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Abstract—Reliability is a major concern in multiprocessors.
Dynamic Reliability Management (DRM) aims at trading off
processor performance with lifetime. The state-of-the-art publica-
tions study only the theory supported by simulation. This paper
presents the first complete software implementation, working
on a real hardware, of a low-overhead, Android-compatible
workload-aware DRM Governor for mobile multiprocessors. We
discuss the design challenges and the run-time overhead involved.
We show the effectiveness of our governor in guaranteeing the
predefined target lifetime and show that it achieves up to 100% of
lifetime improvement with respect to traditional governors, while
providing comparable performance for critical applications.

I. INTRODUCTION

Reliability issues worsen with technology scaling due to
the impact of degradation phenomena such as Time Dependent
Dielectric Breakdown (TDDB) and Bias Temperature Insta-
bility (BTI). Degradation depends on voltage and temperature
stress, environmental conditions and workload variations. With
scaling, device lifetime becomes more difficult to predict [5],
impacting on warranty costs, trust and reputation. Design
techniques are not effective to counteract this problem, due to
high variation in workloads run and changing environmental
conditions.

Smartphones and tablets work in a variety of environments
and run workloads with different performance requirements
[7]. Therefore, they are subject to variable voltage/frequency
stress [16]. Since reliability depends on temperature and volt-
age, a runtime control is needed to correctly manage the
reliability of a device over time [8].

Reliability can be determined by monitoring voltage and
temperature. Recent work also presents sensors for monitoring
degradation [13], and embeds them in prototypes [14], [17].

Dynamic Reliability Management (DRM) is a set of tech-
niques trading off processor degradation and performance at
runtime [10], [15], [18]. Reliability is periodically assessed,
and processor operating conditions are controlled to limit the
degradation source (i.e. temperature and voltage). The goal of
DRM is to not exceed a predefined target reliability within a
predefined target lifetime.

Modern operating systems have dedicated software compo-
nents for power management. Linux uses Governors to control
operating conditions. Governors are kernel modules interfaced
with hardware regulators [11]. Android, which is based on
the Linux kernel, can select between different Governors,

targeting goals such as providing maximum performance or
saving energy. However, there is no governor for reliability
management yet.

A. Related Work

DRM is introduced by Snirivasan et Al. in [15] as a
technique to respond to changing reliability by limiting chip
operating conditions through Dynamic Voltage Frequency
Scaling (DVFS). In [18], an accurate voltage and temperature
dependent model for TDDB degradation is part of a control
loop that uses DVFS to guarantee the target reliability. These
papers present simulation results assuming platform and work-
load models which may not be available for general purpose
architectures. This limits the implementation feasibility. These
publications target single core scenarios.

These publications effectively counteract degradation, but
they do not consider the existence of different workload re-
quirements to obtain good user experience. This is achieved by
the technique in [10], which is a workload-aware DRM tech-
nique for multiprocessors based on a two-level controller. This
technique monitors system reliability on a long time scale and
adapts operating conditions to workload quality requirements
on a short time scale. This is shown to outperform the state-of-
the-art, as it provides full performance to critical applications.
It focuses on TDDB, exploiting the model presented in [18]
for simulating the presence of degradation sensors. It does not
assume a priori knowledge of workload, but only leverages the
runtime characterization of workload requirements. Thus it is
feasible to implement.

In this work we present the design and the implementa-
tion of the Reliability Governor on a real Android device,
leveraging multiple levels of its software stack. It exploits
the Linux governor-based architecture. Therefore it is fully
compatible with the Linux power management and could be
adapted to other Linux-based systems. We demonstrate that
our implementation has low overhead. Our results show the
effectiveness of our governor in guaranteeing the predefined
target lifetime and it achieves up to 100% of lifetime improve-
ment with respect to traditional governors, while providing
high performance for critical applications.

This is the first time a DRM technique has been engineered
and integrated into the Linux environment, and demonstrated
on a real Android device, the Qualcomm Snapdragon S4
apq8064-based mobile development tablet.978-3-9815370-2-4/DATE14/ © 2014 EDAA



II. RELIABILITY GOVERNOR

We developed our DRM framework on the Snapdragon
S4 apq8064-based mobile development tablet, which has an
asynchronous quad Krait CPU with frequency from 380MHz
up 1.67GHz and voltage from 0.95V to 1.25V. Cores have
independent voltage/frequency (V/f) settings and fixed oper-
ating V/f points. Therefore, changing frequency automatically
changes voltage. The operating system is Android 4.1.2 (Jelly
Bean), with Linux kernel 3.4.0. The rate of the scheduling
tick is 10ms. This corresponds to one jiffy, the kernel time
unit. In Android, software power management is implemented
in the kernel by modules called Governors. Governors change
operating conditions with different aims, such as energy saving
or maximum performance.

Figure 1 shows our Reliability Governor for workload-
aware DRM and the Debug and Monitor Infrastructure that
exports data to the user space. The diagram refers to the
governor for a single core. For a multiprocessor with per
core voltage and frequency, this scheme is replicated for each
core. The framework has a Long Term Controller (LTC) which
activates every Long Interval (LI = days it takes for reliability
to change) and a Short Term Controller (STC) which activates
every Short Interval (SI = 1 jiffy). Tasks are divided in Highly
critical (H) and Less critical (L) as in [10]. For providing
good user experience, H tasks must be executed at maximum
frequency. The goal of DRM is to let the core reliability R be
above a target reliability Rt at the predefined target lifetime.

A. Governor Architecture
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Fig. 1. Block diagram of the implemented governor.

The Reliability Governor in Figure 1 (white blocks) op-
erates at two time scales and requires floating point support.
It differs from a standard power management governor, which
uses only one time scale, compatible with the scheduler rate,
and uses simple arithmetic operations. Therefore, our modular
implementation leverages both kernel modules and user space
daemons. In the kernel space, the Short Term Controller at the
beginning of each Long Interval gets a reference voltage VLTC

from the LTC. Then, it assigns new voltage and frequency
at each SI based on the Borrowing Strategy [10]. The Long
Term Controller, in the user space, at each LI reads the

average voltage and temperature VLI and TLI . Based on that,
it calculates the current reliability R with the model presented
in [18] for TDDB1 and computes VLTC , as in [10]. The
constraint to reliability is met if at each LI VLI ≤ VLTC . The
LTC Driver Module allows LTC and STC to communicate,
as they are in different spaces of the software stack. The
Application Manager communicates to the kernel space the
list of H applications (H list), so that at each SI the governor
knows whether the running task is H or not. The STC acts on
the Voltage Regulator and the Frequency Tuner to change the
core operating conditions.

The gray blocks of Figure 1 compose the debug infras-
tructure that exports data to the user space, similarly to [2].
This is used to validate the proposed solution and to collect
experimental results. The Reliability Stats Reader reads data
both from the STC and from core registers. Data are stored in
a Double Buffer of memory in the kernel space. The reading
is controlled by the Userspace Reader, which, once a buffer
is full, it flushes it and enables writing on the other one. The
Reliability Stats Driver Module allows the userspace reader to
communicate with the kernel memory space.

B. Design Choices and Implementation

The Short Term Controller must be able to gather task
requirements (the H/L flag) and data from sensors, finally to
change V/f before the task is executed. In a time sharing OS,
this can be done only in the scheduler, which is triggered at
each jiffy. This is the only place in which the beginning and the
end of the task execution can be identified. However, in Linux
and Android, the scheduler is a critical module, as it contains
atomic sections. Thus, calls to external interruptible functions,
such those to read sensors and change frequency, may cause
kernel panics. Changing the scheduler also affects software
portability. Therefore, the STC has been implemented using the
ondemand governor as starting point [11]. This has a built-in
timer and the interfaces towards V/f regulators. We maintained
these features, and replaced the ondemand algorithm with the
STC one. The sampling rate of the governor can be set at the
same rate of the scheduler, which is 1 jiffy (10ms).

A fundamental problem is how to recognize whether tasks
are H or L. In the scheduler it is easy to add a field to
the task data structure with the H/L flag. Changing the task
structure, however, is invasive, and it affects the portability of
the framework. Our approach does not require to change the
task structure. From the user space, the Application Manager
passes the list of PIDs (process IDs) of applications labeled
as H (the H list). At each SI, the STC reads the PID of the
running task and checks whether it is or not in the H list2. The
list can be changed dynamically.

To reduce reading overhead, temperature sensors are read
each second by an independent Temperature Module, which
writes values to variables shared between the temperature
module and the STC. Temperature, in fact, does not need to be
observed every 10ms, as it changes at a slower rate. Moreover,
the function that reads temperature sensors, tsens get temp,
blocks execution. If called by the STC it can cause malfunc-
tioning and kernel panics. Once the STC has the flag associated

1Other degradation phenomena can be included with appropriate models.
2This could be further improved with a suitable interface allowing the user

to choose H applications.



to the running task, it chooses the frequency to be set, and
applies it to the core.

The STC also has an internal counter to keep track of
the jiffies elapsed from the beginning of the LI (tLI ). All
the internal module computations are optimized for integer-
based fixed point arithmetic. Note that this modular structure
allows for changes and improvements in case the hardware has
additional features, such as degradation sensors.

The Long Term Controller, once the LI is over, updates
R and calculates the new VLTC . This requires floating point
operations which cannot be performed in the kernel space.
Moreover, the LTC activates at a much slower rate (order of
days) w.r.t. the typical kernel times (order of jiffies). Therefore
we decided to “expand” the basic Governor structure by
implementing the LTC as a user space daemon. In this way, the
LTC can sleep until the STC recognizes that the LI is over and
wakes it up. To implement this the LTC waits on a particular
POSIX Activation Signal (SIGUSR1 in our implementation).
In Linux kernel, signals can be sent directly form the kernel
to the user space, but not vice versa. When the LI is over, the
STC sends the signal to the LTC, which computes the new
value of VLTC and goes back to sleep. Then, it notifies to the
STC that a new LI has begun by resetting its tLI . In the time
elapsed between sending the signal and resetting the tLI shared
variable, the STC operates as the LI is not over. As shown in
the results, this does not lead to significant errors. To allow the
exchange of data between the LTC and application manager
in the user space, and the STC in the kernel space, we have
developed a device driver called LTC Module Driver. Note that
this structure allows for changes both to the reliability model
and to the way to calculate VLTC .

Due to the complexity of the depicted implementation, we
created an ad hoc Debug and Monitor Infrastructure similar to
the one in reference [2]. The kernel module Reliability Stats
Reader provides the function update reliability stats. This
function is inlined in the scheduler and executed at each tick.
It gathers values from data to be monitored and writes them
in the first free line of the Double Buffer of memory allocated
in the user space. In this way, we are able to read data with
a resolution of 10ms. We hide the overhead of exporting data
from the kernel to a user space log by using a dedicated kernel
double buffer memory. A userspace application (Userspace
Reader) periodically polls the buffer to see whether it is full.
Once full, it flushes it and swaps buffers. This is done through
the Reliability Stats Module Device Driver, which works as an
interface between kernel and user space for data export.

III. RESULTS

Table I shows the average overheads of our governor.
Latencies in the kernel space are computed by successively
sampling the cycle register and computing the difference.
Latencies in the user space, instead, are computed with the
function gettimeoftheday.

The temperature module takes 5.2us to read the temperature
sensors. This has been measured sampling the cycle register
before and after the function tsens get temp. The sensors are
sampled once a second, so the overhead is 0.00052%. The
governor takes 14.22us to change the frequency. This has
been measured sampling the cycle register before and after
the function cpufreq driver target. The execution time of the

Overhead Measure

Temperature sensors 5.2us

Frequency change 14.22us

STC algorithm + Frequency change 14.65us

Passing H list 3.632ms

LTC execution 73.840ms

Buffer reading 30ms

Memory difference w.r.t. original 8.192KB (0.13%)

TABLE I. IMPLEMENTATION OVERHEADS

entire STC algorithm inside of the governor, included the
changing of frequency, is 14.65us. Since the governor rate is
10ms, this is an overhead of 0.14%. The time for passing
the H list is 3.632ms. This has been measured executing
gettimeoftheday before and after calling the procedure that
passes the H list. The LTC execution time (73.840ms) is
calculated from the moment the activation signal is received
until the LTC goes back to sleep. Considering invoking the
LI once a day, the overhead is negligible. The difference in
memory between the original compiled kernel image, which
is 6.2464MB, and the version with our governor is 8.192KB
(0.13%). These measures tells that our governor has a very
low impact.

To evaluate the behavior of reliability control over a target
lifetime of 5 years in a reasonable experimental time, we set
the LI duration to 500 jiffies (500 jiffies=30days). Figure 2 has
two time axes. One is the virtual time in years (for reliability),
the other is the experimental time in seconds. The platform
executes two applications, one is H and the other is L. We
chose the BurnCortexA9 power virus3 as test application. This
application causes high voltage and temperature stress, thus it
accelerates aging. Our aim is to have an easily controllable
and high-stress workload for this experiment, and not a rep-
resentative mobile workload (targeted in the last experiment).
Figure 2 shows the reliability of each core over time and the
target reliability Rt = 0.8 (first plot), frequency traces (from
second to fifth plot) and the plot of task allocation.
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Fig. 2. Behavior of reliability control over time.

Our DRM strategy executes with the native Android
scheduling and allocation. Reliability-aware allocation has
been proposed in literature [12], but we do not consider it in
this work, as it requires to modify the scheduler. This explains

3cpuburn power virus by Robert Redelmeier: it takes advantage of the
superscalar architecture to maximize the CPU power consumption



why in the reliability plot of Figure 2, core 4 degrades faster4.
This core is the one in which the H application is allocated
for the most part of time, as shown by the last plot. This
causes high execution frequency and voltage, thus a faster
degradation. The core 4 at 200 seconds (corresponding to 3.3
years of virtual time) consumes all the reliability budget for
executing the H tasks, thus it is forced to run at minimum
frequency for the rest of time for meeting the target reliability.
In this case, a reliability-aware scheduler would avoid to use
core 4 for H tasks, and we can see that even the unmodified
Linux scheduler does react somewhat in the right direction.

The reliability governor executes H tasks always at maxi-
mum frequency while the L tasks are executed at a frequency
that meets the LTC reference voltage (VLTC) over the LI,
paying also the extra degradation induced by H tasks. This
can be noticed in the first zoom of Figure 2. This shows
the execution frequency of the 3rd core inside of a LI. The
dashed line represents the frequency fLTC correspondent to
VLTC . The LI starts with the execution of the H application,
which borrows reliability budget allocated for the LI. After a
idle period, core 3 executes the L application. The execution
frequency is lower than fLTC , as the L application pays the
loan of the H application. The second zoom, instead, shows
a LI in which only the L application is executing. Here the
borrowing allows to leverage idle periods to increase the
frequency for execution of L application. When no H tasks
are present, L tasks can run at higher performance. The stairs
present in the plot are a consequence of frequency/voltage
quantization.
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In Figure 3 we compare our governor against the perfor-
mance governor for the same workload scenario, for a single
core. Our governor achieves a 100% lifetime improvement,
while providing comparable performance (in terms of mean
applied frequency, averaged over system lifetime) for the
execution of H tasks. L tasks pay for achieving the target
lifetime by executing at a lower frequency.

Figure 4 reports the performance while varying the target
lifetime in the DRM control, to show the trade off between
lifetime and performance. The performance metric is derived
from the normalized score of the benchmark for mobile
devices 3D Mark IceStorm [1]. This application runs over the
entire system lifetime and is characterized as a L application.
Performance equal to 1 corresponds to that obtained with the
performance governor, while performance equal to 0 is that
obtained with the powersave governor. The DRM control with
target lifetime from 1 to 2.5 years has performance comparable
to the case with the performance governor. This is consistent

4Clearly, modifying the Linux scheduler to account for processor reliability
degradation would be desirable and it is technical feasible and we plan to
propose reliability-aware schedulers to the Linux community in the near future.

with results shown in Figure 3. If the target lifetime is 3 years,
performance is a little lower. When the target lifetime is 5
years, performance is almost halved. This happens because the
benchmark runs as a L application and sacrifices performance
to meet the target lifetime. However, as shown in Figure 3,
the use of the performance governor reduces considerably the
lifetime.

2.5 years = lifetime with 

performance governor

Fig. 4. Performance evaluation with 3D Mark IceStorm benchmark.

IV. CONCLUSION

In this paper we presented a novel Reliability Governor
for workload-aware DRM, compatible with the existing An-
droid/Linux software stack, that has been implemented on
a real Android mobile device. Our solution has negligible
overhead. We show the correctness of operation of the im-
plemented technique and its effectiveness in guaranteeing the
system target lifetime. Our solution achieves up to 100% of
lifetime improvement with respect to traditional governors,
while providing high performance for critical applications.
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