
An Efficient Temperature-Gradient Based

Burn-In Technique for 3D Stacked ICs

Nima Aghaee, Zebo Peng, and Petru Eles
Embedded Systems Laboratory (ESLAB), Linkoping University, Sweden

{nima.aghaee, zebo.peng, petru.eles}@liu.se

Abstract—Burn-in is usually carried out with high temperature and
elevated voltage. Since some of the early-life failures depend not only on
high temperature but also on temperature gradients, simply raising up
the temperature of an IC is not sufficient to detect them. This is
especially true for 3D stacked ICs, since they have usually very large
temperature gradients. The efficient detection of these early-life failures
requires that specific temperature gradients are enforced as a part of
the burn-in process. This paper presents an efficient method to do so by
applying high power stimuli to the cores of the IC under burn-in
through the test access mechanism. Therefore, no external heating
equipment is required. The scheduling of the heating and cooling
intervals to achieve the required temperature gradients is based on
thermal simulations and is guided by functions derived from a set of
thermal equations. Experimental results demonstrate the efficiency of
the proposed method.

I. INTRODUCTION

Burn-in is a common way of accelerating and detecting early-life
failures, and should be done with low cost in a reasonably short time.
For this purpose, usually the dies are operated at elevated
temperature and voltage. The elevated temperature and voltage
speed up the aging and wear mechanisms so that the dies experience
their early life before testing. The wear mechanisms that are speeded
up include metal stress voiding and electromigration, metal slivers
bridging shorts, as well as gate-oxide wear-out and breakdown [11].

Recently several studies have, however, shown that some wear
mechanisms are speeded up more efficiently by large temperature
gradient rather than the high temperature itself. A temperature-
gradient induced wear mechanism is identified in [12] which shows
that a metal layer elevation happens rapidly at the points on the die
that are experiencing a large temperature gradient. Moreover, in the
atomic flux equation, used to model electromigration, temperature
gradient is present directly and also indirectly through its effect on
the mechanical-stress gradient [10]. Therefore, a burn-in process that
has not created the appropriate thermal scenarios do not sufficiently
speed up the formation of the defects that depend on large
temperature gradients and consequently such early-life defects will
go undetected. In order to prevent these test escapes, it is necessary
to introduce a burn-in process that enforces appropriate temperature
scenarios on the IC. This necessity is more urgent for the ICs that
suffer from large temperature gradients, such as 3D-Stacked ICs
(3D-SIC), which have considerably larger temperature gradients
compared with 2D ICs (three times is reported in [13]). Moreover,
3D-SIC technology is one of the most promising future technologies
[8]. Therefore, in this paper we focus on 3D-SICs.

3D-SIC technology, similar to other deep submicron
technologies, suffers from high power densities. Additionally, power
densities are considerably higher in the test mode compared to the
functional mode, in particular for core-based designs [4]. The
temperatures in the test mode could actually be high enough to
damage the IC because of overheating [2, 9, 16]. This means that the
application of test stimuli can raise the ICs’ temperatures to their
tolerable limits for large deep-submicron ICs and in particular 3D-
SIC. This often undesirable effect is, however, utilized in this paper
to heat up the IC for burn-in. The stimuli that are used to aggressively

heat up the IC are called heating sequences. The use of the heating
sequences to heat up the IC from inside means that special equipment
for heating the IC from outside are not necessary. This will lead to
large reduction of cost, and also the uneven distribution of heat in
different parts of an IC, thus creating temperature gradients.

The heating sequences are sent through the Test Access
Mechanism (TAM) [1] that provides access to the cores in the test
mode. One reason for utilizing TAM is as follows. It is likely that
certain temperature gradients that must be enforced are in unusual
locations and with unusual differences. Such gradients are not
achievable if the IC is driven by its functional input ports, but they
can be achieved if the TAM is used. The reason is that the TAM, in
the test mode, provides direct access to cores while in the functional
mode a core might be limited to receive inputs only from a particular
core. Therefore only by using the TAM, heating could be precisely
targeted toward a specific core. In this paper a technique to enforce
a set of given specified temperature scenarios using available TAMs
is proposed.

II. RELATED WORKS

Traditionally burn-in is performed at elevated temperature,
which is achieved by special equipment (e.g., temperature
chambers), and elevated voltage [11]. This approach will not be able
to achieve the specified temperature gradients, especially those with
large magnitudes.

Several works that are not directly related to burn-in but are, in
methodology, similar to our proposed technique are briefly reviewed
as follows. A thermal-aware test scheduling approach is introduced
in [14] for stacked multi-chip modules, which tries to achieve a
vertical uniform temperature distribution throughout the 3D IC
during the test. A linear programming approach is used in [9] to
generate thermally-safe test schedules for 3D-SICs.

Two different approaches for multi-core ICs are introduced in [6]
and [15] to guarantee that the cores’ temperatures are kept within the
specified range when the corresponding tests are applied. They focus
on the temperature of the individual cores that are under test and the
temperatures of other cores are neglected.

Speeding up the test by carefully planning safety margins that
counteract negative effects of process variation is addressed in [2, 3].
The test temperatures are kept sufficiently low by introducing
cooling cycles into the test schedule. The cooling cycles are carefully
planned using thermal simulations. A fast thermal simulation
technique is suggested in [3].

These existing methods for controlling the chips’ temperatures
during test try to respect a global upper temperature limit to prevent
overheating or to respect upper and lower bounds for individual
cores in order to target temperature dependent defects. In both cases,
the temperature bounds are defined for each core independent from
other cores and therefore spatial thermal gradients cannot be
planned. To our knowledge, there is no existing method for
constructing the specified temperature gradients on an IC for burn-
in. In this paper we present a technique to rapidly achieve the
specified temperature gradients and then maintain them for a given
period of time in order to achieve the intended burn-in effects.

978-3-9815370-2-4/DATE14/©2014 EDAA

III. PROBLEM FORMULATION

Assume that there are 𝑀 modules in an IC (on one or multiple
dies) and their tests could be started and stopped independently (e.g.,
the modules are cores with core wrappers in a core-based design). In
order to enforce the specified temperature gradients, heating
sequences are applied to heat up the modules. A heating sequence
consists of real or dummy test stimuli with large switching activities.
The average power of a heating sequence is given as a real number,
denoted as 𝑝𝑚

𝐻𝑆 for module 𝑚 (0 ≤ 𝑚 < 𝑀). It is assumed that the
TAM only affords 𝑊 (a positive integer number) modules to be
accessed simultaneously1.

The temperature gradients that speed up the early-life of the
targeted defects are specified as thermal maps. A thermal map
specifies, for all modules, the temperature bounds that should be
respected simultaneously in order to enforce the specified spatial
temperature gradients on the IC. A thermal map is achieved when all
the specified modules in the IC have the temperature values specified
by the map. For certain thermal maps, the temperatures of some
modules on the IC might not be important. Such modules are
indicated as don’t-cares. Even though they are marked as don’t-
cares, their temperatures must, however, be kept below the
overheating limit considering a safety margin (denoted by

𝜃𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔) in order to prevent damage.
The thermal maps are assumed as given by the user, who studies

the typical temperature-gradient induced failure mechanisms in an
IC analytically or experimentally [10, 12]. A given thermal map is
specified by a low and a high temperature limit for each module and
the don’t-care modules are declared separately. A thermal map
specifies that module 𝑚 has a low temperature limit equal to 𝜃𝑚

𝐿 and
a high temperature limit equal to 𝜃𝑚

𝐻 . There is a set of thermal maps
that have to be achieved and maintained. It is, therefore, important
to achieve them very fast whether starting from room temperature or
from another map.

The inputs to the proposed method include thermal maps, IC’s
thermal model, IC’s electrical model (e.g., specification of the TAM
and power-related specifications), switching activities of the heating

sequences, and ambient temperature (𝜃𝑎𝑚𝑏𝑖𝑒𝑛𝑡). The output is a
schedule that guides the application of the heating sequences to the
modules so that their temperatures move into the specified ranges
and stay there.

As an example, consider an IC with 3 modules. Assume that a
thermal map is specified as 𝜃0

𝐻 = 125℃, 𝜃0
𝐿 = 115℃, 𝜃1

𝐻 = 95℃,
𝜃1

𝐿 = 85℃, 𝜃2
𝐻 = 65℃, and 𝜃2

𝐿 = 55℃, and no module is specified
as don’t-care. These temperature limits are shown in Fig. 1a with
dashed/dotted lines. A temperature simulation is performed for this
IC based on a proper periodic schedule and the simulated
temperatures are shown in Fig. 1a. Starting from the ambient

temperature (𝜃𝑎𝑚𝑏𝑖𝑒𝑛𝑡 = 30℃), the modules’ temperatures steadily
raise until they are inside the specified ranges. As shown in this
example, applying heating sequences can drive the modules of an IC
into a high temperature situation.

The temperatures in one period around 6 × 104 TU point, are
amplified and shown in Fig. 1b. Since the schedule is periodic, one

1The problem formulation will slightly change later on to accommodate more

sophisticated TAM bandwidth limitations.

period represents the entire schedule. In this example, the TAM
provides access to one module at a time (𝑊 = 1), therefore in
interval 0 in Fig. 1b only module 𝑚0 receives heating sequence.
Similarly, in interval 1 only 𝑚1 is heated and the same goes for
interval 2 for 𝑚2. The main task of our work is to design an algorithm
to generate such schedules.

IV. STEADY STATE SOLUTION

Let us first analyze a simplified situation, where we assume that
a steady state power could be provided for the modules. In this case,
a steady state solution exists that could generate and maintain the
specified thermal map. This means that the desirable steady state
temperatures should be obtained so that the powers can be calculated
based on them.

The desired steady state temperatures are defined at the middle
of the specified ranges 𝜃𝑚

𝑆𝑆 = 1

2
× (𝜃𝑚

𝐿 + 𝜃𝑚
𝐻) to reduce the risk of

out of range temperatures due to temperature ripples. Such ripples
could be seen in the temperature curves given in Fig. 1. In order to
find the power values that result in the specified temperatures, the
IC’s thermal model should be analyzed. A widely used thermal
model is the lumped element thermal model, as used in HotSpot [7].
Such a model divides an IC into elements called nodes. Each node
has a heat capacitance modelling its thermal capacity. Adjacent
nodes are connected through a heat resistance that models the
thermal conductivity between them. A node is called active if it
directly receives electrical power caused by switching activities.
Detailed information of such models can be found in [5, 7].

In this section it is assumed that a module is a single active
thermal node. Furthermore, it is assumed that TSV blocks are always
thermally don’t-care and do not dissipate heat since their drivers are
placed and considered together with the corresponding modules.
These restrictions will be relaxed later on in this paper.

All the characteristics of the thermal model are captured in two
matrices 𝑨 and 𝑩. The thermal behavior of an IC is captured in the
following system of ordinary differential equations [3].

𝑨 ×
𝑑

𝑑𝑡
𝜣 + 𝑩 × 𝜣 = 𝑷

In this equation, 𝜣 is the temperature vector and 𝑷 is the power.
Note that because of the heat transfer a node may heat up even if it
does not have switching activities.

A thermal map could be thought as the targeted steady state
temperatures (𝜃𝑚

𝑆𝑆 for module 𝑚). Since 𝜃𝑚
𝑆𝑆 is constant for a map,

the temperature derivatives are zero (no variation in time).
Therefore, equation 1 could be written as

𝑷𝑆𝑆 = 𝑩 × 𝜣𝑆𝑆 .
This means that it is possible to calculate the required powers that

lead to the specified thermal map. In order for the specified thermal
map to be achievable, the computed steady state power values must
satisfy a feasibility and a schedulability condition. The first part of
the feasibility condition is that the computed steady state power for
a module 𝑚 (𝑝𝑚

𝑆𝑆) should be larger than or equal to the stray power
dissipation of the module. The stray power is an unintended part of
the power that could not be independently controlled with available
test controls. Its value for module 𝑚 is denoted by 𝑝𝑚. It consists of
the leakage power in addition to the clock networks’ power. The
second part of the feasibility condition is that 𝑝𝑚

𝑆𝑆 should be less than
or equal to the average power of the corresponding heating sequence,
𝑝𝑚

𝐻𝑆, plus 𝑝𝑚̅̅ ̅̅ . The feasibility condition is, therefore, as follows:

∀𝑚, 𝑝𝑚̅̅ ̅̅ ≤ 𝑝𝑚
𝑆𝑆 ≤ (𝑝𝑚

𝐻𝑆 + 𝑝𝑚̅̅ ̅̅)
Usually the feasibility condition is easily met if the specified

thermal map is realistic (for example the specified temperature is not
lower than the ambient). Assuming that equation 3 is satisfied, the
schedulability condition which is related to the limited TAM

Figure 1. Temperature curves for an example.

0 1 2 3 4 5 6 7

x 10
4

40

60

80

100

120

90

60

m=0

m=2

m=1

2 410 3 5

Te
m

p
er

at
u

re
 [

o
C

]

120

30

(a) (b)

0 1 2

×104 TU
A period

6

bandwidth should be verified. The challenging problem here is to
create the required average power values, 𝑷𝑆𝑆, using the available
TAM bandwidth. This is done by selectively applying the heating
sequences to the modules.

The continuous application of the heating sequence generates an
average dynamic power equal to 𝑝𝑚

𝐻𝑆. The desired power values, 𝑝𝑚
𝑆𝑆,

which are smaller than 𝑝𝑚
𝐻𝑆 + 𝑝𝑚̅̅ ̅̅ , are created by applying the

heating sequence, 𝑝𝑚
𝐻𝑆, for a fraction of a time period. The average

power in a period should be made equal to the required steady state
power. This is done using a technique similar to Pulse-Width
Modulation (PWM). The ratio of the duration of heating sequence
application to the overall time period is therefore called Duty-cycle
(𝐷𝑚).

𝐷𝑚 =
(𝑝𝑚

𝑆𝑆− 𝑝𝑚̅̅ ̅̅ ̅)

𝑝𝑚
𝐻𝑆

These duty-cycles might not be achievable if their values are
relatively large and if the TAM does not provide sufficient
bandwidth. For example, assume a design with two modules, 𝑚0 and
𝑚1. Assume that the duty-cycles are 𝐷0 = 0.6 and 𝐷1 = 0.8. This
means that in a period of time equal to 1, we need access to 𝑚0 for
60% of the time and access to 𝑚1 for 80% of the time. Therefore,
simultaneous access to more than one module (0.6 + 0.8 = 1.4
modules) is required. This means that the TAM should provide
simultaneous access to these two modules otherwise these duty-
cycles are not schedulable and the specified thermal map is not
achievable. The feasibility condition and the schedulability
condition can be written as:

 ∀𝑚, 0 ≤ 𝐷𝑚 ≤ 1, and
∑ 𝐷𝑚

𝑀−1
𝑚=0 ≤ 𝑊

Given a thermal map that satisfies both feasibility and
schedulability conditions, it is relatively simple to develop a
schedule to deliver the required duty cycles. Fig. 2a gives an
illustrative example, where the available parallelism, 𝑊, provided
by the TAM is represented by the number of rows that could be filled
with duty-cycles, 𝐷𝑚s (𝑊 = 3). The scheduling algorithm starts by
sorting the duty-cycles and then allocating them from the largest one
to the smallest ones by filling the rows from the lowest one upwards.
Note that a module needs to switch at most twice during a period and
therefore the switching overheads are negligible. The fractions of the
time period that the modules receive heating sequences are
illustrated in Fig 2b. At every moment in time only three modules
are receiving their heating sequences (the TAM limitation is not
exceeded), and the average of applied heating sequence for a module
is equal to the specified steady state power.

As mentioned before, a thermal map may leave the temperatures
for some nodes unspecified (don’t-care nodes). Besides, the
temperatures for inactive thermal nodes (e.g., TSV blocks) are also
left unspecified. On the other hand, in order to compute the steady
state powers, these temperatures should also be known. The proper
choice of temperatures for the don’t-care nodes may help a thermal
map that is otherwise not schedulable become schedulable. The
problem of finding proper temperature values for don’t-care nodes is

formulated as a Linear Programming (LP) problem. Since we are
more interested in knowing the duty cycles than the temperatures,
the problem formulation is, then, written with the duty cycles as
decision variables, as shown in Fig. 3. If the LP solver finds a
feasible solution, then the thermal map is achievable and the duty
cycles are returned by the LP solver.

The period should be short enough so that the fluctuations in the
temperatures do not violate the specified limits. On the other hand, a
longer period is desirable to minimize switching. An algorithm based
on linear estimation is used in this paper to calculate the proper
periods. An example for the results could be seen in Fig. 1. After the
temperatures have completed their transitions to their new values
(after 4 × 104 TU), the proper choice of the period keeps them inside
the specified ranges, albeit relatively large fluctuations caused by
relatively low number of switching actions in the schedule.

V. TRANSIENT-BASED HEURISTIC

A transient-based heuristic is designed so that active
nodes/modules are no longer obliged to have individual access to
TAM. Consequently, a module can be further divided into a number
of thermal nodes. The overall number of nodes is represented by a
positive integer 𝑁 (𝑀 ≤ 𝑁). The desired thermal map is specified
for thermal nodes (instead of modules in previous section).
Consequently, the thermal map specifies that node 𝑛 has low
temperature limit equal to 𝜃𝑛

𝐿 and high temperature limit equal to 𝜃𝑛
𝐻.

In this new approach, the switching activities for heating
sequences are more specific and provide information concerning the
power breakdown among active thermal nodes. For example, instead
of only one heating sequence for module 𝑚, there are two heating
sequences corresponding to two active thermal nodes 𝑛 and 𝑜 (if
module 𝑚 is divided into nodes 𝑛 and 𝑜). The average power of a
heating sequence for active node 𝑛 is represented by 𝑝𝑛

𝐻𝑆. Other
active nodes of that module (e.g., node 𝑜) may also receive power,

denoted by 𝑝𝑛,𝑜
𝐻𝑆 . Therefore, when trying to heat up node 𝑛 with 𝑝𝑛

𝐻𝑆,

node 𝑜 is also heated by 𝑝𝑛,𝑜
𝐻𝑆 .

Furthermore, power dissipation for TSV blocks is supported
(TSV drivers/buffers may be placed in TSV blocks) and their desired
temperatures might also be specified in the thermal maps. Up till now
it was assumed that the TAM only affords 𝑊 modules to be tested
simultaneously. But in this section we only need to know that at each
moment which modules have access to TAM.

The proposed technique is based on applying the power in two
different modes, a thermal boost mode which is followed by a
thermal rest mode. During the boost, the temperatures can be
outside the specified ranges. When the temperatures reach inside the
specified ranges, the thermal rest mode takes over. Since a very short
transition time is desirable, the highest possible power should be
continuously applied during boost (assuming that the new map’s
temperature is higher). The proposed method works as follows:
Boosting of an active node stops when the node reaches the Stop
Boosting temperature, 𝜃𝑛

𝑆𝐵. The stop boosting temperatures may be
higher than the high temperature limit, 𝜃𝑛

𝐻. The temperatures in the

boost mode are kept below 𝜃𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔. Moreover, the duration of
the boost mode is very short. Therefore, boost mode is thermally safe
and it has no significant effect on the wear mechanisms.

Figure 2. An example for scheduled duty-cycles.

D1 = 0.75
D2 = 0.75
D3 = 0.50

D0 = 1.00

Sorted
Order

W = 3 (three rows)
M = 4 (four modules)
m : module
T : the period

0.25 0.500.00 0.75 1.00

D2 D2 D3 D3

D1 D1 D1 D2

D0 D0 D0 D0

(a)

(b)

t0 t0+T time

m=3

m=2

m=1

m=0

Decision variables: 𝐷𝑚 ; 𝑚 = 0, 1, … , 𝑀 − 1

Objective: 𝑓𝑖𝑛𝑑 𝑎 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

Constraints:

{
𝜃𝑚 = 𝜃𝑚

𝑆𝑆, 𝑚 𝑖𝑠 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑

𝜃𝑎𝑚𝑏𝑖𝑒𝑛𝑡 ≤ 𝜃𝑚 < 𝜃𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑡𝑖𝑛𝑔 , 𝑚 𝑖𝑠 𝑑𝑜𝑛′𝑡 𝑐𝑎𝑟𝑒 𝑜𝑟 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

{
𝐷𝑚 = 0, 𝑚 𝑖𝑠 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒
0 ≤ 𝐷𝑚 ≤ 1, 𝑚 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒

∑ 𝐷𝑚𝑚 ≤ 𝑊 ; 𝑚 = 0, 1, … , 𝑀 − 1

Figure 3. Linear programming formulation.

A node’s temperature will naturally decrease if no power or little
power is applied to it, but it should not fall below the low temperature
limit. Therefore, a heating sequence should be applied at some point,
before the temperature falls out of range. This point is marked with
a temperature value named Heating Trigger and denoted by 𝜃𝑛

𝐻𝑇 for
active thermal node 𝑛 (𝜃𝑛

𝐻𝑇 > 𝜃𝑛
𝐿). The heating sequence should be

applied when the temperature of node 𝑛 falls below 𝜃𝑛
𝐻𝑇. The

difference between 𝜃𝑛
𝐻𝑇 and 𝜃𝑛

𝐿 provides sufficient time for the node
to wait for gaining access to the TAM without its temperature falling
below 𝜃𝑛

𝐿. The heating should stop when the temperature reaches the
high temperature limit. The time that it takes to get back to the low
temperature limit, could be utilized to heat up other nodes that need
heating.

The nodes that simultaneously require heating should be
accommodated within the available bandwidth of the TAM. This
bandwidth might not be sufficient for all of them and therefore some
of them should be prioritized. The priorities for using the TAM are
determined based on the regional need for heating (denoted by 𝑑𝑛)
around a node 𝑛 (𝑑𝑛 ∈ 𝑫). It is similar to the duty cycles in the
previous sections and it is obtained using the following procedure.
In the following the regional need for heating is introduced for the
thermal rest mode. Equation 1 could be estimated as

𝑨×(𝜣𝐻𝑇−𝜣)

𝑇
 + 𝑩 × 𝜣 = 𝑫 × 𝑷𝐻𝑆 + �̅�.

The equation is written for one cycle (the period is 𝑇) that is
assumed to be small. Equation 6 is then solved for the nodes that
need heating as follows.

𝑑𝑛 =

∑ 𝑎𝑛,𝑘×(𝜃𝑘
𝐻𝑇− 𝜃𝑘)𝑁−1

𝑘=0
𝑇

+ ∑ 𝑏𝑛,𝑘 × 𝜃𝑘
𝑁−1
𝑘=0 − 𝑝𝑛̅̅ ̅

𝑝𝑛
𝐻𝑆

𝑑𝑛 depends on (1) the required heating for node 𝑛, (2) the
required heating that is related to the adjacent nodes, and (3) the
average power of the corresponding heating sequence, 𝑝𝑛

𝐻𝑆. The
elements of matrices 𝑨 and 𝑩, (𝑎𝑛,𝑘 and 𝑏𝑛,𝑘) are so that the regional

need for heating has the highest dependency on the node itself, and
a smaller dependency on the adjacent nodes.

The priorities in thermal boost mode are computed in a similar
manner by replacing 𝜃𝑛

𝐻𝑇with 𝜃𝑛
𝑆𝐵 (e.g., in equations 6 and 7).

Efficient values for stop boosting and heating trigger temperatures
for each map are found using an optimization metaheuristic similar
to [2].

The output for the steady state solutions is a periodic offline
schedule and therefore producing a small periodic schedule is one of
its advantages. A periodic schedule means that there is a constant
average power for each module, despite the fact that a higher or
lower average power might be suitable for different periods. The
transient-based heuristic addresses this issue by generating a non-
periodic offline schedule that facilitates the heating for the nodes that
need it the most. Furthermore, the introduction of the boost mode
helps to reduce the switching overheads in the schedule.

VI. EXPERIMENTAL RESULTS

The proposed methods are evaluated for twelve experimental ICs
with one to three layers, as detailed in row 1 Table I. There are two,
four, eight, and sixteen physical modules per layer, resulting in the
total number of modules ranging from two to forty eight, as given in
row 2. The dies are assumed to be stacked in a face to back
configuration.

The thermal models are extracted using an approach similar to
the method proposed in [5] for 3D-SIC. The heating patterns’
switching activities are generated using Markov chains, similarly as
in [16]. The valid ranges in thermal maps are randomly selected

between 35℃ and 95℃. Only thermal maps that can be achieved in
practice are considered.

The CPU time to generate the schedules for the steady state
method for all of the twelve experimental ICs together is about 2
seconds while the transient-based heuristic completes in about 12
minutes. The percentage changes in burn-in times are given in rows
3 of Table I. Considerable speed up (78% in average) is achieved by
the transient-based heuristic.

CPU times for the transient-based heuristic for different number
of modules are given in Fig. 4. Even though the CPU time grows
rapidly with the increase in the number of modules, for an IC with
48 modules it is still relatively short (480 sec).

VII. CONCLUSIONS

Early-life failures that depend on temperature-gradients
introduce a challenge for achieving an efficient burn-in process, in
particular for 3D-SIC. In order to properly detect these defects, some
specific thermal gradient must be enforced on the IC as part of the
burn-in process. The technique proposed in this paper utilizes the
available test access mechanisms in order to selectively apply high-
power stimuli to the IC. Therefore, there is no need for expensive
equipment to heat up the chip from outside and it makes it possible
to generate large temperature gradients, which are otherwise
impossible to produce. The experimental results show that the
proposed technique generates an efficient schedule in a reasonably
short time. To our knowledge, this is the first technique to achieve
burn-in without any external heating mechanism.

REFERENCES

[1] S. Adham and E. J. Marinissen. http://grouper.ieee.org/groups/1838/.
[2] N. Aghaee, Z. Peng, and P. Eles, “Process-variation and temperature aware SoC

test scheduling using particle swarm optimization,” IDT 2011.
[3] N. Aghaee, Z. Peng, and P. Eles, “Process-variation and temperature aware SoC

test scheduling technique,” JETTA 2013.
[4] Y. Bonhomme, P. Girard, C. Landrault, and S. Pravossoudovitch, “Test power:

a big issue in large SOC designs,” DELTA 2002.
[5] A. K. Coskun, J. L. Ayala, D. Atienza, T. S. Rosing, and Y. Leblebici, “Dynamic

thermal management in 3D multicore architectures,” DATE 2009.
[6] Z. He, Z. Peng, and P. Eles, “Multi-temperature testing for core-based system-

on-chip,” DATE 2010.
[7] W. Huang et al., “Compact thermal modeling for temperature-aware design,”

DAC 2004.
[8] E. J. Marinissen, “Challenges and emerging solutions in testing TSV-

based 2.5D- and 3D-stacked ICs,” DATE 2012.
[9] S. K. Millican et al., “Linear programming formulations for thermal-aware test

scheduling of 3D-stacked integrated circuits,” ATS 2012.
[10] J. Pak et al., “Modeling of electromigration in through-silicon-via based 3D IC,”

ECTC 2011.
[11] O. Semenov, A. Vassighi, M. Sachdev, A. Keshavarzi, and C. F. Hawkins,

“Effect of CMOS technology scaling on thermal management during burn-in,”
IEEE Trans. Semicond. Manuf., 2003, vol. 16, no. 4.

[12] T. Smorodin, J. Wilde, P. Alpern, and M. Stecher, “A temperature-gradient-
induced failure mechanism in metallization under fast thermal cycling,” IEEE
Trans. Device Mater. Rel., 2008, vol. 8, no. 3.

[13] G. Van der Plas et al., “Verifying electrical/ thermal/ thermo-mechanical
behavior of a 3D stack - Challenges and solutions,” CICC 2010.

[14] N. S. Vinay, I. Rawat, E. Larsson, M. S. Gaur, and V. Singh, “Thermal aware
test scheduling for stacked multi-chip-modules,” EWDTS 2010.

[15] C. Yao, K. K. Saluja, and P. Ramanathan, “Temperature dependent test
scheduling for multi-core system-on-chip,” ATS 2011.

[16] C. Yao, K. K. Saluja, and P. Ramanathan, “Thermal aware test scheduling using
on-chip temperature sensors,” VLSID 2011.

TABLE I. PERCENTAGE CHANGE IN BURN-IN TIME: TRANSIENT-BASED HEURISTIC COMPARED WITH STEADY-STATE SOLUTION.

Average

IC Specifications
Number of layers 1 1 1 1 2 2 2 2 3 3 3 3
Number of modules 2 4 8 16 4 8 16 32 6 12 24 48

Percentage change in burn-in time - 97.82 - 73.05 - 69.95 - 62.63 - 68.37 - 65.94 - 63.82 - 55.14 - 97.18 - 93.17 - 95.87 - 94.52 - 78.12

Figure 4. CPU time versus number of modules.

512

64

1
0 5 10 15 45C

P
U

 t
im

e
[s

ec
]

5035 4020 25 30
Number of Modules

8

