
SKETCHILOG: Sketching Combinational Circuits
Andrew Becker, David Novo and Paolo Ienne
Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH–1015 Lausanne, Switzerland
Email: {first.last}@epfl.ch

Abstract—Despite the progress of higher-level languages and
tools, Register Transfer Level (RTL) is still by far the dominant
input format for high performance digital designs. Experienced
designers can directly express their microarchitectural intuitions
in RTL. Yet, RTL is terribly verbose, burdened with trivial
details, and thus error prone. In this paper, we augment a
modern RTL language (Chisel) with new semantic elements to
express an imprecise specification: a sketch. We show how, in
combination with a naı̈ve, unoptimized, but functionally correct
reference, a designer can utilize the language and supporting
infrastructure to focus on the key design intuition and omit some
of the necessary details. The resulting design is exactly or almost
exactly as good as the one the designer could have achieved by
spending the time to manually complete the sketch. We show
that, even limiting ourselves to combinational circuits, realistic
instances of meaningful design problems are solved quickly,
saving considerable design and debugging effort.

I. INTRODUCTION

For more than twenty years, designing digital circuits at
the Register Transfer Level (RTL) has been one of the key
bottlenecks to productivity, and researchers have strived to
raise the design abstraction level [2]. Progress in the area of
High-Level Synthesis (HLS) has been less steady than orig-
inally anticipated, with various generations of tools reaching
the market [7] and perhaps only in the last few years achieving
some concrete commercial successes. Yet, RTL still offers a
designer the most control, and skilled designers’ analytical
intuitions about structural circuit optimizations and tradeoffs
are usually superior to those achieved by high-level compilers.

We have extended a modern RTL, Chisel [1], and found
inspiration from the software world [11], to take a new
approach: instead of abstracting away fundamental features
of the architecture—as in High Level Synthesis—abstract
only those details which a designer is uncertain of. In other
words, designers construct their circuits in RTL as usual
but leave holes, or explicit indeterminacies, in their designs.
SKETCHILOG, our toolchain, reads a regular RTL specification
of a desired functionality (typically a trivial unoptimized
reference) and an incomplete optimized implementation of
the same functionality (a sketch). SKETCHILOG determines
whether the holes can be filled so that the functionality of the
sketch matches that of the specification under all inputs. If
such a substitution exists, SKETCHILOG outputs fully func-
tional Verilog of the completed and fully verified sketch. This

978-3-9815370-2-4/DATE14/ c©2014 EDAA

effectively relieves designers from coding the most annoying
details of an architecture and entirely avoids a major source
of maddening and time-consuming bugs. Although we only
make the first steps in this direction (for instance, we currently
are limited to combinational circuits), we believe that this is
a viable path to raise RTL design productivity to new levels.
Interested readers can download SKETCHILOG for themselves
at http://sketchilog.epfl.ch.

We describe our motivation and formalize the problem to
solve in Section II, detail our contribution (including the added
RTL constructs and their handling) in Section III along with
the corresponding limitations, then finish by reporting the
results of running a few examples through our tool.

II. MOTIVATING EXAMPLE AND PROBLEM DEFINITION

Any digital designer knows how to make an efficient two’s-
complement ADD/SUB unit. However, suppose for the sake
of example that a designer does not remember how exactly
to build the unit, but remembers that some voodoo with an
adder’s operands can implement a subtracter. Our designer
might describe Fig. 1a as a reference and sketch Fig. 1b from
fuzzy intuition—an adder signals are some logic function of
the corresponding ADD/SUB module signals (with carry-in
dependent on d).

The core of this sketch can be expressed in SKETCHILOG
as shown in Fig. 1c: a simple ripple-carry adder whose inputs
are some undetermined function (a black box) of d and of the
corresponding bits of the operands a and b. SKETCHILOG
solves the sketch and finds that the values shown in Fig. 1d
for the inferred lookup tables force the circuit to match to the
reference design. When a solution exists, correct hole values
are always found and the resulting design must be functionally
correct. If holes are not abused to give excessive architectural
freedom, a given solution will usually be very nearly as small
and fast as if the designer had no uncertainty at all.

SKETCHILOG translates both the sketch and the specifica-
tion to flat Boolean functions S and R, respectively. Both
functions take the same k-bit input vector x, but the sketched
function also takes an additional m-bits control parameter c,
representing the m holes in the sketch. The problem reduces
to building a miter from the functions and solving a Quantified
Boolean Formula Satisfiability (QBF-SAT) problem:

∃c ∈ {0, 1}m,∀x ∈ {0, 1}k : R(x)⇔ S(x, c).



ADD SUB

4

d a b

s

4 4

(a) A simple reference
ADD/SUB unit.

(b) A naı̈ve sketch
of an optimized ADD/SUB unit.

carries(0) := BB(io.d, 1);
for(i <- 0 until 4){
val fadd = new full_adder;
val unkn = io.d##io.a(i)##io.b(i);
val bb = BB(unkn, 2);

fadd.io.a := bb(0);
fadd.io.b := bb(1);
fadd.io.cin := carries(i);
sum_sigs(i) := fadd.io.s;
carries(i+1) := fadd.io.cout;

}

(c) SKETCHILOG code for (b). (d) The solved sketch from (b).

Fig. 1: A naı̈ve sketch of an ADD/SUB unit. The solution (d) immediately reminds an inexperimented designer that the adder
should be fed with signal a unmodified and with carry-in and b signals conditionally inverted upon the value of d.

Our goal with SKETCHILOG is to provide useful and intuitive
RTL language constructs which help designers focus on archi-
tectural intuition instead of nitty-gritty details, and yet can be
encoded as a vector of unknown Boolean variables c.

III. IMPLEMENTING SKETCHILOG

We chose Chisel [1] as the base language in which to
implement our sketching constructs. Its use of Scala [8] lends
it easy extension and customization, and its scripting-like
functionality makes sketching more intuitive. Chisel generates
regular Verilog code and (solved) sketched designs can be used
in standard EDA design flows. Everything we do with Chisel
could be done less elegantly inside a VHDL or Verilog parser,
though this would likely require a less intuitive syntax.

A. The Rules of the Code

On top of the standard Chisel semantics, we provide four
intuitive constructs to support uncertainty in designs. Each
construct can only be used to provide a value to Chisel data
types and never any regular Scala Int type: the left-hand side
of each expression below must be a Chisel data type.

x := ??(n); //(1).

This first construct, an uncertain constant (or raw hole)
generator, serves as a substitute for a concrete signal value,
and represents an n-bit constant signal whose value is unde-
termined. This construct is the simplest both to understand
and implement: SKETCHILOG infers an additional n-bits in
the constructed QBF-SAT model’s control vector.

x := either choose signal1 or //
signal2 or signal3; //(2).

This second construct, a selection operator, allows a de-
signer to express an uncertain choice of signals in a design.
SKETCHILOG automatically creates raw holes which represent
constant values for the select inputs of multiplexers which
choose one of the specified signals.

x := my_array(2 * ??(n) - 1); //(3).

This third construct, an undetermined index operator, al-
lows a designer to express a partially-constrained index or
bit in any indexed sequence data structure or Chisel signal
type, respectively. It is basically an application of the second

construct, selecting among the signals identified through every
feasible index into my_array (e.g., 1, 3, 5, etc.). Any
out-of-bounds index is silently dropped from consideration—
helping designers not to worry about edge cases. A feasible
set associated with each hole is computed by static analysis of
the index expression similar to classic bitwidth analysis [6].

x = BB(depends, n); //(4).

This powerful construct, an arbitrary logic function genera-
tor, constrains a signal x’s value very loosely: only its depen-
dencies and width are provided. Determination of exactly what
logic function to implement is left to SKETCHILOG. This cre-
ates 2depends.width n-bit existentially-quantified inputs in the
QBF-SAT model. It must be used cautiously, however, as the
number of hole bits grows exponentially with depends.width.
Its misapplication with unreasonably large widths or number
of dependencies dramatically affects scalability.

B. Hardware Sketching vs. Software Sketching

Solar-Lezama et al. pioneered the sketching concept in a
software context with a language called SKETCH [11]. The
same group toyed with the idea of sketching hardware [10],
but the work provided no clear rationale and remained purely
conjecture. We build our hardware flow upon the CEGIS QBF-
SAT solver originally designed for software sketching. All
other parts of our system are carefully tailored to the hardware
design process and are either built from scratch, borrowed
from other work with minor modifications (ABC [12]), em-
braced and extended from other work (Chisel), or heavily
modified from their original form (Odin II [4]).

The main difference (other than the domain of application)
between software sketching as presented by Solar-Lezama et
al. [11] and our SKETCHILOG hardware design framework
lays in the generation of the QBF-SAT problem. Firstly, the
software SKETCH framework needs to build the Boolean
circuit models used to solve the QBF-SAT problem from an
imperative C-like language by a sort of high-level synthesis.
This inherits the difficulties of HLS; the generated models
are often more complex than required, leading to increased
solution times. In contrast, in our framework the Boolean
circuit model is the actual sketch, which is directly constructed
by the designer. As part of the model itself, our hole bit-widths



in	1in	8 in	7 in	2...

carry	1carry	8 ...

Level	0

Level	1

Level	2

Last

?

? ?

? ? ? ?

(a) The adder structure.

for (k <- 0 until levels) {
for (i <- 0 to width) {
val GP = new carryOp;
GP.io.left := c(k)(i);
GP.io.right:= either choose c(k)(i - pow2(k)) or ??(2);
c(k+1)(i) := GP.io.out; } }

(b) The simple code to build the structure using SKETCHILOG.

Fig. 2: A Kogge-Stone Adder. With SKETCHILOG, the de-
signer focuses on the intuition of creating a binary tree of
carryOp cells for each output and essentially ignores trivial
but annoying boundary conditions.

are always known precisely while, in SKETCH, assumptions
are made to constrain the size of potential hole assignments.
Secondly, software SKETCH allows the end user to reference a
raw hole nearly anywhere in the code. Instead, we provide the
set of constructs detailed in Section III-A to encapsulate holes
and thus prevent the user from misusing them in ways that are
possible in SKETCH. For example, software SKETCH code can
contain a hole in place of a loop bound, resulting in potentially
enormous models as the loop is unrolled. Such uncertainties
in circuit structure cannot happen with SKETCHILOG.

C. The Limitations of SKETCHILOG

SKETCHILOG is necessarily limited in scope, however,
in two key regards. First, only combinational circuits are
currently supported. Second, the difficulty of the QBF-SAT
problem limits the feasible problem size, and solver per-
formance is highly instance-specific. Minor changes in a
designer’s sketch might have a dramatic effect on solution
time. We believe these limitations do not fatally detract from
the value of SKETCHILOG. While a limitation to combina-
tional circuits seems severe, it still covers many use cases,
and simple pipelined circuits are functionally isomorphic to
combinational models. This makes SKETCHILOG applicable
to many arithmetic circuit generators, which are often some
of the most tricky circuits to get right.

IV. EXPERIMENTS

This section demonstrates our tool through simple but
conceptually representative use-cases. For clarity, we have
selected simple architectures which are described in any
basic course in computer arithmetic, even if they are readily
available in synthesis libraries—the purpose is to illustrate the
simplicity of the approach and how SKETCHILOG could even
benefit library writers themselves.

A. Prefix Adders

The problem of adding two binary numbers as quickly as
possible reduces to the problem of computing the carry signals
Ci (represented in the form of a generate and propagate signal
pair) for all bit positions i [3], [9]. The computation of the
carry signals can be posed in the form of a series of associative
but noncommutative operations:

Ci = GPi ? GPi−1 ? . . . ? GP1 ? C0 (1)

The ripple-carry implementation is an easy reference for
SKETCHILOG but it is faster to compute all carry signals
independently: they can be computed fully in parallel as
binary trees of ? operators, resulting in a Kogge-Stone Adder
represented in Fig. 2. Even such a simple structure requires
careful attention to detail in the code: instantiating a complete
binary tree is not possible for many i and if width is not
a power of two, the largest tree is itself incomplete. Fig. 2b
shows the actual code needed in SKETCHILOG to generate
the correct hardware, using two of our SKETCHILOG-specific
Chisel syntax extensions. Note the design is not obfuscated
by clumsy boundary tests: the designer simply says “connect
regularly if you can, or else find a suitable constant”.

B. Sketching to Enable Design Re-Use

Suppose a designer would like to use a library component,
like a Synopsys DesignWare inverse square-root unit. Unfortu-
nately, that IP component requires the input to be in the range[
1
4 , 1

)
, a restriction not adapted to the domain required by

the designer. The designer would rather create an adaptation
interface than reimplement the unit from scratch. Elementary
algebra suggests a variable shift at the input and output of
the unit. Intuitively, there must be a correlation between the
magnitude of the input and the scaling factors. Unfortunately,
finding the exact relations is tricky and error prone. Instead,
the designer can construct a general architecture with just their
intuition (see Fig. 3) and these lines:

val pre_shift_amt = BB(zero_count, 4);
val post_shift_amt = BB(zero_count, 4);

These lines specify that the shift amounts depend somehow on
the signal zero count and are 4 bits wide. When run with an
extra sketched adjustment for the border cases against a trivial
infinite-precision look-up table reference, SKETCHILOG finds
the correct implementation—and automatically infers essential
but trivial details, like that the input shift amount must be even
to re-scale the output without loss of precision.

C. Strength Reduction of a Constant Divider

Our final example shows the case, common in arithmetic
circuits, of finite precision operations implemented by simpler
operators with so-called magic numbers. One well-known
example is the inverse square-root approximation found in,
among other places, the Quake III video game source code [5].

In our example, a designer wants to devise an efficient
implementation of a fixed-point constant division unit with a
near-power-of-two divisor (e.g., 65,535). A simple right shift



L
Z
C

Synopsys

x^(-0.5)<< >>

Sketched black-box
look-up tables

0

8 4

4 4

0

12 13 13

BB BB

Fig. 3: Complex adaptation of an IP component. The intuition
is that the shifters and leading zero detector will help to scale
the input into the component’s domain and to correctly re-scale
the output. The exact control logic is left to our tool.

Hole Unopt. Opt. AIG AIG
Experiment Width Bits Time (s) Time (s) Depth Nodes

KoggeStone 16 427 3.732 3.799 12 229
Hybrid_max1 16 509 1.681 1.450 12 217
Hybrid_max2 16 368 0.697 0.901 13 196
BrentKung 16 334 0.842 1.048 16 160
RippleCarry 16 0 n/a n/a 32 131
KoggeStone 23 713 22.414 24.383 12 379
Hybrid_max1 23 902 6.544 8.374 13 345
Hybrid_max2 23 570 3.434 3.112 15 296
BrentKung 23 522 2.884 3.339 18 237
RippleCarry 23 0 n/a n/a 46 187
KoggeStone 32 992 93.620 85.064 14 545
Hybrid_max1 32 1754 27.984 40.008 14 529
Hybrid_max2 32 1166 19.772 19.871 15 488
BrentKung 32 720 10.558 12.256 20 333
RippleCarry 32 0 n/a n/a 64 259

Expanded_InvSqrt 8/13 96 1.131 0.928 370 4093
Raw_InvSqrt 8/12 0 n/a n/a 371 4002

ConstDivision 32 40 26.867 7.960 84 1152
DW_Const_Divider 32 0 n/a n/a 255 2007
ConstDivision 64 73 3373.790 333.083 164 4400
DW_Const_Divider 64 0 n/a n/a 529 6291

TABLE I: Experimental results detailing instance bitwidth,
CEGIS solver runtime both with and without an optimization
pass, total number of hole bits, and critical path delay (AIG
depth) and area (AIG size) for the resulting completed design.

is a passable approximation, but is not exact. The designer’s
intuition is again simple: perhaps there are some integers x,
y, and z, such that (i · x + y) � z ≡ i

65535 . In other
words, maybe some magic fudge factors make a simple affine
approximation exact. Such values do exist in this case, and
SKETCHILOG finds a correct design significantly smaller than
a naı̈ve DesignWare divider with a constant operand.

V. EXPERIMENTAL RESULTS

We sketched the circuits described in Section IV. We
also sketched a few other adders (a Brent-Kung and hybrid
prefix adders, which lie between the Kogge-Stone and the
Brent-Kung). RippleCarry is a non-sketched ripple-carry
adder. Expanded_InvSqrt is the Section IV-B example;
Raw_InvSqrt is the IP used inside. DW_Const_Divider
is a DesignWare divider with a constant divisor. We run
SKETCHILOG both with and without a sketch pre-optimization
pass, where the sketch circuit model is first run through
logic synthesis in ABC. This pass is usually ineffective or
counterproductive, but opens the door for improved heuristics
and optimization strategies which only enhance scalability.

The resultant circuit’s AIG depth and size are shown after
ABC simplifies it with structural hashing and SAT sweeping.

Our data show that for most experiments, the solver run-
time is low enough to enable SKETCHILOG’s use as a real
design aid. The adder experiments in particular show that
our framework is scalable enough to be used as part of a
standard design flow, at least for some important circuits. The
inverse square-root example demonstrates that the described
sketching constructs require very little overhead in the final
solved circuit.

VI. CONCLUSIONS

Contrary to common expectations a decade or two ago, it
appears RTL design is here to stay. RTL may be complemented
by higher level abstractions, but likely will not supplanted.
We have made first attempts at simplifying RTL design by
allowing designers some indeterminacy in designs. Despite the
simplicity of our examples, the benefits of sketching circuits
are clear: SKETCHILOG removes the burden of those small
details which often cause errors, and are most annoying to
get exactly right. Since a reference version is available (of
any quality—hence naturally simple to write and debug),
SKETCHILOG not only takes the dirty work from the designer
but also guarantees, that the resulting design is correct. If
there is no way to fill in the holes and obtain a working
circuit, SKETCHILOG immediately reports so. Although in
some domains, like digital arithmetic, the tool is already
able to produce practical results, it remains ripe for further
exploration, extension, and improvement.

REFERENCES

[1] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
Scala embedded language,” in Proceedings of the 49th Design Automa-
tion Conference, San Francisco, Calif., Jun. 2012, pp. 1212–1221.

[2] R. Camposano, “From behavior to structure: High-Level Synthesis,”
IEEE Design and Test of Computers, vol. 7, no. 5, pp. 8–19, Oct. 1990.

[3] M. D. Ercegovac and T. Lang, Digital Arithmetic. San Francisco, Calif.:
Morgan Kaufmann, 2004.

[4] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin II -
An Open-source Verilog HDL Synthesis tool for CAD Research,” in
Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines, 2010, pp. 149–156.

[5] C. Lomont, “Fast inverse square root,” 2003. [Online]. Available:
http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf

[6] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, and T. Sherwood,
“Bitwidth cognizant architecture synthesis of custom hardware accel-
erators,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. CAD-20, no. 11, pp. 1355–71, Nov. 2001.

[7] G. Martin and G. Smith, “High-Level Synthesis: Past, present, and
future,” IEEE Design and Test of Computers, vol. 26, no. 4, pp. 18–
24, Jul.–Aug. 2009.

[8] M. Odersky, L. Spoon, and B. Venners, Programming in Scala: A
Comprehensive Step-by-step Guide, 2nd ed. Walnut Creek, Calif.:
Artima, 2010.

[9] B. Parhami, Computer Arithmetic: Algorithms and Hardware Design,
2nd ed. New York: Oxford University Press, 2010.

[10] A. Raabe and R. Bodı́k, “Synthesizing hardware from sketches,” in DAC.
ACM, 2009, pp. 623–624.

[11] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat,
“Combinatorial sketching for finite programs,” in ASPLOS, J. P. Shen
and M. Martonosi, Eds. ACM, 2006, pp. 404–415.

[12] B. L. Synthesis and V. Group. (2005, December) ABC: A system for
sequential synthesis and verification. [Online]. Available: http://www-
cad.eecs.berkeley.edu/˜alanmi/abc


