signature or lossy hash of a complete value. Similarly,

residue coding is susceptible to a non-zero probability of

aliasing that is a function of the modulus.

Nostradamus does not protect the Fetch stage of the core.

As we see later, many of the injected errors that cause SDCs

are errors in Fetch hardware.

Although Nostradamus completely covers errors in register

dataflow, it does not completely cover errors in memory

dataflow. Specifically, Nostradamus does not detect when an

error causes a load of address B to obtain the value of the

wrong store to address B. For example, Nostradamus will not

detect if there are multiple stores to B in the LSQ and an error

causes a load of B to fail to obtain the most recent store prior

to the load [3]. Nostradamus does, however, detect when an

error causes a load to obtain a value from the wrong address.

E. No False Positives in Baseline Core

Although Nostradamus can have “false negatives” (failing

to detect an error), it is important to note that Nostradamus has

zero “false positives” in the baseline core—that is,

Nostradamus never signals an error if none has occurred in the

baseline core hardware. Nostradamus can incur a false positive

only when an error impacts Nostradamus’s hardware (e.g.,

when an error corrupts an IES).

III. HARDWARE IMPLEMENTATION

We implemented Nostradamus in RTL, written in Verilog,

on top of a baseline core distributed by the FabScalar group

[4]. The core is a modestly out-of-order superscalar core with

the parameters and features described in Table III.

Nostradamus requires no additional structures or paths but

rather just slight widening of existing structures (e.g., register

file and ROB) and paths. Nostradamus’s hardware is entirely

off the critical path and has no impact on clock period.

We used Synopsys CAD tools to floorplan and layout the

core—both with and without Nostradamus—with 45nm

standard cell technology from Nangate [9].

Area: We compare Nostradamus’s area, relative to the

baseline core. The results show that Nostradamus’s total logic-

only area overhead, without any storage structures, is 10.9%.

Power: Nostradamus consumes 34.1 mW of power, whereas

the baseline consumes 32.2 mW, a difference of 5.6%.

Delving a bit more deeply, Nostradamus uses 5.3% more

dynamic power and 14.1% more static power.

Performance: Our implementation of Nostradamus has no

impact on the core’s performance. The checking of an

instruction by the CheckExpectation unit is off the critical path

and occurs in parallel with Commit. Even if the

CheckExpectation unit’s operation was on the critical path,

Nostradamus could latch the data it needs and detect the error

one cycle later.

IV. EXPERIMENTAL EVALUATION OF ERROR DETECTION

A. Error Injection Methodology

Transient error injection is a well-known challenge [5][12]

because of the scale of the problem. For a design with W wires

that runs a benchmark for C cycles, there are WxC possible

transient (soft) bit flips that can be injected. Because the

values of W and C are large—on the order of 6400 and 10

million, respectively—and because we have multiple

benchmarks, we necessarily must sample from this enormous

space of possible experiments. We consider every wire, but we

randomly sample a time from the first 100K cycles. We flip

the value on that wire on that cycle and hold it for one cycle

before letting the wire’s value change.

For permanent errors, we can exhaustively evaluate

coverage. For each wire, we perform two experiments: one in

which we inject a stuck-at-0 and one in which we inject a

stuck-at-1, both at time zero. Future work will explore other

permanent fault models, including bridging faults, open

circuits, timing faults, etc.

Our benchmarks are from the Spec2000 benchmark suite.

We use all four of the benchmarks that the FabScalar group

has made available to run on their cores and that do not

perform division instructions: bzip, gzip, mcf, and parser.

TABLE III. SUPERSCALAR CORE AND NOSTRADAMUS ADDITIONS

Parameter value

Baseline core

pipeline depth: 13 stages, width: 4

register file 96 physical registers

out-of-order state 128-entry ROB, 64-entry load-store queue

caches simulated functionally by FabScalar

Nostradamus additions

residue checking modulus 31

size of IES/IHS 10 bits (5 bits for PC, 5 bits for RegMem)

Fig. 3. Permanent errors

B. Permanent Error Results

Our permanent error results are shown in Figure 3. The

figure divides up the injected errors into four categories, based

on whether the errors are masked and/or detected. The most

important category is unmasked+undetected, because these are

the silent data corruptions (SDCs) that we seek to avoid. If an

error is unmasked (i.e., has an impact on the outcome of the

software), we want Nostradamus to detect it. SDCs comprise

approximately 5% of all injected errors. If we factor out the

masked errors, then we see that Nostradamus detects 88% of

all unmasked errors.

These results confirm that Nostradamus successfully detects

a large majority of unmasked errors—but it fundamentally

cannot detect all of them. The majority of the wires that were

susceptible to SDCs are in Fetch, which comprises 16% of the

core’s wires and much of which is unprotected by

Nostradamus. (In Fetch, Nostradamus protects the PC update

logic and branch prediction.)

The fraction of errors that is masked is perhaps surprisingly

large, but is consistent with recent work [11]. Many of these

errors are in functional units, because functional units have a

large number of wires, many of which are only unmasked for

specific and rare combinations of inputs. Another source of

unmasked errors derives from how the FabScalar core was

written for clarity and ease of debugging, rather than

minimizing circuitry. Thus there exist wires that are not

functionally relevant and would likely be optimized away

during synthesis. We considered re-running experiments on

the post-synthesis circuitry, but the time required to simulate

at that level of detail is prohibitive.

C. Transient Error Results

In Figure 4, we show the results for the complete set of

transient error injections on one benchmark, bzip. (Results on

other benchmarks were similar.) The graph classifies wires (on

the x-axis) based on what fraction of injected errors leads to

silent data corruptions (SDCs, on the y-axis), and the wires are

sorted from lowest to highest value of SDC fraction. Across

the benchmarks, approximately 6000 of the 6393 (94%) wires

experience zero SDCs, with a range of 92.4% (parser) to

95.4% (gzip). For these wires, every injected error is either

masked or detected by Nostradamus. The curves then rise

sharply from zero to 0.5 and towards 1.0, indicating that, of

the wires that are susceptible to SDCs, a sizable fraction are

very susceptible to SDCs. These results show that

Nostradamus successfully prevents errors from causing SDCs.

V. CONCLUSIONS

We have developed Nostradamus, a novel error detection

scheme for superscalar processor cores. We have

demonstrated that Nostradamus is effective at detecting errors

and that its costs are modest.

ACKNOWLEDGMENTS

We thank Steve Raasch for helping to inspire this project

and for his feedback on this work. This material is based on

work supported by the National Science Foundation under

grant CCF-111-5367.

REFERENCES

[1] T. M. Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” in Proceedings of the 32nd Annual

IEEE/ACM International Symposium on Microarchitecture, 1999.
[2] J. Carretero et al., “End-to-End Register Data-flow Continuous Self-

test,” in Proc. of the 36th Annual International Symposium on Computer

Architecture, 2009.
[3] J. Carretero et al., “On-line Failure Detection in Memory Order

Buffers,” in IEEE Int'l Test Conference, 2008.
[4] N. K. Choudhary et al., “FabScalar: Composing Synthesizable RTL

Designs of Arbitrary Cores Within a Canonical Superscalar Template,”
in Proceedings of the 38th Annual International Symposium on

Computer Architecture, 2011.
[5] C. Constantinescu, “Using Physical and Simulated Fault Injection to

Evaluate Error Detection Mechanisms,” in Proceedings of the Pacific

Rim International Symposium on Dependable Computing, 1999.
[6] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. Adve, V. Adve, and Y.

Zhou, “Understanding the Propagation of Hard Errors to Software and
Implications for Resilient System Design,” in Proceedings of the

Thirteenth International Conference on Architectural Support for

Programming Languages and Operating Systems, 2008.
[7] A. Meixner, M. E. Bauer, and D. J. Sorin, “Argus: Low-Cost,

Comprehensive Error Detection in Simple Cores,” in Proceedings of the

40th Annual International Symposium on Microarchitecture, 2007.
[8] A. Meixner and D. J. Sorin, “Error Detection Using Dynamic Dataflow

Verification,” in Proc. of the International Conference on Parallel

Architectures and Compilation Techniques, 2007.
[9] Nangate Development Team, “Nangate 45nm Open Cell Library.” 2012.
[10] S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju, M. de Kruijf, and

K. Sankaralingam, “Sampling + DMR: Practical and Low-overhead
Permanent Fault Detection,” in Proceedings of the 38th International

Symposium on Computer Architecture, 2011.
[11] A. Pellegrini et al., “CrashTest’ing SWAT: Accurate, Gate-Level

Evaluation of Symptom-Based Resiliency Solutions,” in Design,

Automation & Test in Europe, 2012.
[12] A. Pellegrini et al., “CrashTest: A Fast High-Fidelity FPGA-based

Resiliency Analysis Framework,” in Proceedings of the IEEE

International Conference on Computer Design, 2008.
[13] S. K. Reinhardt and S. S. Mukherjee, “Transient Fault Detection via

Simultaneous Multithreading,” in Proceedings of the 27th Annual

International Symposium on Computer Architecture, 2000, pp. 25–36.
[14] G. A. Reis et al, “SWIFT: Software Implemented Fault Tolerance,” in

Proc. of the Int'l Symp. on Code Generation and Optimization, 2005.
[15] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault

Tolerance in Microprocessors,” in Proc. of the 29th International

Symposium on Fault-Tolerant Computing Systems, 1999.
[16] F. F. Sellers, M.-Y. Hsiao, and L. W. Bearnson, Error Detecting Logic

for Digital Computers. McGraw Hill Book Company, 1968.
[17] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T. Austin,

“Ultra Low-Cost Defect Protection for Microprocessor Pipelines,” in
Proceedings of the Twelfth International Conference on Architectural

Support for Programming Languages and Operating Systems, 2006.

Figure 4. Transient errors on all 6,393 wires

